Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; 33(12): e17372, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38709214

RESUMO

The NC10 phylum links anaerobic methane oxidation to nitrite denitrification through a unique O2-producing intra-aerobic methanotrophic pathway. Although numerous amplicon-based studies revealed the distribution of this phylum, comprehensive genomic insights and niche characterization in deep-sea environments were still largely unknown. In this study, we extensively surveyed the NC10 bacteria across diverse deep-sea environments, including waters, sediments, cold seeps, biofilms, rocky substrates, and subseafloor aquifers. We then reconstructed and analysed 38 metagenome-assembled genomes (MAGs), and revealed the extensive distribution of NC10 bacteria and their intense selective pressure in these harsh environments. Isotopic analyses combined with gene expression profiling confirmed that active nitrite-dependent anaerobic methane oxidation (n-DAMO) occurs within deep-sea sediments. In addition, the identification of the Wood-Ljungdahl (WL) and 3-hydroxypropionate/4-hydroxybutyrat (3HB/4HP) pathways in these MAGs suggests their capability for carbon fixation as chemoautotrophs in these deep-sea environments. Indeed, we found that for their survival in the oligotrophic deep-sea biosphere, NC10 bacteria encode two branches of the WL pathway, utilizing acetyl-CoA from the carbonyl branch for citric acid cycle-based energy production and methane from the methyl branch for n-DAMO. The observed low ratios of non-synonymous substitutions to synonymous substitutions (pN/pS) in n-DAMO-related genes across these habitats suggest a pronounced purifying selection that is critical for the survival of NC10 bacteria in oligotrophic deep-sea environments. These findings not only advance our understanding of the evolutionary adaptations of NC10 bacteria but also underscore the intricate coupling between the carbon and nitrogen cycles within deep-sea ecosystems, driven by this bacterial phylum.


Assuntos
Desnitrificação , Sedimentos Geológicos , Metano , Metano/metabolismo , Sedimentos Geológicos/microbiologia , Desnitrificação/genética , Água do Mar/microbiologia , Bactérias/genética , Bactérias/metabolismo , Bactérias/classificação , Metagenoma , Filogenia , Nitritos/metabolismo , Oxirredução
2.
PeerJ ; 12: e17724, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39175749

RESUMO

Discovering new deep hydrothermal vent systems is one of the biggest challenges in ocean exploration. They are a unique window to elucidate the physical, geochemical, and biological processes that occur on the seafloor and are involved in the evolution of life on Earth. In this study, we present a molecular analysis of the microbial composition within the newly discovered hydrothermal vent field, JaichMaa 'ja 'ag, situated in the Southern Pescadero Basin within the Gulf of California. During the cruise expedition FK181031 in 2018, 33 sediment cores were collected from various sites within the Pescadero vent fields and processed for 16S rRNA amplicon sequence variants (ASVs) and geochemical analysis. Correlative analysis of the chemical composition of hydrothermal pore fluids and microbial abundances identified several sediment-associated phyla, including Thermotogota, that appear to be enriched in sediment horizons impacted by hydrothermal fluid flow. Comparative analysis of Thermotogota with the previously explored Auka hydrothermal vent field situated 2 km away displayed broad similarity between the two locations, although at finer scales (e.g., ASV level), there were notable differences that point to core-to-core and site-level factors revealing distinct patterns of distribution and abundance within these two sediment-hosted hydrothermal vent fields. These patterns are intricately linked to the specific physical and geochemical conditions defining each vent, illuminating the complexity of this unique deep ocean chemosynthetic ecosystem.


Assuntos
Sedimentos Geológicos , Fontes Hidrotermais , Fontes Hidrotermais/microbiologia , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , RNA Ribossômico 16S/genética , Biodiversidade , Água do Mar/microbiologia , Água do Mar/química , California , Bactérias/genética , Bactérias/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA