Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Traffic ; 25(1): e12926, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38084815

RESUMO

In neurons, fast axonal transport (FAT) of vesicles occurs over long distances and requires constant and local energy supply for molecular motors in the form of adenosine triphosphate (ATP). FAT is independent of mitochondrial metabolism. Indeed, the glycolytic machinery is present on vesicles and locally produces ATP, as well as nicotinamide adenine dinucleotide bonded with hydrogen (NADH) and pyruvate, using glucose as a substrate. It remains unclear whether pyruvate is transferred to mitochondria from the vesicles as well as how NADH is recycled into NAD+ on vesicles for continuous glycolysis activity. The optimization of a glycolytic activity test for subcellular compartments allowed the evaluation of the kinetics of vesicular glycolysis in the brain. This revealed that glycolysis is more efficient on vesicles than in the cytosol. We also found that lactate dehydrogenase (LDH) enzymatic activity is required for effective vesicular ATP production. Indeed, inhibition of LDH or the forced degradation of pyruvate inhibited ATP production from axonal vesicles. We found LDHA rather than the B isoform to be enriched on axonal vesicles suggesting a preferential transformation of pyruvate to lactate and a concomitant recycling of NADH into NAD+ on vesicles. Finally, we found that LDHA inhibition dramatically reduces the FAT of both dense-core vesicles and synaptic vesicle precursors in a reconstituted cortico-striatal circuit on-a-chip. Together, this shows that aerobic glycolysis is required to supply energy for vesicular transport in neurons, similar to the Warburg effect.


Assuntos
Glicólise , NAD , NAD/metabolismo , Glicólise/fisiologia , Axônios/metabolismo , Trifosfato de Adenosina/metabolismo , Piruvatos/metabolismo
2.
J Cell Sci ; 137(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38348894

RESUMO

Dense core vesicles (DCVs) and synaptic vesicles are specialised secretory vesicles in neurons and neuroendocrine cells, and abnormal release of their cargo is associated with various pathophysiologies. Endoplasmic reticulum (ER) stress and inter-organellar communication are also associated with disease biology. To investigate the functional status of regulated exocytosis arising from the crosstalk of a stressed ER and DCVs, ER stress was modelled in PC12 neuroendocrine cells using thapsigargin. DCV exocytosis was severely compromised in ER-stressed PC12 cells and was reversed to varying magnitudes by ER stress attenuators. Experiments with tunicamycin, an independent ER stressor, yielded similar results. Concurrently, ER stress also caused impaired DCV exocytosis in insulin-secreting INS-1 cells. Molecular analysis revealed blunted SNAP25 expression, potentially attributed to augmented levels of ATF4, an inhibitor of CREB that binds to the CREB-binding site. The effects of loss of function of ATF4 in ER-stressed cells substantiated this attribution. Our studies revealed severe defects in DCV exocytosis in ER-stressed cells for the first time, mediated by reduced levels of key exocytotic and granulogenic switches regulated via the eIF2α (EIF2A)-ATF4 axis.


Assuntos
Neurônios , Vesículas Sinápticas , Ratos , Animais , Neurônios/metabolismo , Vesículas Sinápticas/metabolismo , Exocitose/fisiologia , Vesículas Secretórias/metabolismo , Estresse do Retículo Endoplasmático
3.
J Neurosci ; 43(45): 7616-7625, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37852790

RESUMO

Neuropeptides and neurotrophins, stored in dense core vesicles (DCVs), are together the largest currently known group of chemical signals in the brain. Exocytosis of DCVs requires high-frequency or patterned stimulation, but the determinants to reach maximal fusion capacity and for efficient replenishment of released DCVs are unknown. Here, we systematically studied fusion of DCV with single vesicle resolution on different stimulation patterns in mammalian CNS neurons. We show that tetanic stimulation trains of 50-Hz action potential (AP) bursts maximized DCV fusion, with significantly fewer fusion event during later bursts of the train. This difference was omitted by introduction of interburst intervals but did not increase total DCV fusion. Interburst intervals as short as 5 s were sufficient to restore the fusion capacity. Theta burst stimulation (TBS) triggered less DCV fusion than tetanic stimulation, but a similar fusion efficiency per AP. Prepulse stimulation did not alter this. However, low-frequency stimulation (4 Hz) intermitted with fast ripple stimulation (200 APs at 200 Hz) produced substantial DCV fusion, albeit not as much as tetanic stimulation. Finally, individual fusion events had longer durations with more intense stimulation. These data indicate that trains of 50-Hz AP stimulation patterns triggered DCV exocytosis most efficiently and more intense stimulation promotes longer DCV fusion pore openings.SIGNIFICANCE STATEMENT Neuropeptides and neurotrophins modulate multiple regulatory functions of human body like reproduction, food intake or mood. They are packed into dense core vesicles (DCVs) that undergo calcium and action potential (AP) fusion with the plasma membrane. In order to study the fusion of DCVs in vitro, techniques like perfusion with buffer containing high concentration of potassium or electric field stimulation are needed to trigger the exocytosis of DCVs. Here, we studied the relationship between DCVs fusion properties and different electric field stimulation patterns. We used six different stimulation patterns and showed that trains of 50-Hz action potential bursts triggered DCV exocytosis most efficiently and more intense stimulation promotes longer DCV fusion pore openings.


Assuntos
Vesículas de Núcleo Denso , Neuropeptídeos , Animais , Humanos , Vesículas Secretórias/metabolismo , Neurônios/fisiologia , Hipocampo/fisiologia , Neuropeptídeos/metabolismo , Fatores de Crescimento Neural/metabolismo , Mamíferos
4.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33903230

RESUMO

Neuropeptides and neurotrophic factors secreted from dense core vesicles (DCVs) control many brain functions, but the calcium sensors that trigger their secretion remain unknown. Here, we show that in mouse hippocampal neurons, DCV fusion is strongly and equally reduced in synaptotagmin-1 (Syt1)- or Syt7-deficient neurons, but combined Syt1/Syt7 deficiency did not reduce fusion further. Cross-rescue, expression of Syt1 in Syt7-deficient neurons, or vice versa, completely restored fusion. Hence, both sensors are rate limiting, operating in a single pathway. Overexpression of either sensor in wild-type neurons confirmed this and increased fusion. Syt1 traveled with DCVs and was present on fusing DCVs, but Syt7 supported fusion largely from other locations. Finally, the duration of single DCV fusion events was reduced in Syt1-deficient but not Syt7-deficient neurons. In conclusion, two functionally redundant calcium sensors drive neuromodulator secretion in an expression-dependent manner. In addition, Syt1 has a unique role in regulating fusion pore duration.


Assuntos
Encéfalo/metabolismo , Neurônios/metabolismo , Neurotransmissores/química , Sinaptotagmina I/genética , Sinaptotagminas/genética , Animais , Cálcio/química , Cálcio/metabolismo , Vesículas de Núcleo Denso/genética , Vesículas de Núcleo Denso/metabolismo , Regulação da Expressão Gênica/genética , Hipocampo/metabolismo , Humanos , Camundongos , Fatores de Crescimento Neural/química , Fatores de Crescimento Neural/metabolismo , Neurônios/patologia , Neuropeptídeos/química , Neuropeptídeos/metabolismo , Neurotransmissores/metabolismo
5.
Int J Mol Sci ; 25(2)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38279285

RESUMO

Dendritic spines are essential for synaptic function because they constitute the postsynaptic compartment of the neurons that receives the most excitatory input. The extracellularly shorter variant of the presynaptic cell adhesion molecules neurexins, ß-neurexin, has been implicated in various aspects of synaptic function, including neurotransmitter release. However, its role in developing or stabilizing dendritic spines as fundamental computational units of excitatory synapses has remained unclear. Here, we show through morphological analysis that the deletion of ß-neurexins in hippocampal neurons in vitro and in hippocampal tissue in vivo affects presynaptic dense-core vesicles, as hypothesized earlier, and, unexpectedly, alters the postsynaptic spine structure. Specifically, we observed that the absence of ß-neurexins led to an increase in filopodial-like protrusions in vitro and more mature mushroom-type spines in the CA1 region of adult knockout mice. In addition, the deletion of ß-neurexins caused alterations in the spine head dimension and an increase in spines with perforations of their postsynaptic density but no changes in the overall number of spines or synapses. Our results indicate that presynaptic ß-neurexins play a role across the synaptic cleft, possibly by aligning with postsynaptic binding partners and glutamate receptors via transsynaptic columns.


Assuntos
Espinhas Dendríticas , Neurexinas , Camundongos , Animais , Espinhas Dendríticas/metabolismo , Sinapses/metabolismo , Neurônios/metabolismo , Transmissão Sináptica/fisiologia , Hipocampo/metabolismo , Camundongos Knockout
6.
Angew Chem Int Ed Engl ; 63(16): e202400422, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38380500

RESUMO

An overreactive stress granule (SG) pathway and long-lived, stable SGs formation are thought to participate in the progress of neurodegenerative diseases (NDs). To understand if and how SGs contribute to disorders of neurotransmitter release in NDs, we examined the interaction between extracellular isolated SGs and vesicles. Amperometry shows that the vesicular content increases and dynamics of vesicle opening slow down after vesicles are treated with SGs, suggesting larger vesicles are formed. Data from transmission electron microscopy (TEM) clearly shows that a portion of large dense-core vesicles (LDCVs) with double/multiple cores appear, thus confirming that SGs induce homotypic fusion between LDCVs. This might be a protective step to help cells to survive following high oxidative stress. A hypothetical mechanism is proposed whereby enriched mRNA or protein in the shell of SGs is likely to bind intrinsically disordered protein (IDP) regions of vesicle associated membrane protein (VAMP) driving a disrupted membrane between two closely buddled vesicles to fuse with each other to form double-core vesicles. Our results show that SGs induce homotypic fusion of LDCVs, providing better understanding of how SGs intervene in pathological processes and opening a new direction to investigations of SGs involved neurodegenerative disease.


Assuntos
Catecolaminas , Doenças Neurodegenerativas , Humanos , Catecolaminas/metabolismo , Doenças Neurodegenerativas/metabolismo , Grânulos de Estresse , Microscopia Eletrônica , Microscopia Eletrônica de Transmissão
7.
Development ; 147(20)2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33037039

RESUMO

Insulin/IGF signaling in Caenorhabditis elegans is crucial for proper development of the dauer larva and growth control. Mutants disturbing insulin processing, secretion and downstream signaling perturb this process and have helped identify genes that affect progression of type 2 diabetes. Insulin maturation is required for its proper secretion by pancreatic ß cells. The role of the endoplasmic reticulum (ER) chaperones in insulin processing and secretion needs further study. We show that the C. elegans ER chaperone ENPL-1/GRP94 (HSP90B1), acts in dauer development by promoting insulin secretion and signaling. Processing of a proinsulin likely involves binding between the two proteins via a specific domain. We show that, in enpl-1 mutants, an unprocessed insulin exits the ER lumen and is found in dense core vesicles, but is not secreted. The high ER stress in enpl-1 mutants does not cause the secretion defect. Importantly, increased ENPL-1 levels result in increased secretion. Taken together, our work indicates that ENPL-1 operates at the level of insulin availability and is an essential modulator of insulin processing and secretion.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Choque Térmico HSP70/química , Secreção de Insulina , Proteínas de Membrana/química , Chaperonas Moleculares/metabolismo , Proinsulina/metabolismo , Processamento de Proteína Pós-Traducional , Homologia de Sequência de Aminoácidos , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Compartimento Celular , Sequência Conservada , Embrião não Mamífero/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Proteínas de Fluorescência Verde/metabolismo , Chaperonas Moleculares/química , Mutação/genética , Neurônios/metabolismo , Domínios Proteicos , Transporte Proteico , Vesículas Secretórias
8.
Int J Mol Sci ; 24(15)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37569695

RESUMO

CCDC186 protein is involved in the maturation of dense-core vesicles (DCVs) in the trans-Golgi network in neurons and endocrine cells. Mutations in genes involved in DCV regulation, other than CCDC186, have been described in patients with neurodevelopmental disorders. To date, only one patient, within a large sequencing study of 1000 cases, and a single case report with variants in CCDC186, had previously been described. However, no functional studies in any of these two cases had been performed. We identified three patients from two gypsy families, unrelated to each other, with mutations in the CCDC186 gene. Clinically, all patients presented with seizures, frontotemporal atrophy, hypomyelination, recurrent infections, and endocrine disturbances such as severe non-ketotic hypoglycemia. Low levels of cortisol, insulin, or growth hormone could only be verified in one patient. All of them had a neonatal onset and died between 7 months and 4 years of age. Whole exome sequencing identified a homozygous variant in the CCDC186 gene (c.2215C>T, p.Arg739Ter) in the index patients of both families. Protein expression studies demonstrated that CCDC186 was almost undetectable in fibroblasts and muscle tissue. These observations correlated with the transcriptomic analysis performed in fibroblasts in one of the patients, which showed a significant reduction of CCDC186 mRNA levels. Our study provides functional evidence that mutations in this gene have a pathogenic effect on the protein and reinforces CCDC186 as a new disease-associated gene. In addition, mutations in CCDC186 could explain the combined endocrine and neurologic alterations detected in our patients.


Assuntos
Doenças do Sistema Endócrino , Transtornos do Neurodesenvolvimento , Recém-Nascido , Humanos , Sistema Nervoso Central , Transtornos do Neurodesenvolvimento/genética , Mutação , Rede trans-Golgi
9.
J Neurosci ; 41(13): 2828-2841, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33632727

RESUMO

Common fusion machinery mediates the Ca2+-dependent exocytosis of synaptic vesicles (SVs) and dense-core vesicles (DCVs). Previously, Synapsin Ia (Syn Ia) was found to localize to SVs, essential for mobilizing SVs to the plasma membrane through phosphorylation. However, whether (or how) the phosphoprotein Syn Ia plays a role in regulating DCV exocytosis remains unknown. To answer these questions, we measured the dynamics of DCV exocytosis by using single-vesicle amperometry in PC12 cells (derived from the pheochromocytoma of rats of unknown sex) overexpressing wild-type or phosphodeficient Syn Ia. We found that overexpression of phosphodeficient Syn Ia decreased the DCV secretion rate, specifically via residues previously shown to undergo calmodulin-dependent kinase (CaMK)-mediated phosphorylation (S9, S566, and S603). Moreover, the fusion pore kinetics during DCV exocytosis were found to be differentially regulated by Syn Ia and two phosphodeficient Syn Ia mutants (Syn Ia-S62A and Syn Ia-S9,566,603A). Kinetic analysis suggested that Syn Ia may regulate the closure and dilation of DCV fusion pores via these sites, implying the potential interactions of Syn Ia with certain DCV proteins involved in the regulation of fusion pore dynamics. Furthermore, we predicted the interaction of Syn Ia with several DCV proteins, including Synaptophysin (Syp) and soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins. By immunoprecipitation, we found that Syn Ia interacted with Syp via phosphorylation. Moreover, a proximity ligation assay (PLA) confirmed their phosphorylation-dependent, in situ interaction on DCVs. Together, these findings reveal a phosphorylation-mediated regulation of DCV exocytosis by Syn Ia.SIGNIFICANCE STATEMENT Although they exhibit distinct exocytosis dynamics upon stimulation, synaptic vesicles (SVs) and dense-core vesicles (DCVs) may undergo co-release in neurons and neuroendocrine cells through an undefined molecular mechanism. Synapsin Ia (Syn Ia) is known to recruit SVs to the plasma membrane via phosphorylation. Here, we examined whether Syn Ia also affects the dynamics of DCV exocytosis. We showed that Syn Ia regulates the DCV secretion rate and fusion pore kinetics during DCV exocytosis. Moreover, Syn Ia-mediated regulation of DCV exocytosis depends on phosphorylation. We further found that Syn Ia interacts with Synaptophysin (Syp) on DCVs in a phosphorylation-dependent manner. Thus, these results suggest that Syn Ia may regulate the release of DCVs via phosphorylation.


Assuntos
Membrana Celular/metabolismo , Exocitose/fisiologia , Vesículas Secretórias/metabolismo , Sinapsinas/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Células PC12 , Fosfoproteínas/metabolismo , Ratos
10.
EMBO J ; 37(20)2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30185408

RESUMO

Neuropeptides are essential signaling molecules transported and secreted by dense-core vesicles (DCVs), but the number of DCVs available for secretion, their subcellular distribution, and release probability are unknown. Here, we quantified DCV pool sizes in three types of mammalian CNS neurons in vitro and in vivo Super-resolution and electron microscopy reveal a total pool of 1,400-18,000 DCVs, correlating with neurite length. Excitatory hippocampal and inhibitory striatal neurons in vitro have a similar DCV density, and thalamo-cortical axons in vivo have a slightly higher density. Synapses contain on average two to three DCVs, at the periphery of synaptic vesicle clusters. DCVs distribute equally in axons and dendrites, but the vast majority (80%) of DCV fusion events occur at axons. The release probability of DCVs is 1-6%, depending on the stimulation. Thus, mammalian CNS neurons contain a large pool of DCVs of which only a small fraction can fuse, preferentially at axons.


Assuntos
Axônios , Corpo Estriado , Hipocampo , Neuritos , Vesículas Secretórias , Sinapses , Animais , Axônios/metabolismo , Axônios/ultraestrutura , Corpo Estriado/metabolismo , Corpo Estriado/ultraestrutura , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Camundongos , Neuritos/metabolismo , Neuritos/ultraestrutura , Vesículas Secretórias/metabolismo , Vesículas Secretórias/ultraestrutura , Sinapses/metabolismo , Sinapses/ultraestrutura
11.
Angew Chem Int Ed Engl ; 61(15): e202116217, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35129861

RESUMO

We report the discovery that in the presence of chaotropic anions (SCN- ) the opening of nanometer biological vesicles at an electrified interface often becomes a two-step process (around 30 % doublet peaks). We have then used this to independently count molecules in each subvesicular compartment, the halo and protein dense-core, and the fraction of catecholamine binding to the dense-core is 68 %. Moreover, we differentiated two distinct populations of large dense-core vesicles (LDCVs) and quantified their content, which might correspond to immature (43 %) and mature (30 %) LDCVs, to reveal differences in their biogenesis. We speculate this is caused by an increase in the electrostatic attraction between protonated catecholamine and the negatively charged dense-core following adsorption of SCN- .


Assuntos
Catecolaminas , Catecolaminas/metabolismo
12.
Proc Natl Acad Sci U S A ; 115(29): E6890-E6899, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29959203

RESUMO

Neuropeptides are ubiquitous modulators of behavior and physiology. They are packaged in specialized secretory organelles called dense core vesicles (DCVs) that are released upon neural stimulation. Unlike synaptic vesicles, which can be recycled and refilled close to release sites, DCVs must be replenished by de novo synthesis in the cell body. Here, we dissect DCV cell biology in vivo in a Caenorhabditis elegans sensory neuron whose tonic activity we can control using a natural stimulus. We express fluorescently tagged neuropeptides in the neuron and define parameters that describe their subcellular distribution. We measure these parameters at high and low neural activity in 187 mutants defective in proteins implicated in membrane traffic, neuroendocrine secretion, and neuronal or synaptic activity. Using unsupervised hierarchical clustering methods, we analyze these data and identify 62 groups of genes with similar mutant phenotypes. We explore the function of a subset of these groups. We recapitulate many previous findings, validating our paradigm. We uncover a large battery of proteins involved in recycling DCV membrane proteins, something hitherto poorly explored. We show that the unfolded protein response promotes DCV production, which may contribute to intertissue communication of stress. We also find evidence that different mechanisms of priming and exocytosis may operate at high and low neural activity. Our work provides a defined framework to study DCV biology at different neural activity levels.


Assuntos
Caenorhabditis elegans , Mutação , Neuropeptídeos , Vesículas Secretórias , Células Receptoras Sensoriais/metabolismo , Vesículas Sinápticas , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Vesículas Secretórias/genética , Vesículas Secretórias/metabolismo , Vesículas Sinápticas/genética , Vesículas Sinápticas/metabolismo
13.
Int J Mol Sci ; 23(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35008583

RESUMO

The absolute concentration and the compartmentalization of analytes in cells and organelles are crucial parameters in the development of drugs and drug delivery systems, as well as in the fundamental understanding of many cellular processes. Nanoscale secondary ion mass spectrometry (NanoSIMS) imaging is a powerful technique which allows subcellular localization of chemical species with high spatial and mass resolution, and high sensitivity. In this study, we combined NanoSIMS imaging with spatial oversampling with transmission electron microscopy (TEM) imaging to discern the compartments (dense core and halo) of large dense core vesicles in a model cell line used to study exocytosis, and to localize 13C dopamine enrichment following 4-6 h of 150 µM 13C L-3,4-dihydroxyphenylalanine (L-DOPA) incubation. In addition, the absolute concentrations of 13C dopamine in distinct vesicle domains as well as in entire single vesicles were quantified and validated by comparison to electrochemical data. We found concentrations of 87.5 mM, 16.0 mM and 39.5 mM for the dense core, halo and the whole vesicle, respectively. This approach adds to the potential of using combined TEM and NanoSIMS imaging to perform absolute quantification and directly measure the individual contents of nanometer-scale organelles.


Assuntos
Dopamina/metabolismo , Animais , Linhagem Celular Tumoral , Vesículas de Núcleo Denso/metabolismo , Exocitose/fisiologia , Microscopia Eletrônica de Transmissão/métodos , Organelas/metabolismo , Células PC12 , Ratos , Espectrometria de Massa de Íon Secundário/métodos
14.
J Neurosci ; 39(1): 18-27, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30389842

RESUMO

The calcium-dependent activator proteins for secretion (CAPS) are priming factors for synaptic and large dense-core vesicles (LDCVs), promoting their entry into and stabilizing the release-ready state. A modulatory role of CAPS in catecholamine loading of vesicles has been suggested. Although an influence of CAPS on monoamine transporter function and on vesicle acidification has been reported, a role of CAPS in vesicle loading is disputed. Using expression of naturally occurring splice variants of CAPS2 into chromaffin cells from CAPS1/CAPS2 double-deficient mice of both sexes, we show that an alternative exon of 40 aa is responsible for enhanced catecholamine loading of LDCVs in mouse chromaffin cells. The presence of this exon leads to increased activity of both vesicular monoamine transporters. Deletion of CAPS does not alter acidification of vesicles. Our results establish a splice-variant-dependent modulatory effect of CAPS on catecholamine content in LDCVs.SIGNIFICANCE STATEMENT The calcium activator protein for secretion (CAPS) promotes and stabilizes the entry of catecholamine-containing vesicles of the adrenal gland into a release-ready state. Expression of an alternatively spliced exon in CAPS leads to enhanced catecholamine content in chromaffin granules. This exon codes for 40 aa with a high proline content, consistent with an unstructured loop present in the portion of the molecule generally thought to be involved in vesicle priming. CAPS variants containing this exon promote serotonin uptake into Chinese hamster ovary cells expressing either vesicular monoamine transporter. Epigenetic tuning of CAPS variants may allow modulation of endocrine adrenaline and noradrenaline release. This mechanism may extend to monoamine release in central neurons or in the enteric nervous system.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/fisiologia , Catecolaminas/metabolismo , Células Cromafins/metabolismo , Vesículas Citoplasmáticas/metabolismo , Éxons/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Animais , Células CHO , Cricetinae , Cricetulus , Feminino , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Camundongos Knockout , Isoformas de Proteínas/genética , Serotonina/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
15.
J Physiol ; 596(16): 3759-3773, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29873393

RESUMO

KEY POINTS: Despite their immense physiological and pathophysiological importance, we know very little about the biology of dense core vesicle (DCV) trafficking in the intact mammalian brain. DCVs are transported at similar average speeds in the anaesthetized and awake mouse brain compared to neurons in culture, yet maximal speed and pausing fraction of transport were higher. Microtubule plus (+)-end extension imaging visualized microtubular growth at 0.12 µm/s and revealed that DCVs were transported faster in the anterograde direction. DCV transport slowed down upon presynaptic bouton approach, possibly promoting synaptic localization and cargo release. Our work provides a basis to extrapolate DCV transport properties determined in cultured neurons to the intact mouse brain and reveals novel features such as slowing upon bouton approach and brain state-dependent trafficking directionality. ABSTRACT: Neuronal dense core vesicles (DCVs) transport many cargo molecules like neuropeptides and neurotrophins to their release sites in dendrites or axons. The transport properties of DCVs in axons of the intact mammalian brain are unknown. We used viral expression of a DCV cargo reporter (NPY-Venus/Cherry) in the thalamus and two-photon in vivo imaging to visualize axonal DCV trafficking in thalamocortical projections of anaesthetized and awake mice. We found an average speed of 1 µm/s, maximal speeds of up to 5 µm/s and a pausing fraction of ∼11%. Directionality of transport differed between anaesthetized and awake mice. In vivo microtubule +-end extension imaging using MACF18-GFP revealed microtubular growth at 0.12 µm/s and provided positive identification of antero- and retrograde axonal transport. Consistent with previous reports, anterograde transport was faster (∼2.1 µm/s) than retrograde transport (∼1.4 µm/s). In summary, DCVs are transported with faster maximal speeds and lower pausing fraction in vivo compared to previous results obtained in vitro. Finally, we found that DCVs slowed down upon presynaptic bouton approach. We propose that this mechanism promotes synaptic localization and cargo release.


Assuntos
Anestesia , Transporte Axonal , Axônios/fisiologia , Vesículas Secretórias/fisiologia , Sinapses/fisiologia , Transmissão Sináptica , Vigília , Animais , Axônios/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microtúbulos/fisiologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Neuropeptídeos/metabolismo , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/fisiologia , Vesículas Secretórias/efeitos dos fármacos , Córtex Somatossensorial/citologia , Córtex Somatossensorial/efeitos dos fármacos , Córtex Somatossensorial/fisiologia , Sinapses/efeitos dos fármacos , Tálamo/citologia , Tálamo/efeitos dos fármacos , Tálamo/fisiologia
16.
Cell Tissue Res ; 368(2): 249-258, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28144784

RESUMO

Bcl2-associated athanogene 3 (BAG3) protein belongs to the family of co-chaperones interacting with several heat shock proteins. It plays a key role in protein quality control and mediates the clearance of misfolded proteins. Little is known about the expression and cellular localization of BAG3 during nervous system development and differentiation. Therefore, we analyze the subcellular distribution and expression of BAG3 in nerve-growth-factor-induced neurite outgrowth in PC12 cells and in developing and adult cortex of mouse brain. In differentiated PC12 cells, BAG3 was localized mainly in the neuritic domain rather than the cell body, whereas in control cells, it appeared to be confined to the cytoplasm near the nuclear membrane. Interestingly, the change of BAG3 localization during neuronal differentiation was associated only with a slight increase in total BAG3 expression. These data were coroborated by transmission electron microscopy showing that BAG3 was confined mainly within large dense-core vesicles of the axon in differentiated PC12 cells. In mouse developing cortex, BAG3 appeared to be intensely expressed in cellular processes of migrating cells, whereas in adult brain, a diffuse expression of low to medium intensity was detected in neuronal cell bodies. These findings suggest that BAG3 expression is required for neuronal differentiation and migration and that its role is linked to a change in its distribution pattern rather than to an increase in its protein expression levels.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Diferenciação Celular , Movimento Celular , Neurônios/citologia , Neurônios/metabolismo , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Células PC12 , Ratos , Vesículas Secretórias/metabolismo , Vesículas Secretórias/ultraestrutura
17.
Anal Biochem ; 536: 1-7, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28760673

RESUMO

The study of chromaffin secretory vesicles (SVs) has contributed immensely to our understanding of exocytosis. These organelles, also called chromaffin granules, are a specific type of large dense secretory vesicle found in many endocrine cells and neurons. Traditionally, they have been isolated from bovine adrenal glands due to the large number of SVs that can be obtained from this tissue. However, technical advances now make it possible to obtain very pure preparations of SVs from mice, which is particular interesting for functional studies given the availability of different genetically modified strains of mice. Despite the small size of the mouse adrenal medulla (400-500 µm and less than 2 mg in weight), we have successfully carried out functional studies on SVs isolated from WT and knockout mice. As such, we present here our method to purify crude vesicles and to fractionate mouse chromaffin SVs, along with examples of their functional characterization.


Assuntos
Grânulos Cromafim/metabolismo , Vesículas Secretórias/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vesículas Secretórias/química
18.
Small ; 12(40): 5524-5529, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27551968

RESUMO

Silicon nanowire field-effect transistors modified with specific aptamers can directly detect the minute dopamine and neuropeptide Y released from cells. The binding of these molecules to the aptamers results in a conductance change of the transistor biosensor and illustrates the differential releasing mechanisms of these molecules stored in various vesicle pools.


Assuntos
Aptâmeros de Peptídeos/química , Dopamina/análise , Histamina/farmacologia , Nanofios/química , Neuropeptídeo Y/análise , Transistores Eletrônicos , Animais , Células PC12 , Ratos , Silício/química
19.
J Biol Chem ; 289(48): 33617-28, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25326390

RESUMO

Munc18-1 plays essential dual roles in exocytosis: (i) stabilizing and trafficking the central SNARE protein, syntaxin-1 (i.e. chaperoning function), by its domain-1; and (ii) priming/stimulating exocytosis by its domain-3a. Here, we examine whether or not domain-3a also plays a significant role in the chaperoning of syntaxin-1 and, if so, how these dual functions of domain-3a are regulated. We demonstrate that introduction of quintuple mutations (K332E/K333E/P335A/Q336A/Y337L) in domain-3a of Munc18-1 abolishes its ability to bind syntaxin-1 and fails to rescue the level and trafficking of syntaxin-1 as well as to restore exocytosis in Munc18-1/2 double knockdown cells. By contrast, a quadruple mutant (K332E/K333E/Q336A/Y337L) sparing the Pro-335 residue retains all of these capabilities. A single point mutant of P335A reduces the ability to bind syntaxin-1 and rescue syntaxin-1 levels. Nonetheless, it surprisingly outperforms the wild type in the rescue of exocytosis. However, when additional mutations in the neighboring residues are combined with P335A mutation (K332E/K333E/P335A, P335A/Q336A/Y337L), the ability of the Munc18-1 variants to chaperone syntaxin-1 and to rescue exocytosis is strongly impaired. Our results indicate that residues from Lys-332 to Tyr-337 of domain-3a are intimately tied to the chaperoning function of Munc18-1. We also propose that Pro-335 plays a pivotal role in regulating the balance between the dual functions of domain-3a. The hinged conformation of the α-helix containing Pro-335 promotes the syntaxin-1 chaperoning function, whereas the P335A mutation promotes its priming function by facilitating the α-helix to adopt an extended conformation.


Assuntos
Exocitose/fisiologia , Chaperonas Moleculares/metabolismo , Proteínas Munc18/metabolismo , Substituição de Aminoácidos , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Chaperonas Moleculares/genética , Proteínas Munc18/genética , Mutação de Sentido Incorreto , Prolina/genética , Prolina/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Sintaxina 1/genética , Sintaxina 1/metabolismo
20.
FASEB J ; 27(8): 3167-80, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23640057

RESUMO

Proteins responsible for basal and stimulated endocytosis in nerves containing small clear synaptic vesicles (SCSVs) or large dense-core vesicles (LDCVs) are revealed herein, using probes that exploit surface-exposed vesicle proteins as acceptors for internalization. Basal uptake of botulinum neurotoxins (BoNTs) by both SCSV-releasing cerebellar granule neurons (CGNs) and LDCV-enriched trigeminal ganglionic neurons (TGNs) was found to require protein acceptors and acidic compartments. In addition, dynamin, clathrin, adaptor protein complex-2 (AP2), and amphiphysin contribute to the depolarization-evoked entry. For fast recycling of SCSVs, knockdown and knockout strategies demonstrated that CGNs use predominantly dynamin 1, whereas isoform 2 and, to a smaller extent, isoform 3 support a less rapid mode of stimulated endocytosis. Accordingly, proximity ligation assay confirmed that dynamin 1 and 2 colocalize with amphiphysin 1 in CGNs, and the latter copurified with both dynamins from cell extracts. In contrast, LDCV-releasing TGNs preferentially employ dynamins 2 and 3 and amphiphysin 1 for evoked endocytosis and lack the fast phase. Hence, stimulation recruits dynamin, clathrin, AP2, and amphiphysin to augment BoNT internalization, and neurons match endocytosis mediators to the different demands for locally recycling SCSVs or replenishing distally synthesized LDCVs.


Assuntos
Toxinas Botulínicas/metabolismo , Endocitose , Neurônios/metabolismo , Neurotoxinas/metabolismo , Complexo 2 de Proteínas Adaptadoras/genética , Complexo 2 de Proteínas Adaptadoras/metabolismo , Subunidades alfa do Complexo de Proteínas Adaptadoras/genética , Subunidades alfa do Complexo de Proteínas Adaptadoras/metabolismo , Animais , Toxinas Botulínicas/genética , Toxinas Botulínicas Tipo A , Células Cultivadas , Clatrina/genética , Clatrina/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , Ácido Glutâmico/metabolismo , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurotoxinas/genética , Peptídeos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , Ratos , Ratos Sprague-Dawley , Vesículas Secretórias/metabolismo , Vesículas Sinápticas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA