Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mutat ; 43(2): 103-127, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34837434

RESUMO

Accuracy of pre-messenger RNA (pre-mRNA) splicing is crucial for normal gene expression. Complex regulation supports the spliceosomal distinction between authentic exons and the many seemingly functional splice sites delimiting pseudoexons. Pseudoexons are nonfunctional intronic sequences that can be activated for aberrant inclusion in mRNA, which may cause disease. Pseudoexon activation is very challenging to predict, in particular when activation occurs by sequence variants that alter the splicing regulatory environment without directly affecting splice sites. As pseudoexon inclusion often evades detection due to activation of nonsense-mediated mRNA decay, and because conventional diagnostic procedures miss deep intronic sequence variation, pseudoexon activation is a heavily underreported disease mechanism. Pseudoexon characteristics have mainly been studied based on in silico predicted sequences. Moreover, because recognition of sequence variants that create or strengthen splice sites is possible by comparison with well-established consensus sequences, this type of pseudoexon activation is by far the most frequently reported. Here we review all known human disease-associated pseudoexons that carry functional splice sites and are activated by deep intronic sequence variants located outside splice site sequences. We delineate common characteristics that make this type of wild type pseudoexons distinct high-risk sites in the human genome.


Assuntos
Genoma Humano , Sítios de Splice de RNA , Éxons/genética , Genoma Humano/genética , Humanos , Íntrons/genética , Sítios de Splice de RNA/genética , Splicing de RNA/genética , RNA Mensageiro/genética
2.
Am J Med Genet A ; 185(12): 3804-3809, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34435740

RESUMO

Maroteaux-Lamy syndrome (MPS-VI) is a rare autosomal-recessive disorder with a wide spectrum of clinical manifestations, ranging from an attenuated to a rapidly progressive disease. It is caused by variants in ARSB, which encodes the lysosomal arylsulfatase B (ARSB) enzyme, part of the degradation process of glycosaminoglycans in lysosomes. Over 220 variants have been reported so far, with a majority of missense variants. We hereby report two siblings of Bedouin origin with a diagnosis of MPS-VI. Western blots in patient fibroblasts revealed total absence of ARSB protein production. Complete sequencing of the coding region of ARSB did not identify a candidate disease-associated variant. However, deep sequencing of the noncoding region of ARSB by whole genome sequencing (WGS) revealed a c.1142+581A to G variant. The variant is located within intron 5 and fully segregated with the disease in the family. Determination of the genetic cause for these patients enabled targeted treatment by enzyme replacement therapy, along with appropriate genetic counseling and prenatal diagnosis for the family. These results highlight the advantage of WGS as a powerful tool, for improving the diagnostic rate of rare disease-causing variants, and emphasize the importance of studying deep intronic sequence variation as a cause of monogenic disorders.


Assuntos
Aconselhamento Genético , Predisposição Genética para Doença , Mucopolissacaridose VI/genética , N-Acetilgalactosamina-4-Sulfatase/genética , Árabes/genética , Pré-Escolar , Éxons/genética , Feminino , Humanos , Lactente , Íntrons/genética , Masculino , Mucopolissacaridose VI/patologia , Mutação de Sentido Incorreto/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA