Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Am J Physiol Cell Physiol ; 326(5): C1556-C1562, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38618702

RESUMO

Healthy livers contain 80% of body resident macrophages known as Kupffer cells. In diseased livers, the number of Kupffer cells usually drops but is compensated by infiltration of monocyte-derived macrophages, some of which can differentiate into Kupffer-like cells. Early studies suggest that Kupffer cells play important roles in both promoting liver injury and liver regeneration. Yet, the distinction between the functionalities of resident and infiltrating macrophages is not always made. By using more specific macrophage markers and targeted cell depletion and single-cell RNA sequencing, recent studies revealed several subsets of monocyte-derived macrophages that play important functions in inducing liver damage and inflammation as well as in liver repair and regeneration. In this review, we discuss the different roles that hepatic macrophages play in promoting necrotic liver lesion resolution and dead cell clearance, as well as the targeting of these cells as potential tools for the development of novel therapies for acute liver failure and acute-on-chronic liver failure.


Assuntos
Células de Kupffer , Regeneração Hepática , Fígado , Necrose , Humanos , Animais , Fígado/patologia , Fígado/metabolismo , Células de Kupffer/metabolismo , Células de Kupffer/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Macrófagos/imunologia
2.
Anal Bioanal Chem ; 416(17): 3945-3962, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38886239

RESUMO

Carbon dots (CDs) are quasi-spherical carbon nanoparticles with excellent photoluminescence, good biocompatibility, favorable photostability, and easily modifiable surfaces. CDs, serving as fluorescent probes, have emerged as an ideal tool for cellular differentiation owing to their outstanding luminescence performance and tunable surface properties. In this review, we summarize the recent research progress with CDs in the differentiation of cancer/normal cells, Gram-positive/Gram-negative bacteria, and live/dead cells, as well as the cellular differences used for differentiation. Additionally, we summarize the preparation methods, raw materials, and properties of the CDs used for cell discrimination. The differentiation mechanisms and the advantages or limitations of the differentiation methods are also introduced. Finally, we propose several research challenges in this field and future research directions that require extensive investigation. It is hoped that this review will help researchers in the design of new CDs as ideal fluorescent probes for realizing diverse cell differentiation applications.


Assuntos
Carbono , Corantes Fluorescentes , Pontos Quânticos , Carbono/química , Humanos , Corantes Fluorescentes/química , Pontos Quânticos/química , Diferenciação Celular , Animais
3.
BMC Immunol ; 24(1): 42, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940849

RESUMO

BACKGROUND: Lymphedema is an intractable disease that can be caused by injury to lymphatic vessels, such as by surgical treatments for cancer. It can lead to impaired joint mobility in the extremities and reduced quality of life. Chronic inflammation due to infiltration of various immune cells in an area of lymphedema is thought to lead to local fibrosis, but the molecular pathogenesis of lymphedema remains unclear. Development of effective therapies requires elucidation of the immunological mechanisms involved in the progression of lymphedema. The complement system is part of the innate immune system which has a central role in the elimination of invading microbes and acts as a scavenger of altered host cells, such as apoptotic and necrotic cells and cellular debris. Complement-targeted therapies have recently been clinically applied to various diseases caused by complement overactivation. In this context, we aimed to determine whether complement activation is involved in the development of lymphedema. RESULTS: Our mouse tail lymphedema models showed increased expression of C3, and that the classical or lectin pathway was locally activated. Complement activation was suggested to be involved in the progression of lymphedema. In comparison of the C3 knockout (KO) mouse lymphedema model and wild-type mice, there was no difference in the degree of edema at three weeks postoperatively, but the C3 KO mice had a significant increase of TUNEL+ necrotic cells and CD4+ T cells. Infiltration of macrophages and granulocytes was not significantly elevated in C3 KO or C5 KO mice compared with in wild-type mice. Impaired opsonization and decreased migration of macrophages and granulocytes due to C3 deficiency should therefore induce the accumulation of dead cells and may lead to increased infiltration of CD4+ T cells. CONCLUSIONS: Vigilance for exacerbation of lymphedema is necessary when surgical treatments have the potential to injure lymphatic vessels in patients undergoing complement-targeted therapies or with complement deficiency. Future studies should aim to elucidate the molecular mechanism of CD4+ T cell infiltration by accumulated dead cells.


Assuntos
Vasos Linfáticos , Linfedema , Humanos , Animais , Camundongos , Qualidade de Vida , Linfedema/etiologia , Linfedema/metabolismo , Linfedema/patologia , Linfócitos T CD4-Positivos , Inflamação , Camundongos Knockout , Camundongos Endogâmicos C57BL
4.
Photochem Photobiol Sci ; 21(10): 1819-1831, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35781788

RESUMO

This study examines the microwave chemical risks posed by photocatalysts present in sunscreens (physical filters) against the increasing use of microwaves (radio waves) in the environment, sometimes referred to as electronic smog. Specifically, the study assesses the damage caused by silica-coated physical filters (photocatalysts, TiO2⋅ and/or ZnO) contained in commercially available sunscreens and fresh silica-coated ZnO for sunscreens to mouse skin fibroblasts cells (NIH/3T3) evaluated in vitro by the life/death of cells using two types of electromagnetic waves: UV light and microwave radiation, and under simultaneous irradiation with both UV light and microwaves. Conditions of the electromagnetic waves were such as to be of lower light irradiance than that of UVA/UVB radiation from incident sunlight, and with microwaves near the threshold power levels that affect human health. The photocatalytic activity of the physical filters was investigated by examining the degradation of the rhodamine B (RhB) dye in aqueous media and by the damage caused to DNA plasmids from E. coli. Compared to the photocatalytic activity of ZnO and TiO2 when irradiated with UV light alone, a clear enhanced photocatalytic activity was confirmed upon irradiating these physical filters concurrently with UV and microwaves. Moreover, the uptake of these metal oxides into the NIH/3T3 cells led to the death of these cells as a result of the enhanced photocatalytic activity of the metal oxides on exposure to microwave radiation.


Assuntos
Nanopartículas , Óxido de Zinco , Camundongos , Animais , Humanos , Protetores Solares/farmacologia , Micro-Ondas , Escherichia coli , Smog , Raios Ultravioleta , Dióxido de Silício
5.
Exp Eye Res ; 194: 108017, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32217186

RESUMO

Keratocytes synthesize stromal proteins and participate in wound healing through successive differentiation into corneal fibroblasts and myofibroblasts. Cultured keratocytes or corneal fibroblasts are also known as non-professional phagocytes and innate immune cells. However, whether the corneal fibroblasts phagocytize their dead cells and whether the associated innate immunity is enhanced remains unknown. We initially characterized immortalized corneal fibroblast cells with the expression of specific genes. The corneal fibroblasts strongly expressed extracellular matrix molecules (FN and COL1A1) and low or medium levels of macrophage markers (CD14, CD68, and CD36), inflammatory cytokines (IL1A, IL1B, and IL6), and chemokines (IL8 and CCL2), but not CD11b, suggesting that corneal fibroblasts are macrophage-like fibroblasts. We confirmed the phagocytic activity of the corneal fibroblasts with fluorescent dye labeled-dead E. coli and S. aureus bacteria using confocal microscopy and flow cytometry. To test corneal fibroblast phagocytosis of apoptotic and necrotic cells we co-cultured corneal fibroblasts with fluorescent dye labeled-apoptotic and -necrotic cells and analyzed their uptake using fluorescence and confocal microscopy. We observed that corneal fibroblasts can engulf digested or processed cellular debris and entire dead cells. Co-cultured dying and dead cells strongly enhanced the expression of cytokine (IL1A, IL1B, and IL6), chemokine (CCL2, CCL5, CCL20, IL8, and CXCL10), and MMP (MMP1, MMP3, and MMP9) genes through the NF-κB signaling pathway. Our findings suggest that dying and dead cells stimulate corneal fibroblasts to further induce inflammatory factors and that corneal fibroblasts contribute to the clearing of cell debris as non-professional phagocytes.


Assuntos
Quimiocinas/biossíntese , Substância Própria/patologia , Apoptose , Western Blotting , Diferenciação Celular , Linhagem Celular , Substância Própria/metabolismo , Ensaio de Imunoadsorção Enzimática , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Transdução de Sinais
6.
Int J Mol Sci ; 21(15)2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32727114

RESUMO

Current stem cell-based techniques for bone-like tissue synthesis require at least two to three weeks. Therefore, novel techniques to promote rapid 3D bone-like tissue synthesis in vitro are still required. In this study, we explored the concept of using cell nanofragments as a substrate material to promote rapid bone formation in vitro. The methods for cell nanofragment fabrication were ultrasonication (30 s and 3 min), non-ionic detergent (triton 0.1% and 1%), or freeze-dried powder. The results showed that ultrasonication for 3 min allowed the fabrication of homogeneous nanofragments of less than 150 nm in length, which mineralized surprisingly in just one day, faster than the fragments obtained from all other methods. Further optimization of culture conditions indicated that a concentration of 10 mM or 100 mM of ß-glycerophosphate enhanced, whereas fetal bovine serum (FBS) inhibited in a concentration-dependent manner, the mineralization of the cell nanofragments. Finally, a 3D collagen-cell nanofragment-mineral complex mimicking a bone-like structure was generated in just two days by combining the cell nanofragments in collagen gel. In conclusion, sonication for three min could be applied as a novel method to fabricate cell nanofragments of less than 150 nm in length, which can be used as a material for in vitro bone tissue engineering.


Assuntos
Materiais Biocompatíveis/química , Osso e Ossos/metabolismo , Calcificação Fisiológica , Osteogênese , Engenharia Tecidual , Alicerces Teciduais/química , Humanos
7.
Mol Cell Probes ; 41: 32-38, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30170103

RESUMO

Streptococcus pyogenes (Group A Streptococcus, GAS) and Streptococcus agalactiae (Group B Streptococcus, GBS) are common pathogens that threaten public health. In this study, a double recombinase polymerase (RPA) amplification assay was developed to rapidly detect these pathogens. Specificity tests revealed that the GAS and GBS strains were positive for speB and SIP genes, respectively. In clinical samples, the double assay performed similarly to the traditional biochemical method. The limits of detection were both ≤100 copies per reaction. In tests for simulant-contaminated samples, bacterial-culture media containing 103 CFU/mL original concentrations of S. pyogenes and S. agalactiae were positive in RPA assays after incubating for 4 h. Results can be obtained at 37 °C in 20 min. To determine whether propidium monoazide (PMA) can eliminate the influence of DNA extracted from dead cells, a bacterial suspension was treated with PMA before DNA extraction. Findings of RPA assay showed that DNA extracted from dead cells had no fluorescence signal. Therefore, the PMA-RPA assay is a promising technology for field tests and rapid point-of-care diagnosis.


Assuntos
Azidas/química , Propídio/análogos & derivados , Reação em Cadeia da Polimerase em Tempo Real/métodos , Recombinases/metabolismo , Streptococcus agalactiae/isolamento & purificação , Streptococcus pyogenes/isolamento & purificação , Ovos/microbiologia , Genes Bacterianos , Humanos , Carne/microbiologia , Propídio/química , Sensibilidade e Especificidade , Streptococcus agalactiae/genética , Streptococcus pyogenes/genética
8.
J Struct Biol ; 200(3): 293-302, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28645735

RESUMO

Serum amyloid A (SAA) is an acute-phase protein whose action in innate immunity and lipid homeostasis is unclear. Most circulating SAA binds plasma high-density lipoproteins (HDL) and reroutes lipid transport. In vivo SAA binds existing lipoproteins or generates them de novo upon lipid uptake from cells. We explored the products of SAA-lipid interactions and lipoprotein remodeling in vitro. SAA complexes with palmitoyl-oleoyl phosphocholine (POPC) were analyzed for structure and stability using circular dichroism and fluorescence spectroscopy, electron microscopy, gel electrophoresis and gel filtration. The results revealed the formation of 8-11nm lipoproteins that were∼50% α-helical and stable at near-physiological conditions but were irreversibly remodeled at Tm∼52°C. Similar HDL-size nanoparticles formed spontaneously at ambient conditions or upon thermal remodeling of parent lipoproteins containing various amounts of proteins and lipids, including POPC and cholesterol. Therefore, such HDL-size particles formed stable kinetically accessible structures in a wide range of conditions. Based on their size and stoichiometry, each particle contained about 12 SAA and 72 POPC molecules, with a protein:lipid weight ratio circa 2.5:1, suggesting a structure distinct from HDL. High stability of these nanoparticles and their HDL-like size suggest that similar lipoproteins may form in vivo during inflammation or injury when SAA concentration is high and membranes from dead cells require rapid removal. We speculate that solubilization of membranes by SAA to generate lipoproteins in a spontaneous energy-independent process constitutes the primordial function of this ancient protein, providing the first line of defense in clearing cell debris from the injured sites.


Assuntos
Nanopartículas/química , Fosfatidilcolinas/química , Proteína Amiloide A Sérica/química , Animais , Colesterol/química , Cromatografia em Gel , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Lipoproteínas HDL/química , Camundongos , Microscopia Eletrônica , Tamanho da Partícula , Fosfolipídeos/química , Estabilidade Proteica , Proteína Amiloide A Sérica/imunologia , Espectrometria de Fluorescência
9.
J Dairy Sci ; 99(12): 9570-9580, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27771082

RESUMO

In this study, a combination of propidium monoazide (PMA) and quantitative real-time PCR (qPCR) was used to develop a method to determine the viability of cells of Lactobacillus delbrueckii ssp. bulgaricus ND02 (L. bulgaricus) that may have entered into a viable but nonculturable state. This can happen due to its susceptibility to cold shock during lyophilization and storage. Propidium monoazide concentration, PMA incubation time, and light exposure time were optimized to fully exploit the PMA-qPCR approach to accurately assess the total number of living L. bulgaricus ND02. Although PMA has little influence on living cells, when concentrations of PMA were higher than 30µg/mL the number of PCR-positive living bacteria decreased from 106 to 105 cfu/mL in comparison with qPCR enumeration. Mixtures of living and dead cells were used as method verification samples for enumeration by PMA-qPCR, demonstrating that this method was feasible and effective for distinguishing living cells of L. bulgaricus when mixed with a known number of dead cells. We suggest that several conditions need to be studied further before PMA-qPCR methods can be accurately used to distinguish living from dead cells for enumeration under more realistic sampling situations. However, this research provides a rapid way to enumerate living cells of L. bulgaricus and could be used to optimize selection of cryoprotectants in the lyophilization process and develop technologies for high cell density cultivation and optimal freeze-drying processes.


Assuntos
Lactobacillus delbrueckii , Reação em Cadeia da Polimerase em Tempo Real , Animais , Azidas , Bactérias , Liofilização , Viabilidade Microbiana , Propídio
10.
Chemosphere ; 359: 142389, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38777191

RESUMO

Bacillus nitratireducens was isolated from textile effluent and showed high tolerance to chromium (Cr), reaching up to a 1000 mg/L MIC value. This research was aimed at utilizing biosorbents from live and dead cells of B. nitratireducens to remove Cr from an aqueous solution. A batch biosorption test was performed, and mechanisms analysis was approached by an adsorption-desorption test, SEM-EDS, and FTIR analysis. Cr removal by dead cells in 25, 50, and 100 mg/L of Cr were 58.99 ± 0.7%, 69.8 ± 0.2%, and 82.87 ± 0.11%, respectively, while that by live cells was 73.08 ± 1.9%, 80.27 ± 6.33%, and 86.17 ± 1.93%, respectively. Live cells showed significantly higher Cr removal and adsorption capacities as compared to dead cells. In all concentrations, absorption contributed more than adsorption to the Cr removal by both live and dead cells. Absorption of Cr was subjected to occur due to passive mechanisms in dead cells while involving some active mechanisms in live cells. SEM-EDS confirmed the detection of Cr on the cell surface, while FTIR revealed the shifting of some peaks after the biosorption test, suggesting interactions between Cr and functional groups. Further TEM analysis is suggested to be conducted as a future approach to reveal the inner structure of cells and confirm the involvement of absorption mechanisms.


Assuntos
Bacillus , Biodegradação Ambiental , Cromo , Poluentes Químicos da Água , Cromo/metabolismo , Bacillus/metabolismo , Adsorção , Poluentes Químicos da Água/metabolismo , Têxteis , Eliminação de Resíduos Líquidos/métodos , Espectroscopia de Infravermelho com Transformada de Fourier , Indústria Têxtil , Águas Residuárias/química , Águas Residuárias/microbiologia
11.
Foods ; 13(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38611432

RESUMO

Staka is a traditional Greek sour cream made mostly from spontaneously fermented sheep milk or a mixture of sheep and goat milk. At the industrial scale, cream separators and starter cultures may also be used. Staka is sometimes cooked with flour to absorb most of the fat. In this study, we employed culture-based techniques, amplicon sequencing, and shotgun metagenomics to analyze the Staka microbiome for the first time. The samples were dominated by Lactococcus or Leuconostoc spp. Most other bacteria were lactic acid bacteria (LAB) from the Streptococcus and Enterococcus genera or Gram-negative bacteria from the Buttiauxella, Pseudomonas, Enterobacter, Escherichia-Shigella, and Hafnia genera. Debaryomyces, Kluyveromyces, or Alternaria were the most prevalent genera in the samples, followed by other yeasts and molds like Saccharomyces, Penicillium, Aspergillus, Stemphylium, Coniospotium, or Cladosporium spp. Shotgun metagenomics allowed the species-level identification of Lactococcus lactis, Lactococcus raffinolactis, Streptococcus thermophilus, Streptococcus gallolyticus, Escherichia coli, Hafnia alvei, Streptococcus parauberis, and Enterococcus durans. Binning of assembled shotgun reads followed by recruitment plot analysis of single reads could determine near-complete metagenome assembled genomes (MAGs). Culture-dependent and culture-independent analyses were in overall agreement with some distinct differences. For example, lactococci could not be isolated, presumably because they had entered a viable but not culturable (VBNC) state or because they were dead. Finally, several LAB, Hafnia paralvei, and Pseudomonas spp. isolates exhibited antimicrobial activities against oral or other pathogenic streptococci, and certain spoilage and pathogenic bacteria establishing their potential role in food bio-protection or new biomedical applications. Our study may pave the way for additional studies concerning artisanal sour creams to better understand the factors affecting their production and the quality.

12.
Antibiotics (Basel) ; 13(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38391526

RESUMO

Industrial biocides aim to keep water systems microbiologically controlled and to minimize biofouling. However, the resulting dead cells are usually not removed from the water streams and can influence the growth of the remaining live cells in planktonic and sessile states. This study aims to understand the effect of dead Pseudomonas fluorescens cells killed by industrial biocides-benzalkonium chloride (BAC) and 2,2-dibromo-3-nitrilopropionamide (DBNPA)-on biofilm formation. Additionally, the effect of different dead/live cell ratios (50.00% and 99.99%) was studied. The inoculum was recirculated in a Parallel Plate Flow Cell (PPFC). The overall results indicate that dead cells greatly affect biofilm properties. Inoculum with DBNPA-dead cells led to more active (higher ATP content and metabolic activity) and thicker biofilm layers in comparison to BAC-dead cells, which seems to be linked to the mechanism of action by which the cells were killed. Furthermore, higher dead cell ratios (99.99%) in the inoculum led to more active (higher culturability, metabolic activity and ATP content) and cohesive/compact and uniformly distributed biofilms in comparison with the 50.00% dead cell ratio. The design of future disinfection strategies must consider the contribution of dead cells to the biofilm build-up, as they might negatively affect water system operations.

13.
Plants (Basel) ; 12(4)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36840055

RESUMO

The current study analyzes the biosynthesis of silver nanoparticles using the Cassia auriculate flower extract as the reducing and stabilizing agent. The Cassia auriculate- silver nanoparticles (Ca-AgNPs) obtained are characterized by UV-Vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analysis. The results of the spectral characterization have revealed that the surface Plasmon resonance band observed at 448 nm confirms the formation of AgNPs. TEM analysis of the Ca-AgNPs was a predominately spherical shape with a size assortment of 30 to 80 nm and an angular size of 50 nm. The well-analyzed Ca-AgNPs were used in various biological assays, including healthcare analysis of antimicrobial, antioxidant (DPPH), and cytotoxic investigations. Ca-AgNPs showed efficient free radical scavenging activity and showed excellent antimicrobial activity against to pathogenic strains. The occurrence of Ca-AgNPs lead to reduced Live/Dead ratio of bacteria (from 36.97 ± 1.35 to 9.43 ± 0.27) but improved the accumulation of bacterial clusters. The cytotoxicity of Ca-AgNPs was carried out by MTT assay against MCF-7 breast cancer cells and a moderate cytotoxic. The approach of flower extract-mediated synthesis is a cost-efficient, eco-friendly, and easy alternative to conventional methods of silver nanoparticle synthesis.

14.
ACS Biomater Sci Eng ; 9(9): 5430-5440, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37603885

RESUMO

With the emergence of various cutting-edge micromachining technologies, lab on a chip is growing rapidly, but it is always a challenge to realize the on-chip separation of living cells from cell samples without affecting cell activity and function. Herein, we report a novel on-chip label-free method for sorting living and dead cells by integrating the hypertonic stimulus and tilted-angle standing surface acoustic wave (T-SSAW) technologies. On a self-designed microfluidic chip, the hypertonic stimulus is used to distinguish cells by producing volume differences between living and dead cells, while T-SSAW is used to separate living and dead cells according to the cell volume difference. Under the optimized operation conditions, for the sample containing 50% of living human umbilical vein endothelial cells (HUVECs) and 50% of dead HUVECs treated with paraformaldehyde, the purity of living cells after the first separation can reach approximately 80%, while after the second separation, it can be as high as 93%; furthermore, the purity of living cells after separation increases with the initial proportion of living cells. In addition, the chip we designed is safe for cells and can robustly handle cell samples with different cell types or different causes of cell death. This work provides a new design of a microfluidic chip for label-free sorting of living and dead cells, greatly promoting the multi-functionality of lab on a chip.


Assuntos
Microfluídica , Humanos , Movimento Celular , Células Endoteliais da Veia Umbilical Humana
15.
Chem Asian J ; 18(11): e202300038, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36994718

RESUMO

Here, π-Extended BTD derivatives were successfully synthesized by Heck coupling reaction, which exhibited the the advantages of simplicity and efficiency, wild substrate scope, easily available substrates and high yield. The fluorescent probe PEG-BTDAr targeting LDs was successfully prepared by the nucleophilic substitution reaction between the Heck coupling reaction product 3 h and Amino polyethylene glycol monomethyl ether (Mn=2000). PEG-BTDAr exhibited the advantages of high selectivity, good stability and pH resistance. The use of PEG as a substrate gave PEG-BTDAr good biocompatibility. It was worth mentioning that PEG-BTDAr could not only track LDs in cells under different physiological conditions, but also distinguish between living and dead cells in biological systems.


Assuntos
Diagnóstico por Imagem , Polietilenoglicóis , Polietilenoglicóis/química
16.
Front Microbiol ; 13: 842414, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250955

RESUMO

Biocides are widely used in water treatment for microbiological control. The rise of antimicrobial resistance and the need to assure properly managed water systems require a better understanding of the mechanisms of action of biocides and of their impact on cell's viability as a function of dosage concentrations. The present work addresses these two aspects regarding the biocides benzalkonium chloride (BAC) and dibromonitrilopropionamide (DBNPA)-two biocides commonly found in the water treatment industry. For that, the following parameters were studied: culturability, membrane integrity, metabolic activity, cellular energy, and the structure and morphology of cells. Also, to assess cell's death, a reliable positive control, consisting of cells killed by autoclave (dead cells), was introduced. The results confirmed that BAC is a lytic biocide and DBNPA a moderate electrophilic one. Furthermore, the comparison between cells exposed to the biocides' minimum bactericidal concentrations (MBCs) and autoclaved cells revealed that other viability parameters should be taken into consideration as "death indicators." The present work also shows that only for the concentrations above the MBC the viability indicators reached values statistically similar to the ones observed for the autoclaved cells (considered to be definitively dead). Finally, the importance of considering the biocide mechanism of action in the definition of the viability parameter to use in the viable but non-culturable (VBNC) determination is discussed.

17.
Antibiotics (Basel) ; 11(8)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-36009911

RESUMO

A proper assessment of the effects of biocides on bacterial cells is key to the prevention of antimicrobial resistance and the implementation of suitable biocidal programmes. It is particularly relevant regarding the ability of dead-labelled cells to recover their functional processes once the biocide is removed. In the present work, we studied how Pseudomonas fluorescens cells previously exposed to different concentrations of BAC (benzalkonium chloride) and DBNPA (2,2-Dibromo-3-nitrilopropionamide) behave upon the restoration of optimum growth conditions. The following indicators were evaluated: culturability, membrane integrity, metabolic activity (resazurin), cellular energy (ATP), and cell structure and morphology (transmission electron microscopy (TEM)). The results demonstrated that cells previously labelled as 'dead' recovered to a greater extent in all indicators. Only cells previously exposed to BAC at 160 mg/L (concentration above the MBC) showed significant reductions on all the evaluated indicators. However, the obtained values were much higher than the 'death' thresholds found for the autoclaved cells. This suggests that cells exposed to this concentration take more time to rebuild their functional processes. The recovery of DBNPA-treated cells did not seem to be related to the biocide concentration. Finally, a reflection on what kind of cells were able to recover (remaining cells below the detection limit and/or dormant cells) is also presented.

18.
Chemosphere ; 270: 129455, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33401074

RESUMO

Microbial fuel cell (MFC) sensor exhibits attractive prospects for online monitoring of water toxicity as an early warning device. However, the accumulation of dead cells in anode biofilm might decrease the sensing sensitivity of MFC during long term operation. In addition, with repeated exposure to toxins, the microbial community of anode biofilm would also adjust to build up higher endurance to environmental toxicity. In this study, the long term sensing sensitivity of MFC sensor and the microbial community changes were characterized with Pb2+ as the target toxin. The results show that newly formed biofilm with higher live/dead cell ratio exhibited higher sensitivity than mature biofilm. Modification of anodic biofilm via high current stimulation was applied to increase the ratio of live cells, which led to enhanced sensing sensitivity of MFC with mature anode biofilm. However, the enhancement was relatively limited for biofilm that was previously exposed to repeated Pb2+ shocks. Microbial community analysis revealed that the proportions of microbial species possessing higher environmental robustness, such as Hyphomicrobiaceae and Cloacibacillus, significantly increased in the anode biofilm after long term repeated Pb2+ shocks.


Assuntos
Fontes de Energia Bioelétrica , Microbiota , Biofilmes , Eletrodos , Chumbo/toxicidade
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 231: 118115, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32007905

RESUMO

Discriminating living and dead cells is of great significance for the study of apoptosis. In this work, we have developed a unique fluorescent probe (RPIC) for discriminating live and dead cells with duel-channel fluorescence imaging under double excitation and double emission mode. Dead cells treated with RPIC shows weak fluorescence signals in red channel, however, strong fluorescence signals are appeared in red channel in live cells. Weak and strong green fluorescence signals present at live cells and dead cells, respectively. Moreover, RPIC can detect successfully apoptosis of cancer cells. For in-vivo imaging, RPIC can discriminate successfully live and dead zebrafish with the same method. More interestingly, it is found that RPIC possesses the ability of discriminating normal mice and tumor mice.


Assuntos
Apoptose , Sobrevivência Celular , Corantes Fluorescentes/química , Animais , Células HeLa , Humanos , Camundongos , Microscopia de Fluorescência , Imagem Óptica , Células RAW 264.7 , Peixe-Zebra
20.
Front Immunol ; 11: 251, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32133013

RESUMO

C-type lectin-like receptors (CLRs) represent a family of transmembrane pattern recognition receptors, expressed primarily by myeloid cells. They recognize not only pathogen moieties for host defense, but also modified self-antigens such as damage-associated molecular patterns released from dead cells. Upon ligation, CLR signaling leads to the production of inflammatory mediators to shape amplitude, duration and outcome of the immune response. Thus, following excessive injury, dysregulation of these receptors leads to the development of inflammatory diseases. Herein, we will focus on four CLRs of the "Dectin family," shown to decode the immunogenicity of cell death. CLEC9A on dendritic cells links F-actin exposed by dying cells to favor cross-presentation of dead-cell associated antigens to CD8+ T cells. Nevertheless, CLEC9A exerts also feedback mechanisms to temper neutrophil recruitment and prevent additional tissue damage. MINCLE expressed by macrophages binds nuclear SAP130 released by necrotic cells to potentiate pro-inflammatory responses. However, the consequent inflammation can exacerbate pathogenesis of inflammatory diseases. Moreover, in a tumor microenvironment, MINCLE induces macrophage-induced immune suppression and cancer progression. Similarly, triggering of LOX-1 by oxidized LDL, amplifies pro-inflammatory response but promotes tumor immune escape and metastasis. Finally, CLEC12A that recognizes monosodium urate crystals formed during cell death, inhibits activating signals to prevent detrimental inflammation. Interestingly, CLEC12A also sustains type-I IFN response to finely tune immune responses in case of viral-induced collateral damage. Therefore, CLRs acting in concert as sensors of injury, could be used in a targeted way to treat numerous diseases such as allergies, obesity, tumors, and autoimmunity.


Assuntos
Morte Celular/imunologia , Lectinas Tipo C/fisiologia , Animais , Humanos , Receptores Imunológicos/fisiologia , Receptores Mitogênicos/fisiologia , Receptores Depuradores Classe E/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA