RESUMO
Degrons are minimal elements that mediate the interaction of proteins with degradation machineries to promote proteolysis. Despite their central role in proteostasis, the number of known degrons remains small, and a facile technology to characterize them is lacking. Using a strategy combining global protein stability (GPS) profiling with a synthetic human peptidome, we identify thousands of peptides containing degron activity. Employing CRISPR screening, we establish that the stability of many proteins is regulated through degrons located at their C terminus. We characterize eight Cullin-RING E3 ubiquitin ligase (CRL) complex adaptors that regulate C-terminal degrons, including six CRL2 and two CRL4 complexes, and computationally implicate multiple non-CRLs in end recognition. Proteome analysis revealed that the C termini of eukaryotic proteins are depleted for C-terminal degrons, suggesting an E3-ligase-dependent modulation of proteome composition. Thus, we propose that a series of "C-end rules" operate to govern protein stability and shape the eukaryotic proteome.
Assuntos
Proteoma/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Motivos de Aminoácidos , Animais , Antígenos de Neoplasias/metabolismo , Sistemas CRISPR-Cas/genética , Biologia Computacional/métodos , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Células HEK293 , Humanos , Lentivirus/genética , Leupeptinas/farmacologia , Fases de Leitura Aberta/genética , Peptídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica/efeitos dos fármacos , Subunidades Proteicas/metabolismo , Proteólise , Proteoma/genética , Receptores de Citocinas/genética , Receptores de Citocinas/metabolismoRESUMO
Ubiquitin E3 ligases control every aspect of eukaryotic biology by promoting protein ubiquitination and degradation. At the end of a three-enzyme cascade, ubiquitin ligases mediate the transfer of ubiquitin from an E2 ubiquitin-conjugating enzyme to specific substrate proteins. Early investigations of E3s of the RING (really interesting new gene) and HECT (homologous to the E6AP carboxyl terminus) types shed light on their enzymatic activities, general architectures, and substrate degron-binding modes. Recent studies have provided deeper mechanistic insights into their catalysis, activation, and regulation. In this review, we summarize the current progress in structure-function studies of ubiquitin ligases as well as exciting new discoveries of novel classes of E3s and diverse substrate recognition mechanisms. Our increased understanding of ubiquitin ligase function and regulation has provided the rationale for developing E3-targeting therapeutics for the treatment of human diseases.
Assuntos
Proteínas de Bactérias/metabolismo , Células Eucarióticas/metabolismo , Processamento de Proteína Pós-Traducional , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Proteínas Virais/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Drogas em Investigação/síntese química , Células Eucarióticas/microbiologia , Células Eucarióticas/virologia , Interações Hospedeiro-Patógeno , Humanos , Modelos Moleculares , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Proteólise , Especificidade por Substrato , Ubiquitina/genética , Ubiquitina-Proteína Ligases/classificação , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Proteínas Virais/química , Proteínas Virais/genéticaRESUMO
The yeast glucose-induced degradation-deficient (GID) E3 ubiquitin ligase forms a suite of complexes with interchangeable receptors that selectively recruit N-terminal degron motifs of metabolic enzyme substrates. The orthologous higher eukaryotic C-terminal to LisH (CTLH) E3 complex has been proposed to also recognize substrates through an alternative subunit, WDR26, which promotes the formation of supramolecular CTLH E3 assemblies. Here, we discover that human WDR26 binds the metabolic enzyme nicotinamide/nicotinic-acid-mononucleotide-adenylyltransferase 1 (NMNAT1) and mediates its CTLH E3-dependent ubiquitylation independently of canonical GID/CTLH E3-family substrate receptors. The CTLH subunit YPEL5 inhibits NMNAT1 ubiquitylation and cellular turnover by WDR26-CTLH E3, thereby affecting NMNAT1-mediated metabolic activation and cytotoxicity of the prodrug tiazofurin. Cryoelectron microscopy (cryo-EM) structures of NMNAT1- and YPEL5-bound WDR26-CTLH E3 complexes reveal an internal basic degron motif of NMNAT1 essential for targeting by WDR26-CTLH E3 and degron mimicry by YPEL5's N terminus antagonizing substrate binding. Thus, our data provide a mechanistic understanding of how YPEL5-WDR26-CTLH E3 acts as a modulator of NMNAT1-dependent metabolism.
Assuntos
Nicotinamida-Nucleotídeo Adenililtransferase , Pró-Fármacos , Ubiquitina-Proteína Ligases , Ubiquitinação , Humanos , Microscopia Crioeletrônica , Células HEK293 , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Pró-Fármacos/metabolismo , Ligação Proteica , Especificidade por Substrato , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismoRESUMO
To combat phage infection, type III CRISPR-Cas systems utilize cyclic oligoadenylates (cAn) signaling to activate various auxiliary effectors, including the CRISPR-associated Lon-SAVED protease CalpL, which forms a tripartite effector system together with an anti-σ factor, CalpT, and an ECF-like σ factor, CalpS. Here, we report the characterization of the Candidatus Cloacimonas acidaminovorans CalpL-CalpT-CalpS. We demonstrate that cA4 binding triggers CalpL filament formation and activates it to cleave CalpT within the CalpT-CalpS dimer. This cleavage exposes the CalpT C-degron, which targets it for further degradation by cellular proteases. Consequently, CalpS is released to bind to RNA polymerase, causing growth arrest in E. coli. Furthermore, the CalpL-CalpT-CalpS system is regulated by the SAVED domain of CalpL, which is a ring nuclease that cleaves cA4 in a sequential three-step mechanism. These findings provide key mechanistic details for the activation, proteolytic events, and regulation of the signaling cascade in the type III CRISPR-Cas immunity.
RESUMO
The posttranslational modifier ubiquitin regulates most cellular processes. Its ability to form polymeric chains of distinct linkages is key to its diverse functionality. Yet, we still lack the experimental tools to induce linkage-specific polyubiquitylation of a protein of interest in cells. Here, we introduce a set of engineered ubiquitin protein ligases and matching ubiquitin acceptor tags for the rapid, inducible linear (M1-), K48-, or K63-linked polyubiquitylation of proteins in yeast and mammalian cells. By applying the so-called "Ubiquiton" system to proteasomal targeting and the endocytic pathway, we validate this tool for soluble cytoplasmic and nuclear as well as chromatin-associated and integral membrane proteins and demonstrate how it can be used to control the localization and stability of its targets. We expect that the Ubiquiton system will serve as a versatile, broadly applicable research tool to explore the signaling functions of polyubiquitin chains in many biological contexts.
Assuntos
Ubiquitina-Proteína Ligases , Ubiquitina , Animais , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Poliubiquitina/genética , Poliubiquitina/metabolismo , Transdução de Sinais , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitinação , Mamíferos/metabolismoRESUMO
Although most eukaryotic proteins are targeted for proteasomal degradation by ubiquitination, a subset have been demonstrated to undergo ubiquitin-independent proteasomal degradation (UbInPD). However, little is known about the molecular mechanisms driving UbInPD and the degrons involved. Utilizing the GPS-peptidome approach, a systematic method for degron discovery, we found thousands of sequences that promote UbInPD; thus, UbInPD is more prevalent than currently appreciated. Furthermore, mutagenesis experiments revealed specific C-terminal degrons required for UbInPD. Stability profiling of a genome-wide collection of human open reading frames identified 69 full-length proteins subject to UbInPD. These included REC8 and CDCA4, proteins which control proliferation and survival, as well as mislocalized secretory proteins, suggesting that UbInPD performs both regulatory and protein quality control functions. In the context of full-length proteins, C termini also play a role in promoting UbInPD. Finally, we found that Ubiquilin family proteins mediate the proteasomal targeting of a subset of UbInPD substrates.
Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitina , Humanos , Ubiquitina/genética , Ubiquitina/metabolismo , Proteólise , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas/metabolismo , Ubiquitinação , Proteínas de Ciclo Celular/metabolismoRESUMO
The ubiquitin-proteasome system plays a critical role in biology by regulating protein degradation. Despite their importance, precise recognition specificity is known for a few of the 600 E3s. Here, we establish a two-pronged strategy for identifying and mapping critical residues of internal degrons on a proteome-scale in HEK-293T cells. We employ global protein stability profiling combined with machine learning to identify 15,800 peptides likely to contain sequence-dependent degrons. We combine this with scanning mutagenesis to define critical residues for over 5,000 predicted degrons. Focusing on Cullin-RING ligase degrons, we generated mutational fingerprints for 219 degrons and developed DegronID, a computational algorithm enabling the clustering of degron peptides with similar motifs. CRISPR analysis enabled the discovery of E3-degron pairs, of which we uncovered 16 pairs that revealed extensive degron variability and structural determinants. We provide the visualization of these data on the public DegronID data browser as a resource for future exploration.
Assuntos
Algoritmos , Proteoma , Proteoma/genética , Núcleo Celular , Análise por Conglomerados , Ubiquitina-Proteína Ligases/genéticaRESUMO
The TFE3 and MITF master transcription factors maintain metabolic homeostasis by regulating lysosomal, melanocytic, and autophagy genes. Previous studies posited that their cytosolic retention by 14-3-3, mediated by the Rag GTPases-mTORC1, was key for suppressing transcriptional activity in the presence of nutrients. Here, we demonstrate using mammalian cells that regulated protein stability plays a fundamental role in their control. Amino acids promote the recruitment of TFE3 and MITF to the lysosomal surface via the Rag GTPases, activating an evolutionarily conserved phospho-degron and leading to ubiquitination by CUL1ß-TrCP and degradation. Elucidation of the minimal functional degron revealed a conserved alpha-helix required for interaction with RagA, illuminating the molecular basis for a severe neurodevelopmental syndrome caused by missense mutations in TFE3 within the RagA-TFE3 interface. Additionally, the phospho-degron is recurrently lost in TFE3 genomic translocations that cause kidney cancer. Therefore, two divergent pathologies converge on the loss of protein stability regulation by nutrients.
Assuntos
Aminoácidos , Fator de Transcrição Associado à Microftalmia , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Aminoácidos/metabolismo , Nutrientes , Estabilidade Proteica , Lisossomos/genética , Lisossomos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Mamíferos/metabolismoRESUMO
E3 ligase recruitment of proteins containing terminal destabilizing motifs (degrons) is emerging as a major form of regulation. How those E3s discriminate bona fide substrates from other proteins with terminal degron-like sequences remains unclear. Here, we report that human KLHDC2, a CRL2 substrate receptor targeting C-terminal Gly-Gly degrons, is regulated through interconversion between two assemblies. In the self-inactivated homotetramer, KLHDC2's C-terminal Gly-Ser motif mimics a degron and engages the substrate-binding domain of another protomer. True substrates capture the monomeric CRL2KLHDC2, driving E3 activation by neddylation and subsequent substrate ubiquitylation. Non-substrates such as NEDD8 bind KLHDC2 with high affinity, but its slow on rate prevents productive association with CRL2KLHDC2. Without substrate, neddylated CRL2KLHDC2 assemblies are deactivated via distinct mechanisms: the monomer by deneddylation and the tetramer by auto-ubiquitylation. Thus, substrate specificity is amplified by KLHDC2 self-assembly acting like a molecular timer, where only bona fide substrates may bind before E3 ligase inactivation.
Assuntos
Proteínas , Ubiquitina-Proteína Ligases , Humanos , Proteínas de Transporte , Proteínas/metabolismo , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Specificity of eukaryotic protein degradation is determined by E3 ubiquitin ligases and their selective binding to protein motifs, termed "degrons," in substrates for ubiquitin-mediated proteolysis. From the discovery of the first substrate degron and the corresponding E3 to a flurry of recent studies enabled by modern systems and structural methods, it is clear that many regulatory pathways depend on E3s recognizing protein termini. Here, we review the structural basis for recognition of protein termini by E3s and how this recognition underlies biological regulation. Diverse E3s evolved to harness a substrate's N and/or C terminus (and often adjacent residues as well) in a sequence-specific manner. Regulation is achieved through selective activation of E3s and also through generation of degrons at ribosomes or by posttranslational means. Collectively, many E3 interactions with protein N and C termini enable intricate control of protein quality and responses to cellular signals.
Assuntos
Ubiquitina-Proteína Ligases , Ubiquitina , Motivos de Aminoácidos , Proteínas/metabolismo , Proteólise , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Ribosomal RNAs (rRNAs) are the most abundant cellular RNAs, and their synthesis from rDNA repeats by RNA polymerase I accounts for the bulk of all transcription. Despite substantial variation in rRNA transcription rates across cell types, little is known about cell-type-specific factors that bind rDNA and regulate rRNA transcription to meet tissue-specific needs. Using hematopoiesis as a model system, we mapped about 2,200 ChIP-seq datasets for 250 transcription factors (TFs) and chromatin proteins to human and mouse rDNA and identified robust binding of multiple TF families to canonical TF motifs on rDNA. Using a 47S-FISH-Flow assay developed for nascent rRNA quantification, we demonstrated that targeted degradation of C/EBP alpha (CEBPA), a critical hematopoietic TF with conserved rDNA binding, caused rapid reduction in rRNA transcription due to reduced RNA Pol I occupancy. Our work identifies numerous potential rRNA regulators and provides a template for dissection of TF roles in rRNA transcription.
Assuntos
RNA Polimerase I , Fatores de Transcrição , Humanos , Camundongos , Animais , RNA Polimerase I/genética , RNA Polimerase I/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , RNA Ribossômico/genética , Transcrição Gênica , DNA Ribossômico/genética , RNA , CromatinaRESUMO
Promoter-proximal RNA Pol II pausing is a critical step in transcriptional control. Pol II pausing has been predominantly studied in tissue culture systems. While Pol II pausing has been shown to be required for mammalian development, the phenotypic and mechanistic details of this requirement are unknown. Here, we found that loss of Pol II pausing stalls pluripotent state transitions within the epiblast of the early mouse embryo. Using Nelfb -/- mice and a NELFB degron mouse pluripotent stem cell model, we show that embryonic stem cells (ESCs) representing the naïve state of pluripotency successfully initiate a transition program but fail to balance levels of induced and repressed genes and enhancers in the absence of NELF. We found an increase in chromatin-associated NELF during transition from the naïve to later pluripotent states. Overall, our work defines the acute and long-term molecular consequences of NELF loss and reveals a role for Pol II pausing in the pluripotency continuum as a modulator of cell state transitions.
RESUMO
N-degron pathways are a set of proteolytic systems that target the N-terminal destabilizing residues of substrates for proteasomal degradation. Recently, the Gly/N-degron pathway has been identified as a new branch of the N-degron pathway. The N-terminal glycine degron (Gly/N-degron) is recognized by ZYG11B and ZER1, the substrate receptors of the Cullin 2-RING E3 ubiquitin ligase (CRL2). Here we present the crystal structures of ZYG11B and ZER1 bound to various Gly/N-degrons. The structures reveal that ZYG11B and ZER1 utilize their armadillo (ARM) repeats forming a deep and narrow cavity to engage mainly the first four residues of Gly/N-degrons. The α-amino group of the Gly/N-degron is accommodated in an acidic pocket by five conserved hydrogen bonds. These structures, together with biochemical studies, decipher the molecular basis for the specific recognition of the Gly/N-degron by ZYG11B and ZER1, providing key information for future structure-based chemical probe design.
Assuntos
Proteínas de Ciclo Celular/ultraestrutura , Glicina/química , Conformação Proteica , Receptores de Citocinas/ultraestrutura , Sequência de Aminoácidos/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Cristalografia por Raios X , Glicina/genética , Células HEK293 , Humanos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/ultraestrutura , Ligação Proteica/genética , Domínios Proteicos/genética , Proteólise , Receptores de Citocinas/química , Receptores de Citocinas/genética , Especificidade por Substrato , Ubiquitina/genéticaRESUMO
The Polycomb repressive complex 2 (PRC2) is an essential epigenetic regulator that deposits repressive H3K27me3. PRC2 subunits form two holocomplexes-PRC2.1 and PRC2.2-but the roles of these two PRC2 assemblies during differentiation are unclear. We employed auxin-inducible degradation to deplete PRC2.1 subunit MTF2 or PRC2.2 subunit JARID2 during differentiation of embryonic stem cells (ESCs) to neural progenitors (NPCs). Depletion of either MTF2 or JARID2 resulted in incomplete differentiation due to defects in gene regulation. Distinct sets of Polycomb target genes were derepressed in the absence of MTF2 or JARID2. MTF2-sensitive genes were marked by H3K27me3 in ESCs and remained silent during differentiation, whereas JARID2-sensitive genes were preferentially active in ESCs and became newly repressed in NPCs. Thus, MTF2 and JARID2 contribute non-redundantly to Polycomb silencing, suggesting that PRC2.1 and PRC2.2 have distinct functions in maintaining and establishing, respectively, Polycomb repression during differentiation.
Assuntos
Complexo Repressor Polycomb 2/metabolismo , Animais , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Histonas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/metabolismo , Complexo Repressor Polycomb 2/fisiologia , Proteínas do Grupo Polycomb/metabolismo , Proteínas do Grupo Polycomb/fisiologia , Ligação Proteica/genéticaRESUMO
Selective protein degradation by the ubiquitin-proteasome system (UPS) is involved in all cellular processes. However, the substrates and specificity of most UPS components are not well understood. Here we systematically characterized the UPS in Saccharomyces cerevisiae. Using fluorescent timers, we determined how loss of individual UPS components affects yeast proteome turnover, detecting phenotypes for 76% of E2, E3, and deubiquitinating enzymes. We exploit this dataset to gain insights into N-degron pathways, which target proteins carrying N-terminal degradation signals. We implicate Ubr1, an E3 of the Arg/N-degron pathway, in targeting mitochondrial proteins processed by the mitochondrial inner membrane protease. Moreover, we identify Ylr149c/Gid11 as a substrate receptor of the glucose-induced degradation-deficient (GID) complex, an E3 of the Pro/N-degron pathway. Our results suggest that Gid11 recognizes proteins with N-terminal threonines, expanding the specificity of the GID complex. This resource of potential substrates and relationships between UPS components enables exploring functions of selective protein degradation.
Assuntos
Proteínas Mitocondriais/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligases/genética , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas Mitocondriais/classificação , Proteínas Mitocondriais/metabolismo , Transporte Proteico , Proteólise , Proteômica/métodos , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Treonina/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/classificação , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteína Vermelha FluorescenteRESUMO
Based on in vitro studies, it has been demonstrated that the DSIF complex, composed of SPT4 and SPT5, regulates the elongation stage of transcription catalyzed by RNA polymerase II (RNA Pol II). The precise cellular function of SPT5 is not clear, because conventional gene depletion strategies for SPT5 result in loss of cellular viability. Using an acute inducible protein depletion strategy to circumvent this issue, we report that SPT5 loss triggers the ubiquitination and proteasomal degradation of the core RNA Pol II subunit RPB1, a process that we show to be evolutionarily conserved from yeast to human cells. RPB1 degradation requires the E3 ligase Cullin 3, the unfoldase VCP/p97, and a novel form of CDK9 kinase complex. Our study demonstrates that SPT5 stabilizes RNA Pol II specifically at promoter-proximal regions, permitting RNA Pol II release from promoters into gene bodies and providing mechanistic insight into the cellular function of SPT5 in safeguarding accurate gene expression.
Assuntos
Proteínas Culina/metabolismo , Proteínas Nucleares/metabolismo , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Animais , Sobrevivência Celular , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Culina/química , Fibroblastos/metabolismo , Humanos , Ácidos Indolacéticos/química , Camundongos , Ubiquitina-Proteína Ligases Nedd4/química , Regiões Promotoras Genéticas , Complexo de Endopeptidases do Proteassoma/química , Proteoma , Proteômica/métodos , Ubiquitina-Proteína Ligases/química , Proteína com Valosina/química , Proteína com Valosina/metabolismoRESUMO
Transcription factors regulate gene networks controlling normal hematopoiesis and are frequently deregulated in acute myeloid leukemia (AML). Critical to our understanding of the mechanism of cellular transformation by oncogenic transcription factors is the ability to define their direct gene targets. However, gene network cascades can change within minutes to hours, making it difficult to distinguish direct from secondary or compensatory transcriptional changes by traditional methodologies. To overcome this limitation, we devised cell models in which the AML1-ETO protein could be quickly degraded upon addition of a small molecule. The rapid kinetics of AML1-ETO removal, when combined with analysis of transcriptional output by nascent transcript analysis and genome-wide AML1-ETO binding by CUT&RUN, enabled the identification of direct gene targets that constitute a core AML1-ETO regulatory network. Moreover, derepression of this gene network was associated with RUNX1 DNA binding and triggered a transcription cascade ultimately resulting in myeloid differentiation.
Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , RNA Neoplásico/biossíntese , Proteína 1 Parceira de Translocação de RUNX1/metabolismo , Transcrição Gênica , Acetilação , Sítios de Ligação , Ligação Competitiva , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Autorrenovação Celular , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Sangue Fetal/citologia , Regulação Leucêmica da Expressão Gênica , Redes Reguladoras de Genes , Células HEK293 , Células-Tronco Hematopoéticas/patologia , Histonas/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Células-Tronco Neoplásicas/patologia , Proteínas de Fusão Oncogênica/genética , Ligação Proteica , Proteólise , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , RNA Neoplásico/genética , Proteína 1 Parceira de Translocação de RUNX1/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Tempo , TranscriptomaRESUMO
Thiol oxidation to dioxygenated sulfinic acid is catalyzed by an enzyme family characterized by a cupin fold. These proteins act on free thiol-containing molecules to generate central metabolism precursors and signaling compounds in bacteria, fungi, and animal cells. In plants and animals, they also oxidize exposed N-cysteinyl residues, directing proteins to proteolysis. Enzyme kinetics, X-ray crystallography, and spectroscopy studies prompted the formulation and testing of hypotheses about the mechanism of action and the different substrate specificity of these enzymes. Concomitantly, the physiological role of thiol dioxygenation in prokaryotes and eukaryotes has been studied through genetic and physiological approaches. Further structural characterization is necessary to enable precise and safe manipulation of thiol dioxygenases (TDOs) for therapeutic, industrial, and agricultural applications.
Assuntos
Dioxigenases , Compostos de Sulfidrila , Dioxigenases/metabolismo , Dioxigenases/química , Compostos de Sulfidrila/metabolismo , Compostos de Sulfidrila/química , Animais , Humanos , Oxirredução , Especificidade por SubstratoRESUMO
The degradation of damaged proteins is critical for tissue integrity and organismal health because damaged proteins have a high propensity to form aggregates. E3 ubiquitin ligases are key regulators of protein quality control (PQC) and mediate the selective degradation of damaged proteins, a process termed 'PQC degradation' (PQCD). The degradation signals (degrons) that trigger PQCD are based on hydrophobic sites that are normally buried within the native protein structure. However, an open question is how PQCD-specialized E3 ligases distinguish between transiently misfolded proteins, which can be efficiently refolded, and permanently damaged proteins, which must be degraded. While significant progress has been made in characterizing degradation determinants, understanding the key regulatory signals of cellular and organismal PQCD pathways remains a challenge.
Assuntos
Proteólise , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/metabolismo , Humanos , Animais , Proteínas/metabolismo , Proteínas/química , Dobramento de Proteína , Complexo de Endopeptidases do Proteassoma/metabolismoRESUMO
Increasing evidence suggests that tRNA levels are dynamically and specifically regulated in response to internal and external cues to modulate the cellular translational program. However, the molecular players and the mechanisms regulating the gene-specific expression of tRNAs are still unknown. Using an inducible auxin-degron system to rapidly deplete RPB1 (the largest subunit of RNA Pol II) in living cells, we identified Pol II as a direct gene-specific regulator of tRNA transcription. Our data suggest that Pol II transcription robustly interferes with Pol III function at specific tRNA genes. This activity was further found to be essential for MAF1-mediated repression of a large set of tRNA genes during serum starvation, indicating that repression of tRNA genes by Pol II is dynamically regulated. Hence, Pol II plays a direct and central role in the gene-specific regulation of tRNA expression.