Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
1.
Development ; 150(17)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37577954

RESUMO

Germ line integrity is crucial for progeny fitness. Organisms deploy the DNA damage response (DDR) signaling to protect the germ line from genotoxic stress, facilitating the cell-cycle arrest of germ cells and DNA repair or their apoptosis. Cell-autonomous regulation of germ line quality in response to DNA damage is well studied; however, how quality is enforced cell non-autonomously on sensing somatic DNA damage is less known. Using Caenorhabditis elegans, we show that DDR disruption, only in the uterus, when insulin/IGF-1 signaling (IIS) is low, arrests oogenesis in the pachytene stage of meiosis I, in a FOXO/DAF-16 transcription factor-dependent manner. Without FOXO/DAF-16, germ cells of the IIS mutant escape the arrest to produce poor-quality oocytes, showing that the transcription factor imposes strict quality control during low IIS. Activated FOXO/DAF-16 senses DDR perturbations during low IIS to lower ERK/MPK-1 signaling below a threshold to promote germ line arrest. Altogether, we elucidate a new surveillance role for activated FOXO/DAF-16 that ensures optimal germ cell quality and progeny fitness in response to somatic DNA damage.


Assuntos
Proteínas de Caenorhabditis elegans , Animais , Feminino , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Caenorhabditis elegans/metabolismo , Insulina/metabolismo , Dano ao DNA/genética , Oogênese/genética , Longevidade/fisiologia
2.
Genes Dev ; 32(23-24): 1562-1575, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30478249

RESUMO

Heat shock factor 1 (HSF-1) and forkhead box O (FOXO) are key transcription factors that protect cells from various stresses. In Caenorhabditis elegans, HSF-1 and FOXO together promote a long life span when insulin/IGF-1 signaling (IIS) is reduced. However, it remains poorly understood how HSF-1 and FOXO cooperate to confer IIS-mediated longevity. Here, we show that prefoldin 6 (PFD-6), a component of the molecular chaperone prefoldin-like complex, relays longevity response from HSF-1 to FOXO under reduced IIS. We found that PFD-6 was specifically required for reduced IIS-mediated longevity by acting in the intestine and hypodermis. We showed that HSF-1 increased the levels of PFD-6 proteins, which in turn directly bound FOXO and enhanced its transcriptional activity. Our work suggests that the prefoldin-like chaperone complex mediates longevity response from HSF-1 to FOXO to increase the life span in animals with reduced IIS.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Longevidade/genética , Chaperonas Moleculares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Intestinos/fisiologia , Chaperonas Moleculares/genética , Ligação Proteica , Transdução de Sinais/genética , Tela Subcutânea/fisiologia , Ativação Transcricional/genética
3.
Development ; 148(11)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34109380

RESUMO

The adult nervous system has a limited capacity to regenerate after accidental damage. Post-injury functional restoration requires proper targeting of the injured axon to its postsynaptic cell. Although the initial response to axonal injury has been studied in great detail, it is rather unclear what controls the re-establishment of a functional connection. Using the posterior lateral microtubule neuron in Caenorhabditis elegans, we found that after axotomy, the regrowth from the proximal stump towards the ventral side and accumulation of presynaptic machinery along the ventral nerve cord correlated to the functional recovery. We found that the loss of insulin receptor DAF-2 promoted 'ventral targeting' in a DAF-16-dependent manner. We further showed that coordinated activities of DAF-16 in neuron and muscle promoted 'ventral targeting'. In response to axotomy, expression of the Netrin receptor UNC-40 was upregulated in the injured neuron in a DAF-16-dependent manner. In contrast, the DAF-2-DAF-16 axis contributed to the age-related decline in Netrin expression in muscle. Therefore, our study revealed an important role for insulin signaling in regulating the axon guidance molecules during the functional rewiring process.


Assuntos
Axônios/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Moléculas de Adesão Celular/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Netrinas/metabolismo , Animais , Orientação de Axônios , Proteínas de Caenorhabditis elegans/genética , Moléculas de Adesão Celular/genética , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Microtúbulos/metabolismo , Fatores de Crescimento Neural/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de Netrina/metabolismo , Netrinas/genética , Neurônios/metabolismo , Transdução de Sinais
4.
FASEB J ; 37(2): e22735, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36583706

RESUMO

Cannabidivarin (CBDV), a structural analog of cannabidiol (CBD), has received attention in recent years owing to its anticonvulsant property and potential for treating autism spectrum disorder. However, the function and mechanism of CBDV involved in the progression of Parkinson's disease (PD) remain unclear. In this work, we found that CBDV inhibited α-synuclein (α-syn) aggregation in an established transgenetic Caenorhabditis elegans (C. elegans). The phenolic hydroxyl groups of CBDV are critical for scavenging reactive oxygen species (ROS), reducing the in vivo aggregation of α-syn and preventing DAergic neurons from 6-hydroxydopamine (6-OHDA)-induced injury and degeneration. By combining multiple biophysical approaches, including nuclear magnetic resonance spectrometry, transmission electron microscopy and fibrillation kinetics assays, we confirmed that CBDV does not directly interact with α-syn or inhibit the formation of α-syn fibrils in vitro. Further cellular signaling investigation showed that the ability of CBDV to prevent oxidative stress, the accumulation of α-syn and the degeneration of DAergic neurons was mediated by DAF-16 in the worms. This study demonstrates that CBDV alleviates the aggregation of α-syn in vivo and reveals that the phenolic hydroxyl groups of CBDV are critical for this activity, providing a potential for the development of CBDV as a drug candidate for PD therapeutics.


Assuntos
Transtorno do Espectro Autista , Proteínas de Caenorhabditis elegans , Canabinoides , Doença de Parkinson , Animais , alfa-Sinucleína , Caenorhabditis elegans , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Oxidopamina , Proteínas de Caenorhabditis elegans/genética , Fatores de Transcrição Forkhead
5.
FASEB J ; 37(4): e22844, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36906287

RESUMO

Phosphatases of regenerating liver (PRLs) are dual-specificity protein phosphatases. The aberrant expression of PRLs threatens human health, but their biological functions and pathogenic mechanisms are unclear yet. Herein, the structure and biological functions of PRLs were investigated using the Caenorhabditis elegans (C. elegans). Structurally, this phosphatase in C. elegans, named PRL-1, consisted of a conserved signature sequence WPD loop and a single C(X)5 R domain. Besides, by Western blot, immunohistochemistry and immunofluorescence staining, PRL-1 was proved to mainly express in larval stages and express in intestinal tissues. Afterward, by feeding-based RNA-interference method, knockdown of prl-1 prolonged the lifespan of C. elegans but also improved their healthspan, such as locomotion, pharyngeal pumping frequency, and defecation interval time. Furthermore, the above effects of prl-1 appeared to be taken without acting on germline signaling, diet restriction pathway, insulin/insulin-like growth factor 1 signaling pathway, and SIR-2.1 but through a DAF-16-dependent pathway. Moreover, knockdown of prl-1 induced the nuclear translocation of DAF-16, and upregulated the expression of daf-16, sod-3, mtl-1, and ctl-2. Finally, suppression of prl-1 also reduced the ROS. In conclusion, suppression of prl-1 enhanced the lifespan and survival quality of C. elegans, which provides a theoretical basis for the pathogenesis of PRLs in related human diseases.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Monoéster Fosfórico Hidrolases , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Fígado/metabolismo , Longevidade , Monoéster Fosfórico Hidrolases/metabolismo
6.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34607947

RESUMO

Plasticity in multicellular organisms involves signaling pathways converting contexts-either natural environmental challenges or laboratory perturbations-into context-specific changes in gene expression. Congruently, the interactions between the signaling molecules and transcription factors (TF) regulating these responses are also context specific. However, when a target gene responds across contexts, the upstream TF identified in one context is often inferred to regulate it across contexts. Reconciling these stable TF-target gene pair inferences with the context-specific nature of homeostatic responses is therefore needed. The induction of the Caenorhabditis elegans genes lipl-3 and lipl-4 is observed in many genetic contexts and is essential to survival during fasting. We find DAF-16/FOXO mediating lipl-4 induction in all contexts tested; hence, lipl-4 regulation seems context independent and compatible with across-context inferences. In contrast, DAF-16-mediated regulation of lipl-3 is context specific. DAF-16 reduces the induction of lipl-3 during fasting, yet it promotes it during oxidative stress. Through discrete dynamic modeling and genetic epistasis, we define that DAF-16 represses HLH-30/TFEB-the main TF activating lipl-3 during fasting. Contrastingly, DAF-16 activates the stress-responsive TF HSF-1 during oxidative stress, which promotes C. elegans survival through induction of lipl-3 Furthermore, the TF MXL-3 contributes to the dominance of HSF-1 at the expense of HLH-30 during oxidative stress but not during fasting. This study shows how context-specific diverting of functional interactions within a molecular network allows cells to specifically respond to a large number of contexts with a limited number of molecular players, a mode of transcriptional regulation we name "contextualized transcription."


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Jejum/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica/genética , Lipase/metabolismo , Estresse Oxidativo/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/genética , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Lipase/genética , Lipólise/fisiologia , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , Ativação Transcricional/fisiologia
7.
Ecotoxicol Environ Saf ; 270: 115871, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38141335

RESUMO

Tenuazonic acid (TeA) and patulin (PAT), as the naturally occurring mycotoxins with various toxic effects, are often detected in environment and food chain, has attracted more and more attention due to their widespread and high contaminations as well as the coexistence, which leads to potential human and animals' risks. However, their combined toxicity has not been reported yet. In our study, C. elegans was used to evaluate the type of combined toxicity caused by TeA+PAT and its related mechanisms. The results showed that TeA and PAT can induce synergistic toxic effects based on Combination Index (CI) evaluation model (Chou-Talalay method), that is, the body length, brood size as well as the levels of ROS, CAT and ATP were significantly affected in TeA+PAT-treated group compared with those in TeA- or PAT-treated group. Besides, the expressions of oxidative (daf-2, daf-16, cyp-35a2, ctl-1, ctl-3, pmk-1, jnk-1, skn-1) and intestinal (fat-5, pod-2, egl-8, pkc-3, ajm-1, nhx-2) stress-related genes were disrupted, among which daf-16 displayed the most significant alternation. Further study on daf-16 gene defective C. elegans showed that the damages to the mutant nematodes were significantly attenuated. Since daf-2, daf-16, jnk-1 and pmk-1 are evolutionarily conserved, our findings could hint synergistic toxic effects of TeA+PAT on higher organisms.


Assuntos
Proteínas de Caenorhabditis elegans , Patulina , Animais , Humanos , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Patulina/toxicidade , Patulina/metabolismo , Ácido Tenuazônico/metabolismo , Ácido Tenuazônico/farmacologia , Oxirredução , Longevidade
8.
Genes Dev ; 30(9): 1047-57, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27125673

RESUMO

Environmental fluctuations influence organismal aging by affecting various regulatory systems. One such system involves sensory neurons, which affect life span in many species. However, how sensory neurons coordinate organismal aging in response to changes in environmental signals remains elusive. Here, we found that a subset of sensory neurons shortens Caenorhabditis elegans' life span by differentially regulating the expression of a specific insulin-like peptide (ILP), INS-6. Notably, treatment with food-derived cues or optogenetic activation of sensory neurons significantly increases ins-6 expression and decreases life span. INS-6 in turn relays the longevity signals to nonneuronal tissues by decreasing the activity of the transcription factor DAF-16/FOXO. Together, our study delineates a mechanism through which environmental sensory cues regulate aging rates by modulating the activities of specific sensory neurons and ILPs.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Alimentos , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Insulina/genética , Longevidade/genética , Hormônios Peptídicos/genética , Proteínas de Caenorhabditis elegans/metabolismo , Sinais (Psicologia) , Meio Ambiente , Fatores de Transcrição Forkhead/metabolismo , Insulina/metabolismo , Optogenética , Hormônios Peptídicos/metabolismo , Células Receptoras Sensoriais/fisiologia , Transdução de Sinais
9.
Int J Mol Sci ; 25(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39063027

RESUMO

Imiqualines are analogues of the immunomodulatory drug imiquimod. EAPB02303, the lead of the second-generation imiqualines, is characterized by significant anti-tumor effects with IC50s in the nanomolar range. We used Caenorhabditis elegans transgenic and mutant strains of two key signaling pathways (PI3K-Akt and Ras-MAPK) disrupted in human cancers to investigate the mode of action of EAPB02303. The ability of this imiqualine to inhibit the insulin/IGF1 signaling (IIS) pathway via the PI3K-Akt kinase cascade was explored through assessing the lifespan of wild-type worms. Micromolar doses of EAPB02303 significantly enhanced longevity of N2 strain and led to the nuclear translocation and subsequent activation of transcription factor DAF-16, the only forkhead box transcription factor class O (Fox O) homolog in C. elegans. Moreover, EAPB02303 significantly reduced the multivulva phenotype in let-60/Ras mutant strains MT2124 and MT4698, indicative of its mode of action through the Ras pathway. In summary, we showed that EAPB02303 potently reduced the activity of IIS and Ras-MAPK signaling in C. elegans. Our results revealed the mechanism of action of EAPB02303 against human cancers associated with hyperactivated IIS pathway and oncogenic Ras mutations.


Assuntos
Antineoplásicos , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Fatores de Transcrição Forkhead , Quinoxalinas , Transdução de Sinais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Animais , Quinoxalinas/farmacologia , Quinoxalinas/química , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Antineoplásicos/farmacologia , Antineoplásicos/química , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Longevidade/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Humanos , Imidazóis/farmacologia , Imidazóis/química , Animais Geneticamente Modificados
10.
Molecules ; 29(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38398658

RESUMO

Dendrobium nobile is a traditional Chinese herb with anti-inflammatory, antioxidant, and neuroprotective properties. However, its antiaging effects are unclear. Herein, we studied the aging-related functions and the mechanism of action of the alcohol extract of Dendrobium nobile (DnAE) in the model organism Caenorhabditis elegans. The results indicated that 1 mg/mL DnAE slowed lipofuscin accumulation, decreased the levels of reactive oxygen species, elevated superoxide dismutase activity, enhanced oxidative and heat stress resistance, extended the lifespan of nematodes, protected their dopamine neurons from 6-hydroxydopamine-induced neurodegeneration, and reduced Aß-induced neurotoxicity. DnAE upregulated the mRNA expression of the transcription factors DAF-16 and HSF-1, promoted the nuclear localization of DAF-16, and enhanced the fluorescence intensity of HSP-16.2. However, it had no effect on the lifespan of DAF-16 mutants. Thus, DnAE can significantly extend lifespan, enhance heat stress tolerance, and delay age-related diseases through a DAF-16-dependent pathway.


Assuntos
Proteínas de Caenorhabditis elegans , Dendrobium , Animais , Longevidade , Caenorhabditis elegans , Dendrobium/metabolismo , Estresse Oxidativo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição de Choque Térmico/metabolismo , Etanol/metabolismo , Fatores de Transcrição Forkhead/metabolismo
11.
J Sci Food Agric ; 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39483065

RESUMO

BACKGROUND: The black goji berry (Lycium ruthenicum Murr.) is known for its abundance of high-quality natural antioxidants, particularly anthocyanins. Black goji berry anthocyanins (BGA) are receiving increasing attention because of their high safety and beneficial biological activities. Studies have shown that oxidative stress is a key factor affecting aging, whereas antioxidants are critical preventive and delaying strategies. RESULTS: In the present study, we investigated the potential anti-aging effects and mechanism of BGA using the Caenorhabditis elegans model. We found that BGA prolonged the mean lifespan of nematodes and improve their healthspan, including locomotion, pharyngeal pumping rate and stress resistance. Subsequently, we observed a significant decrease in reactive oxygen species and malondialdehyde levels in nematodes after administering BGA. Moreover, BGA enhanced the activities of the antioxidant enzymes superoxide dismutase and catalase, and elevated the glutathione disulfide/glutathione ratio. We confirmed that BGA exerted excellent antioxidative stress activity in nematodes, which may contribute substantially to its anti-aging effects. The health benefits of BGA in C. elegans might be closely related to petunidin-3-O-glucoside, the most abundant anthocyanin in BGA. Further mechanistic investigation revealed that the JNK-1 and DAF-16/FOXO pathways, rather than the calorie restriction pathway, were responsible for the antioxidant stress and life-prolonging effects of BGA in nematodes. CONCLUSION: Our research provides a theoretical foundation for studying the anti-aging effect of BGA and a basis for developing black goji berry and its anthocyanins as functional foods with anti-aging and antioxidative stress benefits. © 2024 Society of Chemical Industry.

12.
Proc Natl Acad Sci U S A ; 117(29): 17142-17150, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32636256

RESUMO

Gut microbes play diverse roles in modulating host fitness, including longevity; however, the molecular mechanisms underlying their mediation of longevity remain poorly understood. We performed genome-wide screens using 3,792 Escherichia coli mutants and identified 44 E. coli mutants that modulated Caenorhabditis elegans longevity. Three of these mutants modulated C. elegans longevity via the bacterial metabolite methylglyoxal (MG). Importantly, we found that low MG-producing E. coli mutants, Δhns E. coli, extended the lifespan of C. elegans through activation of the DAF-16/FOXO family transcription factor and the mitochondrial unfolded protein response (UPRmt). Interestingly, the lifespan modulation by Δhns did not require insulin/insulin-like growth factor 1 signaling (IIS) but did require TORC2/SGK-1 signaling. Transcriptome analysis revealed that Δhns E. coli activated novel class 3 DAF-16 target genes that were distinct from those regulated by IIS. Taken together, our data suggest that bacteria-derived MG modulates host longevity through regulation of the host signaling pathways rather than through nonspecific damage on biomolecules known as advanced glycation end products. Finally, we demonstrate that MG enhances the phosphorylation of hSGK1 and accelerates cellular senescence in human dermal fibroblasts, suggesting the conserved role of MG in controlling longevity across species. Together, our studies demonstrate that bacteria-derived MG is a novel therapeutic target for aging and aging-associated pathophysiology.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans , Fatores de Transcrição Forkhead/metabolismo , Longevidade/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Aldeído Pirúvico , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiologia , Escherichia coli/metabolismo , Microbioma Gastrointestinal/fisiologia , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Modelos Biológicos , Aldeído Pirúvico/metabolismo , Aldeído Pirúvico/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/genética
13.
BMC Microbiol ; 22(1): 162, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35733100

RESUMO

BACKGROUND: Cryptococcosis is a life-threatening infection is primarily caused by two sibling species Cryptococcus neoformans and Cryptococcus gattii. Several virulence-related factors of these cryptococci have been widely investigated in Caenorhabditis elegans, representing a facile in vivo model of host-pathogen interaction. While recent studies elucidated cryptococcal virulence factors, intrinsic host factors that affect susceptibility to infections by cryptococci remain unclear and poorly investigated. RESULTS: Here, we showed that defects in C. elegans insulin/insulin-like growth factor-1 (IGF-1) signaling (IIS) pathway influenced animal lifespan and mechanisms of host resistance in cryptococcal infections, which required the activation of aging regulator DAF-16/Forkhead box O transcription factor. Moreover, accumulation of lipofuscin, DAF-16 nuclear localization, and expression of superoxide dismutase (SOD-3) were elevated in C. elegans due to host defenses during cryptococcal infections. CONCLUSION: The present study demonstrated the relationship between longevity and immunity, which may provide a possibility for novel therapeutic intervention to improve host resistance against cryptococcal infections.


Assuntos
Proteínas de Caenorhabditis elegans , Criptococose , Cryptococcus gattii , Cryptococcus neoformans , Fatores de Transcrição Forkhead , Animais , Caenorhabditis elegans/microbiologia , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Cryptococcus gattii/patogenicidade , Cryptococcus neoformans/patogenicidade , Fatores de Transcrição Forkhead/genética , Imunidade , Longevidade , Fatores de Virulência/metabolismo
14.
Nutr Neurosci ; 25(10): 2136-2148, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34263695

RESUMO

There are few effective medications to treat Alzheimer's disease (AD). It has been suggested that several ginsenosides possess mild or moderate anti-AD activity. In our present work, a preferred combined ginsenosides was shown to have a more significant benefit effect on AD-like symptoms of worm paralysis and hypersensitivity to exogenous 5-HT in C. elegans. The combined ginsenosides can suppress Aß deposits and Aß oligomers, alleviating the toxicity induced by Aß overexpression more effectively than used alone. Its anti-AD effect was partially abolished by hsf-1 RNAi knocked down or hsf-1 inactivation by point mutation, but not by daf-16 or skn-1 RNAi knocked down. Furthermore, it markedly activated hsp-16.2 gene expression downstream of HSF-1. Our results demonstrated that HSF-1 signaling pathway exerts an important role in mediating the therapeutic effect of combined ginsenosides on AD worms. These results provided powerful evidences and theoretical foundation for reshaping medicinal products of ginsenosides and ginseng on prevention of neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Proteínas de Caenorhabditis elegans , Ginsenosídeos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Fatores de Transcrição Forkhead/genética , Ginsenosídeos/metabolismo , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Serotonina/metabolismo
15.
Chem Biodivers ; 19(2): e202100685, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34935259

RESUMO

Hedyotis diffusa Willd. (H. diffusa), a kind of traditional Chinese medicine, has been evaluated to potential display antioxidant and anti-aging effects in vitro experiments. In this work, we investigated the effects on lifespan and stress resistance of the butanol extract from H. diffusa (NHD) in vivo using a Caenorhabditis elegans (C. elegans) model. The phytochemicals of NHD were identified by UPLC-ESI-qTOF-MS/MS method. NHD-treated wild-type N2 worms showed an increase in survival time under both normal and stress conditions. Meanwhile, NHD promoted the healthspan of nematodes by stimulating growth and development, reducing the deposition of age pigment, increasing the activities of superoxide dismutase (SOD) and glutathione peroxidase dismutase (GSH-Px), and decreasing the level of ROS without impairing fertility. Moreover, the upregulating of the expression of daf-16, gst-4, sod-3, hsp12.6 genes and the downregulating of the expression of daf-2 were involved in the NHD-mediated lifespan extension. Finally, the increasing of the expression of GST-4::GFP in CL2166 transgenic nematodes and the life-span-extending activity of NHD was completely abolished in daf-2 and daf-16 mutants further revealed that the potential roles for these genes in NHD-induced longevity in C. elegans. Collectively, our findings suggest that NHD may have an active effect in healthy aging and age-related diseases.


Assuntos
Proteínas de Caenorhabditis elegans , Hedyotis , Envelhecimento , Animais , Butanóis/farmacologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/farmacologia , Estresse Oxidativo , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Massas em Tandem
16.
New Microbiol ; 45(1): 51-61, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35403847

RESUMO

Candida albicans can cause infections ranging from superficial skin infections to life-threateningsystemic infections in immunocompromised hosts. Although several C. albicans virulence factorsare widely discussed in great detail, intrinsic host determinants that are critical for C. albicanspathogenesis remain less interested and poorly understood. In view of this, a model of Caenorhabditiselegans was used to study host longevity and immunity in response to C. albicans pathogenesis.The influence of C. albicans in pathological and survival aspects was evaluated using C. elegans.C. albicans hyphal formation in different C. elegans genetic backgrounds was evaluated. Moreover,several C. elegans fluorescent proteins as gene expression markers upon C. albicans infectionswere evaluated. C. albicans is pathogenic to C. elegans and reduces the lifespan of C. elegans inassociation with repression of the insulin/IGF-1-like signaling (IIS) pathway. Moreover, repressionof DAF-16/forkhead transcription factor increases aggressiveness of C. albicans by enhancing hyphalformation. In addition, infection of C. albicans increases lipofuscin accumulation, promotes DAF-16nuclear translocation, increases superoxide dismutase (SOD-3) expression, which coordinately linksbetween aging and innate immunity. Thus, we demonstrate here the strategy to utilize C. elegans asa model host to elucidate host genetic determinants that provide insights into the pathogenesis ofC. albicans infections.


Assuntos
Proteínas de Caenorhabditis elegans , Candidíase , Fatores de Transcrição Forkhead , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/imunologia , Caenorhabditis elegans/microbiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Candida albicans , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Imunidade Inata , Insulina/genética , Insulina/metabolismo , Longevidade/genética , Mutação
17.
Int J Mol Sci ; 23(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35743309

RESUMO

Alzheimer's disease (AD) is the most prevalent neurodegenerative disease in the world. However, there is no effective drug to cure it. Caesalmin C is a cassane-type diterpenoid abundant in Caesalpinia bonduc (Linn.) Roxb. In this study, we investigated the effect of caesalmin C on Aß-induced toxicity and possible mechanisms in the transgenic Caenorhabditis elegans AD model. Our results showed that caesalmin C significantly alleviated the Aß-induced paralysis phenotype in transgenic CL4176 strain C. elegans. Caesalmin C dramatically reduced the content of Aß monomers, oligomers, and deposited spots in AD C. elegans. In addition, mRNA levels of sod-3, gst-4, and rpt-3 were up-regulated, and mRNA levels of ace-1 were down-regulated in nematodes treated with caesalmin C. The results of the RNAi assay showed that the inhibitory effect of caesalmin C on the nematode paralysis phenotype required the DAF-16 signaling pathway, but not SKN-1 and HSF-1. Further evidence suggested that caesalmin C may also have the effect of inhibiting acetylcholinesterase (AchE) and upregulating proteasome activity. These findings suggest that caesalmin C delays the progression of AD in C. elegans via the DAF-16 signaling pathway and that it could be developed into a promising medication to treat AD.


Assuntos
Doença de Alzheimer , Proteínas de Caenorhabditis elegans , Diterpenos , Doenças Neurodegenerativas , Acetilcolinesterase/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Modelos Animais de Doenças , Diterpenos/farmacologia , Fatores de Transcrição Forkhead/genética , Paralisia/induzido quimicamente , RNA Mensageiro/metabolismo
18.
Int J Mol Sci ; 23(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269839

RESUMO

The increasing prevalence of metabolic syndrome-related diseases, including type-2 diabetes and obesity, makes it urgent to develop new alternative therapies, such as probiotics. In this study, we have used Caenorhabditis elegans under a high-glucose condition as a model to examine the potential probiotic activities of Pediococcusacidilactici CECT9879 (pA1c). The supplementation with pA1c reduced C. elegans fat accumulation in a nematode growth medium (NGM) and in a high-glucose (10 mM) NGM medium. Moreover, treatment with pA1c counteracted the effect of the high glucose by reducing reactive oxygen species by 20%, retarding the aging process and extending the nematode median survival (>2 days in comparison with untreated control worms). Gene expression analyses demonstrated that the probiotic metabolic syndrome-alleviating activities were mediated by modulation of the insulin/IGF-1 signaling pathway (IIS) through the reversion of the glucose-nuclear-localization of daf-16 and the overexpression of ins-6 and daf-16 mediators, increased expression of fatty acid (FA) peroxisomal ß-oxidation genes, and downregulation of FA biosynthesis key genes. Taken together, our data suggest that pA1c could be considered a potential probiotic strain for the prevention of the metabolic syndrome-related disturbances and highlight the use of C. elegans as an appropriate in vivo model for the study of the mechanisms underlying these diseases.


Assuntos
Proteínas de Caenorhabditis elegans , Síndrome Metabólica , Pediococcus acidilactici , Animais , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Glucose/farmacologia , Insulina/metabolismo , Insulina Regular Humana , Longevidade/genética , Pediococcus acidilactici/metabolismo , Transdução de Sinais
19.
Int J Mol Sci ; 23(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36499019

RESUMO

A rhabditid entomopathogenic nematode (EPN), Oscheius chongmingensis, has a stable symbiotic relationship with the bacterial strain Serratia nematodiphila S1 harbored in its intestines and drastically reduced viability when associated with a non-native strain (186) of the same bacterial species. This nematode is thus a good model for understanding the molecular mechanisms and interactions involved between a nematode host and a member of its intestinal microbiome. Transcriptome analysis and RNA-seq data indicated that expression levels of the majority (8797, 87.59%) of mRNAs in the non-native combination of O. chongmingensis and S. nematodiphila 186 were downregulated compared with the native combination, including strain S1. Accordingly, 88.84% of the total uniq-sRNAs mapped in the O. chongmingensis transcriptome were specific between the two combinations. Six DEGs, including two transcription factors (oc-daf-16 and oc-goa-1) and four kinases (oc-pdk-1, oc-akt-1, oc-rtk, and oc-fak), as well as an up-regulated micro-RNA, oc-miR-71, were found to demonstrate the regulatory mechanisms underlying diminished host viability induced by a non-native bacterial strain. Oc-rtk and oc-fak play key roles in the viability regulation of O. chongmingensis by positively mediating the expression of oc-daf-16 to indirectly impact its longevity and stress tolerances and by negatively regulating the expression of oc-goa-1 to affect the olfactory chemotaxis and fecundity. In response to the stress of invasion by the non-native strain, the expression of oc-miR-71 in the non-native combination was upregulated to downregulate the expression of its targeting oc-pdk-1, which might improve the localization and activation of the transcription factor DAF-16 in the nucleus to induce longevity extension and stress resistance enhancement to some extent. Our findings provide novel insight into comprehension of how nematodes deal with the stress of encountering novel potential bacterial symbionts at the physiological and molecular genetic levels and contribute to improved understanding of host-symbiont relationships generally.


Assuntos
MicroRNAs , Nematoides , Animais , Análise de Sequência de DNA , Simbiose , Nematoides/fisiologia , Intestinos
20.
Molecules ; 27(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35744983

RESUMO

Amber is a fossilized tree resin historically used in wound healing and stress relief. Unfortunately, there is no concrete scientific evidence supporting such efficacy. Here, the stress buffering and longevity effect of Amber extract (AE) in Caenorhabditis elegans (C. elegans) was investigated. Survival assays, health span assays, Enzyme-Linked Immunosorbent Assay (ELISA), Stress biomarker detection assays, Green Fluorescence Proteins (GFP), Real Time quantitative PCR (RT-qPCR) and C. elegans mutants were employed to investigate the stress buffering and longevity effect of AE. In the study, it was observed that AE supplementation improved health span and survival in both normal and stressed worms. Additionally, AE positively regulated stress hormones (cortisol, oxytocin, and dopamine) and decreased fat and reactive oxygen species (ROS) accumulation. Through the Insulin/IGF-1 signaling (IIS) pathway, AE enhanced the nuclear localization of DAF-16 and the expression of heat shock proteins and antioxidant genes in GFP-tagged worms and at messenger RNA levels. Finally, AE failed to increase the survival of daf-16, daf-2, skn-1 and hsf-1 loss-of-function mutants, confirming the involvement of the IIS pathway. Evidently, AE supplementation relieves stress and enhances longevity. Thus, amber may be a potent nutraceutical for stress relief.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Âmbar/farmacologia , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Fatores de Transcrição Forkhead/genética , Insulina/metabolismo , Longevidade , Estresse Oxidativo , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA