Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(51): e2307950120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38085777

RESUMO

The hydroxylation of C-H bonds can be carried out by the high-valent CoIII,IV2(µ-O)2 complex 2a supported by the tetradentate tris(2-pyridylmethyl)amine ligand via a CoIII2(µ-O)(µ-OH) intermediate (3a). Complex 3a can be independently generated either by H-atom transfer (HAT) in the reaction of 2a with phenols as the H-atom donor or protonation of its conjugate base, the CoIII2(µ-O)2 complex 1a. Resonance Raman spectra of these three complexes reveal oxygen-isotope-sensitive vibrations at 560 to 590 cm-1 associated with the symmetric Co-O-Co stretching mode of the Co2O2 diamond core. Together with a Co•••Co distance of 2.78(2) Å previously identified for 1a and 2a by Extended X-ray Absorption Fine Structure (EXAFS) analysis, these results provide solid evidence for their "diamond core" structural assignments. The independent generation of 3a allows us to investigate HAT reactions of 2a with phenols in detail, measure the redox potential and pKa of the system, and calculate the O-H bond strength (DO-H) of 3a to shed light on the C-H bond activation reactivity of 2a. Complex 3a is found to be able to transfer its hydroxyl ligand onto the trityl radical to form the hydroxylated product, representing a direct experimental observation of such a reaction by a dinuclear cobalt complex. Surprisingly, reactivity comparisons reveal 2a to be 106-fold more reactive in oxidizing hydrocarbon C-H bonds than corresponding FeIII,IV2(µ-O)2 and MnIII,IV2(µ-O)2 analogs, an unexpected outcome that raises the prospects for using CoIII,IV2(µ-O)2 species to oxidize alkane C-H bonds.

2.
Chem Rec ; 24(4): e202400006, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38530037

RESUMO

Nanodiamonds (NDs) have garnered attention in the field of nanomedicine due to their unique properties. This review offers a comprehensive overview of NDs synthesis methods, properties, and their uses in biomedical applications. Various synthesis techniques, such as detonation, high-pressure, high-temperature, and chemical vapor deposition, offer distinct advantages in tailoring NDs' size, shape, and surface properties. Surface modification methods further enhance NDs' biocompatibility and enable the attachment of bioactive molecules, expanding their applicability in biological systems. NDs serve as promising nanocarriers for drug delivery, showcasing biocompatibility and the ability to encapsulate therapeutic agents for targeted delivery. Additionally, NDs demonstrate potential in cancer treatment through hyperthermic therapy and vaccine enhancement for improved immune responses. Functionalization of NDs facilitates their utilization in biosensors for sensitive biomolecule detection, aiding in precise diagnostics and rapid detection of infectious diseases. This review underscores the multifaceted role of NDs in advancing biomedical applications. By synthesizing NDs through various methods and modifying their surfaces, researchers can tailor their properties for specific biomedical needs. The ability of NDs to serve as efficient drug delivery vehicles holds promise for targeted therapy, while their applications in hyperthermic therapy and vaccine enhancement offer innovative approaches to cancer treatment and immunization. Furthermore, the integration of NDs into biosensors enhances diagnostic capabilities, enabling rapid and sensitive detection of biomolecules and infectious diseases. Overall, the diverse functionalities of NDs underscore their potential as valuable tools in nanomedicine, paving the way for advancements in healthcare and biotechnology.


Assuntos
Doenças Transmissíveis , Nanodiamantes , Vacinas , Humanos , Nanodiamantes/química , Sistemas de Liberação de Medicamentos , Propriedades de Superfície
3.
Angew Chem Int Ed Engl ; 62(10): e202209437, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36541062

RESUMO

Diiron cofactors in enzymes perform diverse challenging transformations. The structures of high valent intermediates (Q in methane monooxygenase and X in ribonucleotide reductase) are debated since Fe-Fe distances of 2.5-3.4 Šwere attributed to "open" or "closed" cores with bridging or terminal oxido groups. We report the crystallographic and spectroscopic characterization of a FeIII 2 (µ-O)2 complex (2) with tetrahedral (4C) centres and short Fe-Fe distance (2.52 Å), persisting in organic solutions. 2 shows a large Fe K-pre-edge intensity, which is caused by the pronounced asymmetry at the TD FeIII centres due to the short Fe-µ-O bonds. A ≈2.5 ŠFe-Fe distance is unlikely for six-coordinate sites in Q or X, but for a Fe2 (µ-O)2 core containing four-coordinate (or by possible extension five-coordinate) iron centres there may be enough flexibility to accommodate a particularly short Fe-Fe separation with intense pre-edge transition. This finding may broaden the scope of models considered for the structure of high-valent diiron intermediates formed upon O2 activation in biology.


Assuntos
Ferro , Oxigênio , Ferro/química , Análise Espectral , Cristalografia por Raios X , Oxigênio/química , Oxirredução
4.
Angew Chem Int Ed Engl ; 59(50): 22484-22488, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-32902902

RESUMO

Diiron(IV)-oxo species are proposed to effect the cleavage of strong C-H bonds by nonheme diiron enzymes such as soluble methane monooxygenase (sMMO) and fatty acid desaturases. However, synthetic mimics of such diiron(IV) oxidants are rare. Herein we report the reaction of (TPA*)FeII (1) (TPA*=tris(3,5-dimethyl-4-methoxypyridyl-2-methyl)amine) in CH3 CN with 4 equiv CAN and 200 equiv HClO4 at 20 °C to form a complex with an [FeIV2 (µ-O)2 ]4+ core. CAN and HClO4 play essential roles in this unprecedented transformation, in which the comproportionation of FeIII -O-CeIV and FeIV =O/Ce4+ species is proposed to be involved in the assembly of the [FeIV2 (µ-O)2 ]4+ core.


Assuntos
Césio/química , Compostos de Ferro/química , Oxigênio/química , Percloratos/química , Temperatura , Estrutura Molecular
5.
Chemistry ; 25(51): 11983-11990, 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31237966

RESUMO

Hydroxide-bridged high-valent oxidants have been implicated as the active oxidants in methane monooxygenases and other oxidases that employ bimetallic clusters in their active site. To understand the properties of such species, bis-µ-hydroxo-NiII 2 complex (1) supported by a new dicarboxamidate ligand (N,N'-bis(2,6-dimethyl-phenyl)-2,2-dimethylmalonamide) was prepared. Complex 1 contained a diamond core made up of two NiII ions and two bridging hydroxide ligands. Titration of the 1 e- oxidant (NH4 )2 [CeIV (NO3 )6 ] with 1 at -45 °C showed the formation of the high-valent species 2 and 3, containing NiII NiIII and NiIII 2 diamond cores, respectively, maintaining the bis-µ-hydroxide core. Both complexes were characterised using electron paramagnetic resonance, X-ray absorption, and electronic absorption spectroscopies. Density functional theory computations supported the spectroscopic assignments. Oxidation reactivity studies showed that bis-µ-hydroxide-NiIII 2 3 was capable of oxidizing substrates at -45 °C at rates greater than that of the most reactive bis-µ-oxo-NiIII complexes reported to date.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA