Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 515(4): 688-692, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31182279

RESUMO

The 9-1-1 complex is a circular heterotrimeric complex composed of Rad9-Hus1-Rad1. In response to DNA damage, the 9-1-1 complex will be loaded onto the DNA damage site by clamp loader Rad24-RFC to activate the cell cycle checkpoint. The C-terminal of Ddc1/Rad9 is critical for checkpoint activation. However, there is little structural information about the intact 9-1-1 complex and the interaction with Rad24-RFC. Here, we determined the structure of the intact 9-1-1 complex in S. cerevisiae by cryo-Electron Microscopy (cryo-EM) and identified the Ddc1 C-tail module for the first time. We found that the C-terminal of Ddc1 has structural flexibility and it plays a critical role for Mec1/Ddc2 activation in G1/G2 phase. At the same time, we got a glimpse of the structure of Rad24-RFC and captured the interaction between the 9-1-1 complex and Rad24-RFC. The structural information greatly helped us to understand the process of clamp-loading.


Assuntos
Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ciclo Celular , Quinase do Ponto de Checagem 2/metabolismo , Microscopia Crioeletrônica , Dano ao DNA , Proteínas Nucleares/metabolismo , Fosforilação , Domínios Proteicos
2.
Cell Rep ; 42(11): 113360, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38007689

RESUMO

DNA damage elicits a checkpoint response depending on the Mec1/ATR kinase, which detects the presence of single-stranded DNA and activates the effector kinase Rad53/CHK2. In Saccharomyces cerevisiae, one of the signaling circuits leading to Rad53 activation involves the evolutionarily conserved 9-1-1 complex, which acts as a platform for the binding of Dpb11 and Rad9 (referred to as the 9-1-1 axis) to generate a protein complex that allows Mec1 activation. By examining the effects of both loss-of-function and hypermorphic mutations, here, we show that the Cdc55 and Tpd3 subunits of the PP2A phosphatase counteract activation of the 9-1-1 axis. The lack of this inhibitory function results in DNA-damage sensitivity, sustained checkpoint-mediated cell-cycle arrest, and impaired resection of DNA double-strand breaks. This PP2A anti-checkpoint role depends on the capacity of Cdc55 to interact with Ddc1 and to counteract Ddc1-Dpb11 complex formation by preventing Dpb11 recognition of Ddc1 phosphorylated on Thr602.


Assuntos
Proteínas Serina-Treonina Quinases , Proteínas de Saccharomyces cerevisiae , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Dano ao DNA , Fosforilação , DNA/metabolismo , Quinase do Ponto de Checagem 2/genética
3.
DNA Repair (Amst) ; 22: 30-40, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25089887

RESUMO

To characterize proteins that interact with single-stranded/double-stranded (ss/ds) DNA junctions in whole cell free extracts of Saccharomyces cerevisiae, we used [(32)P]-labeled photoreactive partial DNA duplexes containing a 3'-ss/ds-junction (3'-junction) or a 5'-ss/ds-junction (5'-junction). Identification of labeled proteins was achieved by MALDI-TOF mass spectrometry peptide mass fingerprinting and genetic analysis. In wild-type extract, one of the components of the Ddc1-Rad17-Mec3 complex, Ddc1, was found to be preferentially photocrosslinked at a 3'-junction. On the other hand, RPAp70, the large subunit of the replication protein A (RPA), was the predominant crosslinking product at a 5'-junction. Interestingly, ddc1Δ extracts did not display photocrosslinking of RPAp70 at a 5'-junction. The results show that RPAp70 crosslinked to DNA with a 5'-junction is subject to limited proteolysis in ddc1Δ extracts, whereas it is stable in WT, rad17Δ, mec3Δ and mec1Δ extracts. The degradation of the RPAp70-DNA adduct in ddc1Δ extract is strongly reduced in the presence of the proteasome inhibitor MG 132. We also addressed the question of the stability of free RPA, using anti-RPA antibodies. The results show that RPAp70 is also subject to proteolysis without photocrosslinking to DNA upon incubation in ddc1Δ extract. The data point to a novel property of Ddc1, modulating the turnover of DNA binding proteins such as RPAp70 by the proteasome.


Assuntos
Proteínas de Ciclo Celular/metabolismo , DNA de Cadeia Simples/metabolismo , Proteólise , Proteína de Replicação A/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Subunidades Proteicas/metabolismo , Proteína de Replicação A/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
4.
Genet. mol. res. (Online) ; 7(1): 127-132, Jan. 2008. ilus, tab
Artigo em Inglês | LILACS | ID: lil-553779

RESUMO

DNA damage activates several mechanisms such as DNA repair and cell cycle checkpoints. The Saccharomyces cerevisiae heterotrimeric checkpoint clamp consisting of the Rad17, Mec3 and Ddc1 subunits is an early response factor to DNA damage and activates checkpoints. This complex is structurally similar to the proliferating cell nuclear antigen (PCNA), which serves as a sliding clamp platform for DNA replication. Growing evidence suggests that PCNA-like complexes play a major role in DNA repair as they have been shown to interact with and stimulate several proteins, including specialized DNA polymerases. With the aim of extending our knowledge concerning the link between checkpoint activation and DNA repair, we tested the possibility of a functional interaction between the Rad17/Mec3/Ddc1 complex and the replicative DNA polymerases alpha, delta and epsilon. The analysis of sensitivity response of single and double mutants to UVC and 8-MOP + UVA-induced DNA damage suggests that the PCNA-like component Mec3p of S. cerevisiae neither relies on nor competes with the third subunit of DNA polymerase delta, Pol32p, for lesion removal. No enhanced sensitivity was observed when inactivating components of DNA polymerases alpha and epsilon in the absence of Mec3p. The hypersensitivity of pol32delta to photoactivated 8-MOP suggests that the replicative DNA polymerase delta also participates in the repair of mono- and bi-functional DNA adducts. Repair of UVC and 8-MOP + UVA-induced DNA damage via polymerase delta thus occurs independent of the Rad17/Mec3/Ddc1 checkpoint clamp.


Assuntos
Proteínas de Ciclo Celular , DNA Polimerase Dirigida por DNA/metabolismo , Reparo do DNA , Fosfoproteínas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ligação a DNA/metabolismo , Saccharomyces cerevisiae/enzimologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , DNA Polimerase Dirigida por DNA/classificação , DNA Fúngico , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA