Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Cell ; 184(25): 6037-6051.e14, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34852237

RESUMO

RNA viruses generate defective viral genomes (DVGs) that can interfere with replication of the parental wild-type virus. To examine their therapeutic potential, we created a DVG by deleting the capsid-coding region of poliovirus. Strikingly, intraperitoneal or intranasal administration of this genome, which we termed eTIP1, elicits an antiviral response, inhibits replication, and protects mice from several RNA viruses, including enteroviruses, influenza, and SARS-CoV-2. While eTIP1 replication following intranasal administration is limited to the nasal cavity, its antiviral action extends non-cell-autonomously to the lungs. eTIP1 broad-spectrum antiviral effects are mediated by both local and distal type I interferon responses. Importantly, while a single eTIP1 dose protects animals from SARS-CoV-2 infection, it also stimulates production of SARS-CoV-2 neutralizing antibodies that afford long-lasting protection from SARS-CoV-2 reinfection. Thus, eTIP1 is a safe and effective broad-spectrum antiviral generating short- and long-term protection against SARS-CoV-2 and other respiratory infections in animal models.


Assuntos
Proteínas do Capsídeo/genética , Vírus Defeituosos Interferentes/metabolismo , Replicação Viral/efeitos dos fármacos , Administração Intranasal , Animais , Antivirais/farmacologia , Anticorpos Amplamente Neutralizantes/imunologia , Anticorpos Amplamente Neutralizantes/farmacologia , COVID-19 , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Vírus Defeituosos Interferentes/patogenicidade , Modelos Animais de Doenças , Genoma Viral/genética , Humanos , Influenza Humana , Interferons/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Poliovirus/genética , Poliovirus/metabolismo , Infecções Respiratórias/virologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade
2.
RNA ; 30(1): 16-25, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37891004

RESUMO

During viral replication, viruses carrying an RNA genome produce non-standard viral genomes (nsVGs), including copy-back viral genomes (cbVGs) and deletion viral genomes (delVGs), that play a crucial role in regulating viral replication and pathogenesis. Because of their critical roles in determining the outcome of RNA virus infections, the study of nsVGs has flourished in recent years, exposing a need for bioinformatic tools that can accurately identify them within next-generation sequencing data obtained from infected samples. Here, we present our data analysis pipeline, Viral Opensource DVG Key Algorithm 2 (VODKA2), that is optimized to run on a parallel computing environment for fast and accurate detection of nsVGs from large data sets.


Assuntos
Algoritmos , Genoma Viral , RNA-Seq , Biologia Computacional/métodos , Replicação Viral , RNA Viral/genética
3.
RNA ; 28(3): 277-289, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34937774

RESUMO

Coronavirus RNA-dependent RNA polymerases produce subgenomic RNAs (sgRNAs) that encode viral structural and accessory proteins. User-friendly bioinformatic tools to detect and quantify sgRNA production are urgently needed to study the growing number of next-generation sequencing (NGS) data of SARS-CoV-2. We introduced sgDI-tector to identify and quantify sgRNA in SARS-CoV-2 NGS data. sgDI-tector allowed detection of sgRNA without initial knowledge of the transcription-regulatory sequences. We produced NGS data and successfully detected the nested set of sgRNAs with the ranking M > ORF3a > N>ORF6 > ORF7a > ORF8 > S > E>ORF7b. We also compared the level of sgRNA production with other types of viral RNA products such as defective interfering viral genomes.


Assuntos
Biologia Computacional/métodos , Genoma Viral , RNA Viral/genética , SARS-CoV-2/genética , Sequenciamento de Nucleotídeos em Larga Escala , Fases de Leitura Aberta
4.
J Virol ; 96(21): e0117822, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36226985

RESUMO

Defective viral genomes (DVGs), which are generated by the viral polymerase in error during RNA replication, can trigger innate immunity and are implicated in altering the clinical outcome of infection. Here, we investigated the impact of DVGs on innate immunity and pathogenicity in a BALB/c mouse model of influenza virus infection. We generated stocks of influenza viruses containing the internal genes of an H5N1 virus that contained different levels of DVGs (indicated by different genome-to-PFU ratios). In lung epithelial cells, the high-DVG stock was immunostimulatory at early time points postinfection. DVGs were amplified during virus replication in myeloid immune cells and triggered proinflammatory cytokine production. In the mouse model, infection with the different virus stocks produced divergent outcomes. The high-DVG stock induced an early type I interferon (IFN) response that limited viral replication in the lungs, resulting in minimal weight loss. In contrast, the virus stock with low levels of DVGs replicated to high titers and amplified DVGs over time, resulting in elevated levels of proinflammatory cytokines accompanied by rapid weight loss and increased morbidity and mortality. Our results suggest that the timing and levels of immunostimulatory DVGs generated during infection contribute to H5N1 pathogenesis. IMPORTANCE Mammalian infections with highly pathogenic avian influenza viruses (HPAIVs) cause severe disease associated with excessive proinflammatory cytokine production. Aberrant replication products, such as defective viral genomes (DVGs), can stimulate the antiviral response, and cytokine induction is associated with their emergence in vivo. We show that stocks of a recombinant virus containing HPAIV internal genes that differ in their amounts of DVGs have vastly diverse outcomes in a mouse model. The high-DVG stock resulted in extremely mild disease due to suppression of viral replication. Conversely, the stock that contained low DVGs but rapidly accumulated DVGs over the course of infection led to severe disease. Therefore, the timing of DVG amplification and proinflammatory cytokine production impact disease outcome, and these findings demonstrate that not all DVG generation reduces viral virulence. This study also emphasizes the crucial requirement to examine the quality of virus preparations regarding DVG content to ensure reproducible research.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Camundongos , Animais , Vírus Defeituosos/genética , Vírus da Influenza A/genética , Camundongos Endogâmicos BALB C , Virus da Influenza A Subtipo H5N1/genética , Genoma Viral , Replicação Viral/genética , Citocinas/genética , Redução de Peso/genética , Mamíferos/genética
5.
RNA ; 26(12): 1905-1918, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32929001

RESUMO

Like most RNA viruses, influenza viruses generate defective viral genomes (DVGs) with large internal deletions during replication. There is accumulating evidence supporting a biological relevance of such DVGs. However, further understanding of the molecular mechanisms that underlie the production and biological activity of DVGs is conditioned upon the sensitivity and accuracy of detection methods, that is, next-generation sequencing (NGS) technologies and related bioinformatics algorithms. Although many algorithms were developed, their sensitivity and reproducibility were mostly assessed on simulated data. Here, we introduce DG-seq, a time-efficient pipeline for DVG detection and quantification, and a set of biological controls to assess the performance of not only our bioinformatics algorithm but also the upstream NGS steps. Using these tools, we provide the first rigorous comparison of the two commonly used sample processing methods for RNA-seq, with or without a PCR preamplification step. Our data show that preamplification confers a limited advantage in terms of sensitivity and introduces size- but also sequence-dependent biases in DVG quantification, thereby providing a strong rationale to favor preamplification-free methods. We further examine the features of DVGs produced by wild-type and transcription-defective (PA-K635A or PA-R638A) influenza viruses, and show an increased diversity and frequency of DVGs produced by the PA mutants compared to the wild-type virus. Finally, we demonstrate a significant enrichment in DVGs showing direct, A/T-rich sequence repeats at the deletion breakpoint sites. Our findings provide novel insights into the mechanisms of influenza virus DVG production.


Assuntos
Vírus Defeituosos/genética , Genoma Viral , Influenza Humana/genética , Orthomyxoviridae/genética , RNA Viral/genética , RNA-Seq/métodos , Humanos , Influenza Humana/virologia , Replicação Viral
6.
J Virol ; 93(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30463965

RESUMO

Defective viral genomes (DVGs) generated during RNA virus replication determine infection outcome by triggering innate immunity, diminishing virulence, and, in many cases, facilitating the establishment of persistent infections. Despite their critical role during virus-host interactions, the mechanisms regulating the production and propagation of DVGs are poorly understood. Visualization of viral genomes using RNA fluorescent in situ hybridization revealed a striking difference in the intracellular localization of DVGs and full-length viral genomes during infections with the paramyxovirus Sendai virus. In cells enriched in full-length virus, viral genomes clustered in a perinuclear region and associated with cellular trafficking machinery, including microtubules and the GTPase Rab11a. However, in cells enriched in DVGs, defective genomes distributed diffusely throughout the cytoplasm and failed to interact with this cellular machinery. Consequently, cells enriched in full-length genomes produced both DVG- and full-length-genome-containing viral particles, while DVG-high cells poorly produced viral particles yet strongly stimulated antiviral immunity. These findings reveal the selective production of both standard and DVG-containing particles by a subpopulation of infected cells that can be differentiated by the intracellular localization of DVGs. This study highlights the importance of considering this functional heterogeneity in analyses of virus-host interactions during infection.IMPORTANCE Defective viral genomes (DVGs) generated during Sendai virus infections accumulate in the cytoplasm of some infected cells and stimulate antiviral immunity and cell survival. DVGs are packaged and released as defective particles and have a significant impact on infection outcome. We show that the subpopulation of DVG-high cells poorly engages the virus packaging and budding machinery and do not effectively produce viral particles. In contrast, cells enriched in full-length genomes are the primary producers of both standard and defective viral particles during infection. This study demonstrates heterogeneity in the molecular interactions occurring within infected cells and highlights distinct functional roles for cells as either initiators of immunity or producers and perpetuators of viral particles depending on their content of viral genomes and their intracellular localization.


Assuntos
Vírus Defeituosos/genética , Vírus Sendai/genética , Montagem de Vírus/genética , Células A549 , Animais , Linhagem Celular , Genoma Viral/genética , Humanos , Hibridização in Situ Fluorescente/métodos , Transporte Proteico/genética , Vírus de RNA/genética , RNA Viral/genética , Vírion/genética , Replicação Viral/genética
7.
Viruses ; 16(9)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39339861

RESUMO

Due to the error-prone nature of viral RNA-dependent RNA polymerases, the replication of RNA viruses results in a diversity of viral genomes harboring point mutations, deletions, insertions, and genome rearrangements. Citrus tristeza virus (CTV), a causal agent of diseases of economically important citrus species, shows intrinsic genetic stability. While the virus appears to have some mechanism that limits the accumulation of single-nucleotide variants, the production of defective viral genomes (DVGs) during virus infection has been reported for certain variants of CTV. The intra-host diversity generated during plant infection with variant T36 (CTV-T36) remains unclear. To address this, we analyzed the RNA species accumulated in the initially infected and systemic leaves of Nicotiana benthamiana plants inoculated with an infectious cDNA clone of CTV-T36, which warranted that infection was initiated by a known, well-defined sequence variant of the virus. CTV-T36 limited the accumulation of single-nucleotide mutants during infection. With that, four types of DVGs-deletions, insertions, and copy- and snap-backs-were found in all the samples, with deletions and insertions being the most common types. Hot-spots across the genome for DVG recombination and short direct sequence repeats suggest that sequence complementarity could mediate DVG formation. In conclusion, our study illustrates the formation of diverse DVGs during CTV-T36 infection. To the best of our knowledge, this is the first study that has analyzed the genetic variability and recombination of a well-defined sequence variant of CTV in an herbaceous host.


Assuntos
Closterovirus , Variação Genética , Genoma Viral , Nicotiana , Doenças das Plantas , RNA Viral , Nicotiana/virologia , Closterovirus/genética , Closterovirus/classificação , Doenças das Plantas/virologia , RNA Viral/genética , Citrus/virologia , Folhas de Planta/virologia
8.
mBio ; 15(5): e0069224, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38567955

RESUMO

Defective viral genomes (DVGs) are truncated derivatives of their parental viral genomes generated during an aberrant round of viral genomic replication. Distinct classes of DVGs have been identified in most families of both positive- and negative-sense RNA viruses. Importantly, DVGs have been detected in clinical samples from virally infected individuals and an emerging body of association studies implicates DVGs in shaping the severity of disease caused by viral infections in humans. Consequently, there is growing interest in understanding the molecular mechanisms of de novo DVG generation, how DVGs interact with the innate immune system, and harnessing DVGs as novel therapeutics and vaccine adjuvants to attenuate viral pathogenesis. This minireview focuses on single-stranded RNA viruses (excluding retroviridae), and summarizes the current knowledge of DVG generation, the functions and diversity of DVG species, the roles DVGs play in influencing disease progression, and their application as antivirals and vaccine adjuvants.


Assuntos
Vírus Defeituosos , Genoma Viral , Humanos , Vírus Defeituosos/genética , Replicação Viral , Animais , Vírus de RNA/genética , Imunidade Inata , Viroses/virologia , Viroses/genética , Viroses/imunologia
9.
Gigascience ; 122023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36939008

RESUMO

BACKGROUND: Genetic recombination is a tremendous source of intrahost diversity in viruses and is critical for their ability to rapidly adapt to new environments or fitness challenges. While viruses are routinely characterized using high-throughput sequencing techniques, characterizing the genetic products of recombination in next-generation sequencing data remains a challenge. Viral recombination events can be highly diverse and variable in nature, including simple duplications and deletions, or more complex events such as copy/snap-back recombination, intervirus or intersegment recombination, and insertions of host nucleic acids. Due to the variable mechanisms driving virus recombination and the different selection pressures acting on the progeny, recombination junctions rarely adhere to simple canonical sites or sequences. Furthermore, numerous different events may be present simultaneously in a viral population, yielding a complex mutational landscape. FINDINGS: We have previously developed an algorithm called ViReMa (Virus Recombination Mapper) that bootstraps the bowtie short-read aligner to capture and annotate a wide range of recombinant species found within virus populations. Here, we have updated ViReMa to provide an "error density" function designed to accurately detect recombination events in the longer reads now routinely generated by the Illumina platforms and provide output reports for multiple types of recombinant species using standardized formats. We demonstrate the utility and flexibility of ViReMa in different settings to report deletion events in simulated data from Flock House virus, copy-back RNA species in Sendai viruses, short duplication events in HIV, and virus-to-host recombination in an archaeal DNA virus.


Assuntos
Ácidos Nucleicos , Vírus , RNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Vírus/genética , Recombinação Genética , Genoma Viral
10.
mBio ; 14(3): e0025023, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37074178

RESUMO

Defective viral genomes (DVGs) have been identified in many RNA viruses as a major factor influencing antiviral immune response and viral pathogenesis. However, the generation and function of DVGs in SARS-CoV-2 infection are less known. In this study, we elucidated DVG generation in SARS-CoV-2 and its relationship with host antiviral immune response. We observed DVGs ubiquitously from transcriptome sequencing (RNA-seq) data sets of in vitro infections and autopsy lung tissues of COVID-19 patients. Four genomic hot spots were identified for DVG recombination, and RNA secondary structures were suggested to mediate DVG formation. Functionally, bulk and single-cell RNA-seq analysis indicated the interferon (IFN) stimulation of SARS-CoV-2 DVGs. We further applied our criteria to the next-generation sequencing (NGS) data set from a published cohort study and observed a significantly higher amount and frequency of DVG in symptomatic patients than those in asymptomatic patients. Finally, we observed exceptionally diverse DVG populations in one immunosuppressive patient up to 140 days after the first positive test of COVID-19, suggesting for the first time an association between DVGs and persistent viral infections in SARS-CoV-2. Together, our findings strongly suggest a critical role of DVGs in modulating host IFN responses and symptom development, calling for further inquiry into the mechanisms of DVG generation and into how DVGs modulate host responses and infection outcome during SARS-CoV-2 infection. IMPORTANCE Defective viral genomes (DVGs) are generated ubiquitously in many RNA viruses, including SARS-CoV-2. Their interference activity to full-length viruses and IFN stimulation provide the potential for them to be used in novel antiviral therapies and vaccine development. SARS-CoV-2 DVGs are generated through the recombination of two discontinuous genomic fragments by viral polymerase complex, and this recombination is also one of the major mechanisms for the emergence of new coronaviruses. Focusing on the generation and function of SARS-CoV-2 DVGs, these studies identify new hot spots for nonhomologous recombination and strongly suggest that the secondary structures within viral genomes mediate the recombination. Furthermore, these studies provide the first evidence for IFN stimulation activity of de novo DVGs during natural SARS-CoV-2 infection. These findings set up the foundation for further mechanism studies of SARS-CoV-2 recombination and provide evidence to harness the immunostimulatory potential of DVGs in the development of a vaccine and antivirals for SARS-CoV-2.


Assuntos
COVID-19 , Vírus de RNA , Humanos , RNA Viral/genética , Estudos de Coortes , COVID-19/genética , SARS-CoV-2/genética , Genoma Viral , Vírus de RNA/genética , Antivirais
11.
Front Cell Infect Microbiol ; 12: 831281, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35223554

RESUMO

Dengue virus, a positive-sense single-stranded RNA virus, continuously threatens human health. Although several criteria for evaluation of severe dengue have been recently established, the ability to prognose the risk of severe outcomes for dengue patients remains limited. Mutant spectra of RNA viruses, including single nucleotide variants (SNVs) and defective virus genomes (DVGs), contribute to viral virulence and growth. Here, we determine the potency of intrahost viral population in dengue patients with primary infection that progresses into severe dengue. A total of 65 dengue virus serotype 2 infected patients in primary infection including 17 severe cases were enrolled. We utilized deep sequencing to directly define the frequency of SNVs and detection times of DVGs in sera of dengue patients and analyzed their associations with severe dengue. Among the detected SNVs and DVGs, the frequencies of 9 SNVs and the detection time of 1 DVG exhibited statistically significant differences between patients with dengue fever and those with severe dengue. By utilizing the detected frequencies/times of the selected SNVs/DVG as features, the machine learning model showed high average with a value of area under the receiver operating characteristic curve (AUROC, 0.966 ± 0.064). The elevation of the frequency of SNVs at E (nucleotide position 995 and 2216), NS2A (nucleotide position 4105), NS3 (nucleotide position 4536, 4606), and NS5 protein (nucleotide position 7643 and 10067) and the detection times of the selected DVG that had a deletion junction in the E protein region (nucleotide positions of the junction: between 969 and 1022) increased the possibility of dengue patients for severe dengue. In summary, we demonstrated the detected frequencies/times of SNVs/DVG in dengue patients associated with severe disease and successfully utilized them to discriminate severe patients using machine learning algorithm. The identified SNVs and DVGs that are associated with severe dengue will expand our understanding of intrahost viral population in dengue pathogenesis.


Assuntos
Vírus da Dengue , Dengue Grave , Vírus da Dengue/genética , Genoma Viral , Humanos , Aprendizado de Máquina , Sorogrupo , Dengue Grave/genética
12.
Viruses ; 14(5)2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35632855

RESUMO

The generation of different types of defective viral genomes (DVG) is an unavoidable consequence of the error-prone replication of RNA viruses. In recent years, a particular class of DVGs, those containing long deletions or genome rearrangements, has gain interest due to their potential therapeutic and biotechnological applications. Identifying such DVGs in high-throughput sequencing (HTS) data has become an interesting computational problem. Several algorithms have been proposed to accomplish this goal, though all incur false positives, a problem of practical interest if such DVGs have to be synthetized and tested in the laboratory. We present a metasearch tool, DVGfinder, that wraps the two most commonly used DVG search algorithms in a single workflow for the identification of the DVGs in HTS data. DVGfinder processes the results of ViReMa-a and DI-tector and uses a gradient boosting classifier machine learning algorithm to reduce the number of false-positive events. The program also generates output files in user-friendly HTML format, which can help users to explore the DVGs identified in the sample. We evaluated the performance of DVGfinder compared to the two search algorithms used separately and found that it slightly improves sensitivities for low-coverage synthetic HTS data and DI-tector precision for high-coverage samples. The metasearch program also showed higher sensitivity on a real sample for which a set of copy-backs were previously validated.


Assuntos
Vírus Defeituosos , Vírus de RNA , Vírus Defeituosos/genética , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Vírus de RNA/genética , RNA-Seq
13.
mBio ; 13(5): e0222122, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36069441

RESUMO

Alphaviruses are positive-sense RNA viruses that are important causes of viral encephalomyelitis. Sindbis virus (SINV), the prototype alphavirus, preferentially infects neurons in mice and is a model system for studying mechanisms of viral clearance from the nervous system. Antibody specific to the SINV E2 glycoprotein plays an important role in SINV clearance, and this effect is reproduced in cultures of infected mature neurons. To determine how anti-E2 antibody affects SINV RNA synthesis, Oxford Nanopore Technologies direct long-read RNA sequencing was used to sequence viral RNAs following antibody treatment of infected neurons. Differentiated AP-7 rat olfactory neuronal cells, an in vitro model for mature neurons, were infected with SINV and treated with anti-E2 antibody. Whole-cell RNA lysates were collected for sequencing of poly(A)-selected RNA 24, 48, and 72 h after infection. Three primary species of viral RNA were produced: genomic, subgenomic, and defective viral genomes (DVGs) encoding the RNA capping protein nsP1. Antibody treatment resulted in overall lower production of SINV RNA, decreased synthesis of subgenomic RNA relative to genomic RNA, and suppressed production of the nsP1 DVG. The nsP1 DVG was packaged into virus particles and could be translated. Because antibody-treated cells released a higher proportion of virions with noncapped genomes and transient transfection to express the nsP1 DVG improved viral RNA capping in antibody-treated cells, we postulate that one mechanism by which antibody inhibits SINV replication in neurons is to suppress DVG synthesis and thus decrease production of infectious virions containing capped genomes. IMPORTANCE Alphaviruses are important causes of viral encephalomyelitis without approved treatments or vaccines. Antibody to the Sindbis virus (SINV) E2 glycoprotein is required for immune-mediated noncytolytic virus clearance from neurons. We used direct RNA nanopore sequencing to evaluate how anti-E2 antibody affects SINV replication at the RNA level. Antibody altered the viral RNAs produced by decreasing the proportion of subgenomic relative to genomic RNA and suppressing production of a previously unrecognized defective viral genome (DVG) encoding nsP1, the viral RNA capping enzyme. Antibody-treated neurons released a lower proportion of SINV particles with capped genomes necessary for translation and infection. Decreased nsP1 DVG production in antibody-treated neurons led to lower expression of nsP1 protein, decreased genome capping efficiency, and release of fewer infectious virus particles. Capping was increased with exogenous expression of the nsP1 DVG. These studies identify a novel alphavirus DVG function and new mechanism for antibody-mediated control of virus replication.


Assuntos
Encefalomielite , Sindbis virus , Animais , Ratos , Camundongos , RNA Viral/metabolismo , Linhagem Celular , Replicação Viral , Neurônios , Anticorpos , Glicoproteínas
14.
Viruses ; 14(12)2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36560777

RESUMO

Defective interfering particles (DIPs) are particles containing defective viral genomes (DVGs) generated during viral replication. DIPs have been found in various RNA viruses, especially in influenza viruses. Evidence indicates that DIPs interfere with the replication and encapsulation of wild-type viruses, namely standard viruses (STVs) that contain full-length viral genomes. DIPs may also activate the innate immune response by stimulating interferon synthesis. In this review, the underlying generation mechanisms and characteristics of influenza virus DIPs are summarized. We also discuss the potential impact of DIPs on the immunogenicity of live attenuated influenza vaccines (LAIVs) and development of influenza vaccines based on NS1 gene-defective DIPs. Finally, we review the antiviral strategies based on influenza virus DIPs that have been used against both influenza virus and SARS-CoV-2. This review provides systematic insights into the theory and application of influenza virus DIPs.


Assuntos
COVID-19 , Vacinas contra Influenza , Orthomyxoviridae , Humanos , Antivirais , Vírus Defeituosos Interferentes , Vírus Defeituosos/fisiologia , SARS-CoV-2 , Orthomyxoviridae/genética , Replicação Viral/genética
15.
Viruses ; 14(2)2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35215979

RESUMO

Virus-like particles resemble infectious virus particles in size, shape, and molecular composition; however, they fail to productively infect host cells. Historically, the presence of virus-like particles has been inferred from total particle counts by microscopy, and infectious particle counts or plaque-forming-units (PFUs) by plaque assay; the resulting ratio of particles-to-PFUs is often greater than one, easily 10 or 100, indicating that most particles are non-infectious. Despite their inability to hijack cells for their reproduction, virus-like particles and the defective genomes they carry can exhibit a broad range of behaviors: interference with normal virus growth during co-infections, cell killing, and activation or inhibition of innate immune signaling. In addition, some virus-like particles become productive as their multiplicities of infection increase, a sign of cooperation between particles. Here, we review established and emerging methods to count virus-like particles and characterize their biological functions. We take a critical look at evidence for defective interfering virus genomes in natural and clinical isolates, and we review their potential as antiviral therapeutics. In short, we highlight an urgent need to better understand how virus-like genomes and particles interact with intact functional viruses during co-infection of their hosts, and their impacts on the transmission, severity, and persistence of virus-associated diseases.


Assuntos
Vírus Defeituosos/fisiologia , Vírion/fisiologia , Animais , Ensaio de Unidades Formadoras de Colônias , Genoma Viral , Humanos , Microscopia Eletrônica de Transmissão , Ensaio de Placa Viral , Viroses/virologia , Replicação Viral
16.
Vaccine ; 39(46): 6735-6745, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34663504

RESUMO

In the 2013-2014 and 2015-2016 seasons, quadrivalent live attenuated influenza vaccine (LAIV) showed reduced pandemic 2009 H1N1 (A/H1N1pdm09) vaccine effectiveness (VE) in the U.S. Impaired fitness of A/H1N1pdm09 LAIV strains in primary human nasal epithelial cells (hNEC) was subsequently shown to be associated with reduced VE. As defective viral genes (DVG) have been detected in QLAIV, it was hypothesised that these might play a role in reduced A/H1N1pdm09 fitness. By applying RT-PCR based approaches, DVG for PB2, PB1 and PA segments were detected in all influenza A LAIV strains tested. Absolute quantification of PA vRNA as a biomarker, using a novel digital RT-PCR assay (RT-dPCR), showed that DVG were a minority population (between 10.2 and 27.8 % of PA vRNA) in LAIV, irrespective of subtype or VE. Importantly, no difference was observed between the fitter pre-2009 H1N1 A/New Caledonia/20/1999 (A/NC99) and less fit A/H1N1pdm09 A/Bolivia/509/2013 (A/BOL13), containing medians of 16.0 % and 10.2 % PA DVG, respectively. Manipulating propagation conditions and minimising A/BOL13 PA DVG to 5.2 % failed to improve viral replication in hNEC, suggesting DVG were not limiting A/BOL13 fitness. Conversely, DVG were able to reduce A/NC99 replication in hNEC to A/BOL13-like levels, but only by enrichment of PA DVG to 66.5 % of vRNA. Notably, this required LAIV propagation under conditions markedly different to those used for vaccine production. We conclude from these data that abundance of DVG in QLAIV is not associated with variations in influenza A VE and that the reduced fitness of A/BOL13 previously described was not driven by the presence of DVG.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Genes Virais , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Influenza Humana/prevenção & controle , Eficácia de Vacinas , Vacinas Atenuadas
17.
Trends Microbiol ; 28(7): 554-565, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32544442

RESUMO

Viral defective interfering particles (DIPs) were intensely studied several decades ago but research waned leaving open many critical questions. New technologies and other advances led to a resurgence in DIP studies for negative-strand RNA viruses. While DIPs have long been recognized, their exact contribution to the outcome of acute or persistent viral infections has remained elusive. Recent studies have identified defective viral genomes (DVGs) in human infections, including respiratory syncytial virus and influenza, and growing evidence indicates that DVGs influence disease severity and may contribute to viral persistence. Further, several studies have advanced our understanding of key viral and host factors that regulate DIP formation and activity. Here we review these discoveries and highlight key questions moving forward.


Assuntos
Vírus Defeituosos/genética , Orthomyxoviridae/genética , Vírus Sinciciais Respiratórios/genética , Interferência Viral/genética , Replicação Viral/genética , Deleção de Genes , Genoma Viral/genética
18.
Viruses ; 11(6)2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31212939

RESUMO

Chronic viral disease constitutes a major global health problem, with several hundred million people affected and an associated elevated number of deaths. An increasing number of disorders caused by human flaviviruses are related to their capacity to establish a persistent infection. Here we show that Usutu virus (USUV), an emerging zoonotic flavivirus linked to sporadic neurologic disease in humans, can establish a persistent infection in cell culture. Two independent lineages of Vero cells surviving USUV lytic infection were cultured over 82 days (41 cell transfers) without any apparent cytopathology crisis associated. We found elevated titers in the supernatant of these cells, with modest fluctuations during passages but no overall tendency towards increased or decreased infectivity. In addition to full-length genomes, viral RNA isolated from these cells at passage 40 revealed the presence of defective genomes, containing different deletions at the 5' end. These truncated transcripts were all predicted to encode shorter polyprotein products lacking membrane and envelope structural proteins, and most of non-structural protein 1. Treatment with different broad-range antiviral nucleosides revealed that USUV is sensitive to these compounds in the context of a persistent infection, in agreement with previous observations during lytic infections. The exposure of infected cells to prolonged treatment (10 days) with favipiravir and/or ribavirin resulted in the complete clearance of infectivity in the cellular supernatants (decrease of ~5 log10 in virus titers and RNA levels), although modest changes in intracellular viral RNA levels were recorded (<2 log10 decrease). Drug withdrawal after treatment day 10 resulted in a relapse in virus titers. These results encourage the use of persistently-infected cultures as a surrogate system in the identification of improved antivirals against flaviviral chronic disease.


Assuntos
Infecções por Flavivirus/virologia , Flavivirus/crescimento & desenvolvimento , Modelos Biológicos , Cultura de Vírus/métodos , Replicação Viral , Amidas/administração & dosagem , Amidas/farmacologia , Animais , Antivirais/administração & dosagem , Antivirais/farmacologia , Chlorocebus aethiops , Infecções por Flavivirus/tratamento farmacológico , Pirazinas/administração & dosagem , Pirazinas/farmacologia , RNA Viral/genética , Ribavirina/administração & dosagem , Ribavirina/farmacologia , Análise de Sequência de DNA , Deleção de Sequência , Inoculações Seriadas , Resultado do Tratamento , Células Vero , Carga Viral , Proteínas Virais/genética
19.
Annu Rev Virol ; 6(1): 547-566, 2019 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-31082310

RESUMO

Defective viral genomes (DVGs) are generated during viral replication and are unable to carry out a full replication cycle unless coinfected with a full-length virus. DVGs are produced by many viruses, and their presence correlates with alterations in infection outcomes. Historically, DVGs were studied for their ability to interfere with standard virus replication as well as for their association with viral persistence. More recently, a critical role for DVGs in inducing the innate immune response during infection was appreciated. Here we review the role of DVGs of RNA viruses in shaping outcomes of experimental as well as natural infections and explore the mechanisms by which DVGs impact infection outcome.


Assuntos
Vírus Defeituosos/genética , Genoma Viral , Vírus de RNA/genética , Viroses/imunologia , Animais , Vírus Defeituosos/fisiologia , Humanos , Imunidade Inata , Vírus de RNA/fisiologia , Viroses/virologia , Replicação Viral
20.
Vaccine ; 36(28): 4039-4045, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29861183

RESUMO

Adjuvants potentiate and direct the type of immunity elicited during vaccination. However, there is a shortage of adjuvants that elicit robust type-1 immunity required for the control of intracellular pathogens, including viruses. RNA derived from Sendai virus defective viral genomes (DVGs) stimulates RIG-I-like receptor signaling leading to type-1 immunity during infection. Here, we investigated whether a 268nt DVG-derived oligonucleotide (DDO) functions as a strong type-1 immunity-inducing adjuvant during vaccination against influenza virus. We show that DDO induces robust IgG2c antibody production when used in an inactivated influenza A virus (IAV) vaccine. Additionally, DDO induces Th1 and CD8+ T-cell responses able to protect against heterosubtypic IAV challenge. Interestingly, DDO synergized with AddaVax and skewed the immune response towards type-1 immunity. The adjuvancy of DDO alone and in synergy with AddaVax was heavily dependent on type I interferon signaling. Our data support a critical role for type I interferon in the induction of type-1 immune responses during vaccination and demonstrate that DDO is a type-1 immunity orienting vaccine adjuvant that can be used alone or in synergy with other adjuvants.


Assuntos
Anticorpos Antivirais/sangue , Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Interferon Tipo I/metabolismo , RNA Viral/administração & dosagem , Vírus Sendai/química , Linfócitos T/imunologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/isolamento & purificação , Animais , Modelos Animais de Doenças , Feminino , Vacinas contra Influenza/administração & dosagem , Masculino , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , RNA Viral/isolamento & purificação , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA