Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 502
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cereb Cortex ; 34(3)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494418

RESUMO

Listeners can use prior knowledge to predict the content of noisy speech signals, enhancing perception. However, this process can also elicit misperceptions. For the first time, we employed a prime-probe paradigm and transcranial magnetic stimulation to investigate causal roles for the left and right posterior superior temporal gyri (pSTG) in the perception and misperception of degraded speech. Listeners were presented with spectrotemporally degraded probe sentences preceded by a clear prime. To produce misperceptions, we created partially mismatched pseudo-sentence probes via homophonic nonword transformations (e.g. The little girl was excited to lose her first tooth-Tha fittle girmn wam expited du roos har derst cooth). Compared to a control site (vertex), inhibitory stimulation of the left pSTG selectively disrupted priming of real but not pseudo-sentences. Conversely, inhibitory stimulation of the right pSTG enhanced priming of misperceptions with pseudo-sentences, but did not influence perception of real sentences. These results indicate qualitatively different causal roles for the left and right pSTG in perceiving degraded speech, supporting bilateral models that propose engagement of the right pSTG in sublexical processing.


Assuntos
Idioma , Fala , Humanos , Feminino , Fala/fisiologia , Lobo Temporal , Estimulação Magnética Transcraniana , Ruído
2.
Small ; : e2406116, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39194638

RESUMO

LiMn2O4 spinel is emerging as a promising cathode material for lithium-ion batteries, largely due to its open framework that facilitates Li+ diffusion and excellent rate performance. However, the charge-discharge cycling of the LiMn2O4 cathode leads to severe structural degradation and rapid capacity decay. Here, an electrochemical activation strategy is introduced, employing a facile galvano-potentiostatic charging operation, to restore the lost capacity of LiMn2O4 cathode without damaging the battery configuration. With an electrochemical activation strategy, the cycle life of the LiMn2O4 cathode is extended from an initial 1500 to an impressive 14 000 cycles at a 5C rate with Li metal as the anode, while increasing the total discharge energy by ten times. Remarkably, the electrochemical activation enhances the diffusion kinetics of Li+, with the diffusion coefficient experiencing a 37.2% increase. Further investigation reveals that this improvement in capacity and diffusion kinetics results from a transformation of the redox-inert LiMnO2 rocksalt layer on the surface of degraded cathodes back into active spinel. This transformation is confirmed through electron microscopy and corroborated by density functional theory simulations. Moreover, the viability of this electrochemical activation strategy has been demonstrated in pouch cell configurations with Li metal as the anode, underscoring its potential for broader application.

3.
Small ; : e2405362, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39263784

RESUMO

It is urgent to develop efficient recycling methods for spent LiFePO4 cathodes to cope with the upcoming peak of power battery retirement. Compared with the traditional metallurgical recovery methods that lack satisfactory economic and environmental benefits, the direct regeneration seems to be a promising option at present. However, a simple direct lithium replenishment cannot effectively repair and regenerate the cathodes due to the serious structural damage of the spent LiFePO4. Herein, the spent LiFePO4 cathodes are directly regenerated by a thiourea-assisted solid-phase sintering process. The density functional theory calculation indicates that thiourea has a targeted repair effect on the antisite defects and inactive FePO4 phase in the spent cathode due to the associative priority of amino group (─NH2) in thiourea with Fe ions: Fe3+─N > Fe2+─N. Meanwhile, the pyrolysis products of thiourea can also create an optimal reducing atmosphere and inhibit the agglomeration of particles in the high temperature restoration process. The regenerated LiFePO4 exhibits an excellent electrochemical performance, which is comparable to that of commercial LiFePO4. This targeted restoration has improved the efficiency of direct regeneration, which is expected to achieve large-scale recycling of spent LiFePO4.

4.
New Phytol ; 244(1): 91-103, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39148398

RESUMO

Stem respiration constitutes a substantial proportion of autotrophic respiration in forested ecosystems, but its drivers across different spatial scales and land-use gradients remain poorly understood. This study quantifies and examines the impact of logging disturbance on stem CO2 efflux (EA) in Malaysian Borneo. EA was quantified at tree- and stand-level in nine 1-ha plots over a logging gradient from heavily logged to old-growth using the static chamber method. Tree-level results showed higher EA per unit stem area in logged vs old-growth plots (37.0 ± 1.1 vs 26.92 ± 1.14 g C m-2 month-1). However, at stand-level, there was no difference in EA between logged and old-growth plots (6.7 ± 1.1 vs 6.0 ± 0.7 Mg C ha-1 yr-1) due to greater stem surface area in old-growth plots. Allocation to growth respiration and carbon use efficiency was significantly higher in logged plots. Variation in EA at both tree- and stand-level was driven by tree size, growth and differences in investment strategies between the forest types. These results reflect different resource allocation strategies and priorities, with a priority for growth in response to increased light availability in logged plots, while old-growth plots prioritise maintenance and cell structure.


Assuntos
Dióxido de Carbono , Caules de Planta , Árvores , Dióxido de Carbono/metabolismo , Bornéu , Caules de Planta/metabolismo , Caules de Planta/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Agricultura Florestal/métodos , Malásia , Florestas , Respiração Celular
5.
Electrophoresis ; 45(5-6): 489-504, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38037290

RESUMO

The continual investigation of novel genetic markers has yielded promising solutions for addressing the challenges encountered in forensic DNA analysis. In this study, we have introduced a custom-designed panel capable of simultaneously amplifying 41 novel Multi-insertion/deletion (Multi-InDel) markers and an amelogenin locus using the capillary electrophoresis platform. Through a developmental validation study conducted in accordance with guidelines recommended by the Scientific Working Group on DNA Analysis Methods, we demonstrated that the new Multi-InDel system exhibited the sensitivity to produce reliable genotyping profiles with as little as 62.5 pg of template DNA. Accurate and complete genotyping profiles could be obtained even in the presence of specific concentrations of PCR inhibitors. Furthermore, the maximum amplicon size for this system was limited to under 220 bp in the genotyping profile, resulting in its superior efficiency compared to commercially available short tandem repeat kits for both naturally and artificially degraded samples. In the context of mixed DNA analysis, the Multi-InDel system was proved informative in the identification of two-person DNA mixture, even when the template DNA of the minor contributor was as low as 50 pg. In conclusion, a series of performance evaluation studies have provided compelling evidence that the new Multi-InDel system holds promise as a valuable tool for forensic DNA analysis.


Assuntos
Impressões Digitais de DNA , DNA , Humanos , Genótipo , DNA/genética , Repetições de Microssatélites/genética , Primers do DNA , Genética Forense/métodos , Reação em Cadeia da Polimerase Multiplex/métodos
6.
Electrophoresis ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164978

RESUMO

DNA degradation has been a thorny problem in forensic science. Shortening the amplicon length of the genetic markers improves the analysis of degraded DNA effectively. Microhaplotype (MH) has been proposed as a potential genetic marker that can be used for degraded DNA analysis. In the present study, a 146-plex MH-next-generation sequencing (NGS) system with an average Ae of 6.876 was constructed. Unlike other MH studies, a single-primer extension (SPE)-based NGS library preparation method was used to improve the detection of MH markers for degraded DNA. SPE employs a locus-specific and universal primer to amplify target fragments, reducing the necessity for complete fragment sequences. SPE might effectively mitigate the impact of degradation on amplification. However, SPE produces amplicons of varying lengths, posing challenges in allele calling for SPE-NGS data. To address this issue, this study proposed a flexible allele-calling strategy to improve amplicon detection. In addition, this study evaluated the forensic efficacy of the system using 12 low-template samples (from 1 ng to 7.8 pg), 10 mock-degraded DNA with various degrees of degradation, and 8 forensic casework samples. When the template is as low as 7.8 pg, our system can accurately detect at least 37 loci and achieves a random match probability (RMP) of 10-30 using the complete allele-calling strategy. Eighty-two loci can be detected, and RMP can reach 10-54 using a flexible allele-calling strategy. After 150 min of 98°C treatment, 36 loci can still be detected, and an RMP of 10-5 can be obtained using the flexible allele-calling strategy. Furthermore, the number of single nucleotide polymorphism detected at different DNA amounts and degradation levels suggests that the SPE method combined with a flexible allele-calling strategy is effective.

7.
Anim Cogn ; 27(1): 34, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625429

RESUMO

Humans have an impressive ability to comprehend signal-degraded speech; however, the extent to which comprehension of degraded speech relies on human-specific features of speech perception vs. more general cognitive processes is unknown. Since dogs live alongside humans and regularly hear speech, they can be used as a model to differentiate between these possibilities. One often-studied type of degraded speech is noise-vocoded speech (sometimes thought of as cochlear-implant-simulation speech). Noise-vocoded speech is made by dividing the speech signal into frequency bands (channels), identifying the amplitude envelope of each individual band, and then using these envelopes to modulate bands of noise centered over the same frequency regions - the result is a signal with preserved temporal cues, but vastly reduced frequency information. Here, we tested dogs' recognition of familiar words produced in 16-channel vocoded speech. In the first study, dogs heard their names and unfamiliar dogs' names (foils) in vocoded speech as well as natural speech. In the second study, dogs heard 16-channel vocoded speech only. Dogs listened longer to their vocoded name than vocoded foils in both experiments, showing that they can comprehend a 16-channel vocoded version of their name without prior exposure to vocoded speech, and without immediate exposure to the natural-speech version of their name. Dogs' name recognition in the second study was mediated by the number of phonemes in the dogs' name, suggesting that phonological context plays a role in degraded speech comprehension.


Assuntos
Percepção da Fala , Fala , Humanos , Animais , Cães , Sinais (Psicologia) , Audição , Linguística
8.
Int Microbiol ; 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39129035

RESUMO

Arbuscular mycorrhizal fungi (AMF) are obligate symbionts that engage in crucial interactions with plants, playing a vital role in grassland ecology. Our study focuses on the pioneer plant Agropyron cristatum, and we collected soil samples from four degraded grasslands in Yudaokou to investigate the response of community composition to the succession of degraded grasslands. We measured the vegetation status, soil physical and chemical properties, AMF colonization, and spore density in different degraded grasslands. High-throughput sequencing was employed to analyze AMF in soil samples. Correlations among community composition, soil characteristics, and plant factors were studied using principal component and regression analyses. The distribution of AMF in grasslands exhibited variation with different degrees of degradation, with Glomus, Scutellospora, and Diversispora being the dominant genera. The abundance of dominant genera in AMF also varied, showing a gradual increase in the relative abundance of the genus Diversispora with higher degradation levels. AMF diversity decreased from 27.7% to 12.4% throughout the degradation process. Among 180 samples of Agropyron cristatum plants, AMF hyphae and vesicles displayed the highest infection status in non-degraded grasslands and the lowest in severely degraded ones. Peak AMF spore production occurred in August, with maximum values in the 0-10-cm soil layer, and the highest spore densities were found in lightly degraded grasslands. Apart from pH, soil factors exhibited a positive correlation with AMF infection during grassland degradation. Furthermore, changes in AMF community composition were jointly driven by vegetation and soil characteristics, with vegetation coverage and soil organic carbon significantly impacting AMF distribution. Significant differences in AMF variables (spore number and diversity index) were also observed at different soil depths. Grassland successional degradation significantly influences AMF community structure and composition. Our future focus will be on understanding response mechanisms and implementing improvement methods for AMF during grassland degradation and subsequent restoration efforts.

9.
Int J Legal Med ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39107630

RESUMO

DNA mixture analysis poses a significant challenge in forensic genetics, particularly when dealing with degraded and trace amount DNA samples. Multi-SNPs (MNPs) are genetic markers similar to microhaplotypes but with smaller molecular sizes (< 75 bp), making them theoretically more suitable for analyzing degraded and trace amount samples. In this case report, we investigated a cold case involving a campstool stored for over a decade, aiming to detect and locate the suspect's DNA. We employed both conventional capillary electrophoresis-based short tandem repeat (CE-STR) analysis and next-generation sequencing-based multi-SNP (NGS-MNP) analysis. The typing results and deconvolution of the mixed CE-STR profiles were inconclusive regarding the presence of the suspect's DNA in the mixed samples. However, through NGS-MNP analysis and presence probability calculations, we determined that the suspect's DNA was present in the samples from Sect. 4-1 with a probability of 1-8.41 × 10- 6 (99.999159%). This evidence contradicted the suspect's statement and aided in resolving the case. Our findings demonstrate the significant potential of MNP analysis for examining degraded and trace amount DNA mixtures in forensic investigations.

10.
Brain ; 146(10): 4065-4076, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37184986

RESUMO

Successful communication in daily life depends on accurate decoding of speech signals that are acoustically degraded by challenging listening conditions. This process presents the brain with a demanding computational task that is vulnerable to neurodegenerative pathologies. However, despite recent intense interest in the link between hearing impairment and dementia, comprehension of acoustically degraded speech in these diseases has been little studied. Here we addressed this issue in a cohort of 19 patients with typical Alzheimer's disease and 30 patients representing the three canonical syndromes of primary progressive aphasia (non-fluent/agrammatic variant primary progressive aphasia; semantic variant primary progressive aphasia; logopenic variant primary progressive aphasia), compared to 25 healthy age-matched controls. As a paradigm for the acoustically degraded speech signals of daily life, we used noise-vocoding: synthetic division of the speech signal into frequency channels constituted from amplitude-modulated white noise, such that fewer channels convey less spectrotemporal detail thereby reducing intelligibility. We investigated the impact of noise-vocoding on recognition of spoken three-digit numbers and used psychometric modelling to ascertain the threshold number of noise-vocoding channels required for 50% intelligibility by each participant. Associations of noise-vocoded speech intelligibility threshold with general demographic, clinical and neuropsychological characteristics and regional grey matter volume (defined by voxel-based morphometry of patients' brain images) were also assessed. Mean noise-vocoded speech intelligibility threshold was significantly higher in all patient groups than healthy controls, and significantly higher in Alzheimer's disease and logopenic variant primary progressive aphasia than semantic variant primary progressive aphasia (all P < 0.05). In a receiver operating characteristic analysis, vocoded intelligibility threshold discriminated Alzheimer's disease, non-fluent variant and logopenic variant primary progressive aphasia patients very well from healthy controls. Further, this central hearing measure correlated with overall disease severity but not with peripheral hearing or clear speech perception. Neuroanatomically, after correcting for multiple voxel-wise comparisons in predefined regions of interest, impaired noise-vocoded speech comprehension across syndromes was significantly associated (P < 0.05) with atrophy of left planum temporale, angular gyrus and anterior cingulate gyrus: a cortical network that has previously been widely implicated in processing degraded speech signals. Our findings suggest that the comprehension of acoustically altered speech captures an auditory brain process relevant to daily hearing and communication in major dementia syndromes, with novel diagnostic and therapeutic implications.


Assuntos
Doença de Alzheimer , Afasia Primária Progressiva , Afasia , Humanos , Doença de Alzheimer/complicações , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Compreensão , Fala , Encéfalo/patologia , Afasia/patologia , Afasia Primária Progressiva/complicações , Testes Neuropsicológicos
11.
Oecologia ; 204(1): 25-34, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38060002

RESUMO

On-going climate warming is threatening the ecological function of grassland ecosystems. However, whether warming has positive effects on community microhabitats and appearance, especially in degraded grasslands, remains elusive. To address this issue, we conducted a 2-year field experiment on the severely degraded alpine meadow and undegraded alpine meadow with no warming and warming treatments. Community coverage and height in degraded meadow significantly increased under warming, while these changes were not significant in undegraded meadow. Two-year warming increased the community height of degraded meadow and undegraded meadow by 56.55% and 10.99%, respectively. Warming also increased community coverage by 41.88% in degraded meadow and decreased community coverage by 3.01% in undegraded meadow. Moreover, the response of topsoil temperature to warming was stronger in degraded meadow (6.89%) than in undegraded meadow (- 0.26%), while the negative response of topsoil moisture to warming was weaker in degraded meadow (- 13.95%) than in undegraded meadow (- 20.00%). The SEMs further demonstrated that warming had positive effects on topsoil temperature and community height, while had negative effects on topsoil moisture both in degraded and undegraded meadows. Our results confirm that warming-induced soil drying is an important pathway affecting the community appearance in alpine meadows. These findings highlight that warming has positive effects on community height and coverage and is particularly effective in improving community coverage appearance in severely degraded alpine meadow with topsoil drying.


Assuntos
Ecossistema , Pradaria , Solo , Temperatura , Clima , Tibet
12.
Cereb Cortex ; 33(5): 2215-2228, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-35695785

RESUMO

The envelope is essential for speech perception. Recent studies have shown that cortical activity can track the acoustic envelope. However, whether the tracking strength reflects the extent of speech intelligibility processing remains controversial. Here, using stereo-electroencephalogram technology, we directly recorded the activity in human auditory cortex while subjects listened to either natural or noise-vocoded speech. These 2 stimuli have approximately identical envelopes, but the noise-vocoded speech does not have speech intelligibility. According to the tracking lags, we revealed 2 stages of envelope tracking: an early high-γ (60-140 Hz) power stage that preferred the noise-vocoded speech and a late θ (4-8 Hz) phase stage that preferred the natural speech. Furthermore, the decoding performance of high-γ power was better in primary auditory cortex than in nonprimary auditory cortex, consistent with its short tracking delay, while θ phase showed better decoding performance in right auditory cortex. In addition, high-γ responses with sustained temporal profiles in nonprimary auditory cortex were dominant in both envelope tracking and decoding. In sum, we suggested a functional dissociation between high-γ power and θ phase: the former reflects fast and automatic processing of brief acoustic features, while the latter correlates to slow build-up processing facilitated by speech intelligibility.


Assuntos
Córtex Auditivo , Percepção da Fala , Humanos , Fala/fisiologia , Córtex Auditivo/fisiologia , Inteligibilidade da Fala , Estimulação Acústica , Eletroencefalografia , Percepção da Fala/fisiologia
13.
Environ Res ; 252(Pt 2): 118922, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614202

RESUMO

Grazing is the most extensive land use in grassland worldwide, wherein the soil microbiome is known to support multiple ecosystem functions. Yet, the experimental impact of livestock grazing and dung deposits on the soil microbiome in degraded grassland remains poorly understood. We examined the effects of sheep dung depositions on the bacterial and fungal microbiome of two grasslands: non-degraded and degraded (long-term overgrazing) in northern China. Specifically, sheep dung was experimentally added to the soil and its effects on the soil microbial community were determined 3 months later (corresponding to livestock excreta deposited throughout the entire growing season of grassland, June to September). Our results showed that sheep dung additions showed negative effects on the soil microbiome of already degraded grassland, while with a diminished impact on the non-degraded grassland. In particular, dung deposition decreased soil microbial Shannon index, notably significantly reducing fungal diversity in degraded grassland. Moreover, sheep dung deposition modifies soil bacterial community structure and diminishes bacterial community network complexity. The alteration of soil pH caused by sheep dung deposition partially explains the decline in microbial diversity in degraded grassland. However, sheep dung did not alter the relative abundance and community composition of bacterial and fungal dominant phyla either in the non-degraded or in the degraded grassland. In conclusion, the short-term deposition of sheep dung exerted a detrimental influence on the microbial community in degraded grassland soil. It contributes new experimental evidence regarding the adverse effects of livestock grazing, particularly through dung deposition, on the soil microbiome in degraded grassland. This knowledge is crucial for guiding managers in conserving the soil microbiome in grazed grasslands.


Assuntos
Fezes , Pradaria , Microbiota , Microbiologia do Solo , Animais , Ovinos/microbiologia , Fezes/microbiologia , China , Fungos , Bactérias/classificação , Bactérias/metabolismo , Solo/química
14.
Can J Microbiol ; 70(3): 70-85, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38096505

RESUMO

The grasslands in North China are rich in fungal resources. However, the knowledge of the structure and function of fungal communities and the role of microbial communities in vegetation restoration and succession are limited. Thus, we used an Illumina HiSeq PE250 high-throughput sequencing platform to study the changing characteristics of soil fungal communities in degraded grasslands, which were categorized as non-degraded (ND), lightly degraded, moderately degraded, and severely degraded (SD). Moreover, a correlation analysis between soil physical and chemical properties and fungal communities was completed. The results showed that the number of plant species, vegetation coverage, aboveground biomass, and diversity index decreased significantly with increasing degradation, and there were significant differences in the physical and chemical properties of the soil among the different degraded grasslands. The dominant fungal phyla in the degraded grassland were as follows: Ascomycota, 44.88%-65.03%; Basidiomycota, 12.68%-29.91%; and unclassified, 5.51%-16.91%. The dominant fungi were as follows: Mortierella, 6.50%-11.41%; Chaetomium, 6.71%-11.58%; others, 25.95%-36.14%; and unclassified, 25.56%-53.0%. There were significant differences in the microbial Shannon-Wiener and Chao1 indices between the ND and degraded meadows, and the composition and diversity of the soil fungal community differed significantly as the meadows continued to deteriorate. The results showed that pH was the most critical factor affecting soil microbial and fungal communities in SD grasslands, whereas soil microbial and fungal communities in ND grasslands were mainly affected by water content and other environmental factors.


Assuntos
Microbiota , Micobioma , Pradaria , China , Solo
15.
J Dairy Sci ; 107(10): 7879-7890, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38851583

RESUMO

The objective of this study was to evaluate the effects of amino resin-treated soybean meal (SBM) on ruminal fermentation, nutrient digestion, and N partitioning. The treatments were (1) untreated solvent-extracted SBM, (2) amino resin-treated SBM (AR-SBM), and (3) heat-treated SBM (HT-SBM). The experimental design was arranged as a replicated 3 × 3 Latin square with 6 fermentors in a dual-flow continuous culture system. Treatments were randomly assigned to fermentors within a Latin square for each period. Each fermentor was fed 106 g/d of diet DM equally distributed in 2 feeding times daily at 0800 and 1800 h. Diets were formulated to contain 16% CP, 30% NDF, and 30% starch across treatments. The experiment consisted of 3 experimental periods, each lasting for 10 d. The first 7 d of each period were considered adaptation, and the last 3 d were used for sampling and data collection. On d 8 and 9, samples were collected for analysis of diurnal variation in concentrations of NH3-N, pH, and VFA during the first 8 h after feeding. On d 8, 9, and 10, samples were collected from the liquid and solid effluents accumulated over 24 h for analysis of daily averages of NH3-N and VFA pools, and true ruminal digestibility estimates. Data were analyzed using the MIXED procedure of SAS, and significance was declared when P ≤ 0.05. The model included the fixed effect of treatment and random effects of square, period, and fermentor within square, whereas time and interaction treatment × time were included for analyses of diurnal variation, with time as repeated measures. Compared with SBM, the cultured ruminal contents of AR-SBM and HT-SBM had lower NH3-N concentrations, indicating lower microbial fermentation of protein. Molar proportions of isovalerate and isobutyrate were greater in SBM than AR-SBM and HT-SBM, with greater molar proportion of isobutyrate for SBM, particularly during the first 2 h after feeding. The flow of NH3-N was greater for SBM compared with AR-SBM and HT-SBM, whereas NAN flow, bacterial N flow, and N efficiency were greater for AR-SBM and HT-SBM compared with SBM. Our results indicate that both the amino resin and heat treatments of SBM allow for similar decreases in microbial degradation of CP without limiting microbial protein synthesis in diets with 16% CP. Amino resin treatment may be effective in reducing microbial fermentation of protein in the rumen without adverse effects on digestibility or fermentation parameters as compared with SBM.


Assuntos
Ração Animal , Dieta , Digestão , Fermentação , Glycine max , Nitrogênio , Rúmen , Animais , Rúmen/metabolismo , Nitrogênio/metabolismo , Dieta/veterinária , Bovinos , Nutrientes/metabolismo
16.
Ecotoxicol Environ Saf ; 269: 115902, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38171231

RESUMO

Plant secondary metabolites (PSMs) are a defense mechanism against herbivores, which in turn use detoxification metabolism to process ingested and absorbed PSMs. The feeding environment can cause changes in liver metabolism patterns and the gut microbiota. Here, we compared gut microbiota and liver metabolome to investigate the response mechanism of plateau zokors (Eospalax baileyi) to toxic plant Stellera chamaejasme (SC) in non-SC and SC grassland (-SCG and +SCG). Our results indicated that exposure to SC in the -SCG population increased liver inflammatory markers including prostaglandin (PG) in the Arachidonic acid pathway, while exposure to SC in the +SCG population exhibited a significant downregulation of PGs. Secondary bile acids were significantly downregulated in +SCG plateau zokors after SC treatment. Of note, the microbial taxa Veillonella in the -SCG group was significantly correlated with liver inflammation markers, while Clostridium innocum in the +SCG group had a significant positive correlation with secondary bile acids. The increase in bile acids and PGs can lead to liver inflammatory reactions, suggesting that +SCG plateau zokors may mitigate the toxicity of SC plants by reducing liver inflammatory markers including PGs and secondary bile acids, thereby avoiding liver damage. This provides new insight into mechanisms of toxicity by PSMs and counter-mechanisms for toxin tolerance by herbivores.


Assuntos
Microbioma Gastrointestinal , Herbivoria , Plantas Tóxicas , Metaboloma , Fígado , Ácidos e Sais Biliares
17.
Genomics ; 115(3): 110620, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37037275

RESUMO

To assist in forensic DNA investigation, we developed a new panel capable of simultaneously amplifying 56 ancestry-informative InDels, three Y-InDels and the Amelogenin locus in one PCR reaction. The fragment lengths of the InDel amplicons in this panel were restricted to <200 bp to benefit degraded DNA analysis. In this study, we explored the efficiency of this new panel for forensic applications in the Han Chinese population, and further shed light on the genetic structures of Han populations. We showed that the new panel could be served as an efficient tool for ancestry inference of intercontinental populations. Especially, the Han individuals in different regions could be 100% correctly predicted to be of East Asian origin with this new panel. The Han populations in different regions shared similar ancestry components in their genetic structures. Besides, we also revealed that the new panle could be useful for individual identification in different Han Chinese populations. In conclusion, we have provided the necessary evidence that the self-constructed new panel could play an important role in forensic DNA investigation.


Assuntos
População do Leste Asiático , Genética Populacional , Humanos , DNA , Frequência do Gene
18.
Nano Lett ; 23(16): 7485-7492, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37477256

RESUMO

The recycling of LiFePO4 from degraded lithium-ion batteries (LIBs) from electric vehicles (EVs) has gained significant attention due to resource, environment, and cost considerations. Through neutron diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy, we revealed continuous lithium loss during battery cycling, resulting in a Li-deficient state (Li1-xFePO4) and phase separation within individual particles, where olive-shaped FePO4 nanodomains (5-10 nm) were embedded in the LiFePO4 matrix. The preservation of the olive-shaped skeleton during Li loss and phase change enabled materials recovery. By chemical compensation for the lithium loss, we successfully restored the hybrid LiFePO4/FePO4 structure to pure LiFePO4, eliminating nanograin boundaries. The regenerated LiFePO4 (R-LiFePO4) exhibited a high crystallinity similar to the fresh counterpart. This study highlights the importance of topotactic chemical reactions in structural repair and offers insights into the potential of targeted Li compensation for energy-efficient recycling of battery electrode materials with polyanion-type skeletons.

19.
Int J Mol Sci ; 25(11)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38892331

RESUMO

RNA sequencing (RNA-Seq) is a powerful technique and is increasingly being used in clinical research and drug development. Currently, several RNA-Seq methods have been developed. However, the relative advantage of each method for degraded RNA and low-input RNA, such as RNA samples collected in the field of clinical setting, has remained unknown. The Standard method of RNA-Seq captures mRNA by poly(A) capturing using Oligo dT beads, which is not suitable for degraded RNA. Here, we used three commercially available RNA-Seq library preparation kits (SMART-Seq, xGen Broad-range, and RamDA-Seq) using random primer instead of Oligo dT beads. To evaluate the performance of these methods, we compared the correlation, the number of detected expressing genes, and the expression levels with the Standard RNA-Seq method. Although the performance of RamDA-Seq was similar to that of Standard RNA-Seq, the performance for low-input RNA and degraded RNA has decreased. The performance of SMART-Seq was better than xGen and RamDA-Seq in low-input RNA and degraded RNA. Furthermore, the depletion of ribosomal RNA (rRNA) improved the performance of SMART-Seq and xGen due to increased expression levels. SMART-Seq with rRNA depletion has relative advantages for RNA-Seq using low-input and degraded RNA.


Assuntos
Estabilidade de RNA , Análise de Sequência de RNA , Análise de Sequência de RNA/métodos , Humanos , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA/genética , RNA Ribossômico/genética , RNA Mensageiro/genética , RNA-Seq/métodos
20.
J Environ Manage ; 359: 120920, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38688130

RESUMO

The urban soil where abandoned buildings are demolished is barren and structurally poor, and this degraded soil requires restoration. Ornamental plants enhance the urban environment, increase biodiversity, and affect soil physicochemical properties, microbial diversity; however, their effects remain unclear. Thus, in this study, a mixed-planting meadow consisting of 14 perennial ornamental flower species, including Iris tectorum, Iris lacteal, and Patrinia scabiosaefolia, etc. Was planted at a demolition site with sewage-contaminated soil in Beijing. Simultaneously, a single-planting lawn of I. tectorum was established in a nearby park. We aimed to examine soil physicochemical properties, sequence soil bacterial 16S rRNA and fungal ITS amplicons, and analyze soil microbial diversity and community structure at both sites at five time points in the year after planting, To explore the effect of herbaceous ornamental plants on degraded urban soil, we used FAPROTAX and FUNGuild to predict bacterial and fungal functions, the bin-based null model to evaluate the soil microbial community, and random matrix theory to construct soil microbial molecular networks. The mixed-planting meadow produced a visually appealing landscape and dynamic seasonal enrichment, significantly increasing soil total nitrogen (TN) and organic matter (SOM) contents by 1.99 and 1.21 times, respectively. TN had a positive correlation with soil microbial α diversity and community structure. Dominant phyla at both sites included Proteobacteria, Actinobacteria, and Ascomycota. Although soil microorganisms were primarily influenced by stochastic processes, stochasticity was notably higher in the mixed-planting meadow than in the single-planting lawn. The mixed-planting meadow significantly increased the relative abundance of beneficial microorganisms, improving nitrification and aerobic ammonium oxidation of soil bacteria, as well as symbiotroph of fungi. No significant changes were observed in the single-planting lawn. The mixed-planting meadow established a complex soil microbial molecular network, enhancing the correlation between bacteria and fungi and increasing the number of key microorganisms. Our findings suggest the potential of mixed-planting meadow in restoring degraded urban soils by influencing the soil microbial community and enhancing the ecological service function. Our study provides theoretical support for applying mixed-planting meadow communities to improve the soil environment of urban green spaces.


Assuntos
Microbiologia do Solo , Solo , Solo/química , Plantas , Biodiversidade , Bactérias/classificação , RNA Ribossômico 16S , Nitrogênio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA