Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(43): e2317921121, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39401360

RESUMO

Free radical generation plays a key role in many biological processes including cell communication, maturation, and aging. In addition, free radical generation is usually elevated in cells under stress as is the case for many different pathological conditions. In liver tissue, cells produce radicals when exposed to toxic substances but also, for instance, in cancer, alcoholic liver disease and liver cirrhosis. However, free radicals are small, short-lived, and occur in low abundance making them challenging to detect and especially to time resolve, leading to a lack of nanoscale information. Recently, our group has demonstrated that diamond-based quantum sensing offers a solution to measure free radical generation in single living cells. The method is based on defects in diamonds, the so-called nitrogen-vacancy centers, which change their optical properties based on their magnetic surrounding. As a result, this technique reveals magnetic resonance signals by optical means offering high sensitivity. However, compared to cells, there are several challenges that we resolved here: Tissues are more fragile, have a higher background fluorescence, have less particle uptake, and do not adhere to microscopy slides. Here, we overcame those challenges and adapted the method to perform measurements in living tissues. More specifically, we used precision-cut liver slices and were able to detect free radical generation during a stress response to ethanol, as well as the reduction in the radical load after adding an antioxidant.


Assuntos
Diamante , Fígado , Animais , Camundongos , Fígado/metabolismo , Radicais Livres/metabolismo , Pontos Quânticos/química
2.
Nano Lett ; 24(1): 312-318, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38134308

RESUMO

Atomically disordered diamonds with medium-range order realized in recent experiments extend our knowledge of atomic disorder in materials. However, the current understanding of amorphous carbons cannot answer why paracrystalline diamond (p-D) can be formed inherently different from other tetrahedral amorphous carbons (ta-Cs), and the emergence of p-D seems to be easily hindered by inappropriate temperatures. Herein, we performed atomistic-based simulations to shed light on temperature-dependent paracrystalline nucleation in atomically disordered diamonds. Using metadynamics and two carefully designed collective variables, reversible phase transitions among different ta-Cs can be presented under different temperatures, evidenced by corresponding local minima on the free energy surface and reaction path along the free energy gradient. We found that p-D is preferred in a narrow range of temperatures, which is comparable to real experimental temperatures under the Arrhenius framework. The insights and related methods should open up a perspective for investigating other amorphous carbons.

3.
Nano Lett ; 24(31): 9650-9657, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39012318

RESUMO

Chronic obstructive pulmonary disease (COPD), the third leading cause of death worldwide, is caused by chronic exposure to toxic particles and gases, such as cigarette smoke. Free radicals, which are produced during a stress response to toxic particles, play a crucial role in disease progression. Measuring these radicals is difficult since the complex mixture of chemicals within cigarette smoke interferes with radical detection. We used a new quantum sensing technique called relaxometry to measure free radicals with nanoscale resolution on cells from COPD patients and healthy controls exposed to cigarette smoke extract (CSE) or control medium. Epithelial cells from COPD patients display a higher free radical load than those from healthy donors and are more vulnerable to CSE. We show that epithelial cells of COPD patients are more susceptible to the damaging effects of cigarette smoke, leading to increased release of free radicals.


Assuntos
Brônquios , Células Epiteliais , Doença Pulmonar Obstrutiva Crônica , Fumaça , Humanos , Radicais Livres , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Células Epiteliais/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Fumaça/efeitos adversos , Brônquios/citologia , Brônquios/efeitos dos fármacos , Nicotiana/química , Células Cultivadas , Fumar/efeitos adversos , Produtos do Tabaco/análise , Produtos do Tabaco/efeitos adversos
4.
Small ; 20(44): e2403490, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39031997

RESUMO

The miniaturization, integration, and increased power of electronic devices have exacerbated serious heat dissipation issues. Thermally conductive adhesives, which effectively transfer heat and firmly bond components, are critical for addressing these challenges. This paper innovatively proposed a composite comprising inorganic phosphate/alumina as a matrix and diamond as filler. The composite achieved an isotropic thermal conductivity (TC) of up to 18.96 W m-1 K-1, significantly surpassing existing reports while maintaining electrical insulation. First-principles calculations and experimental tests confirmed that the high TC of phosphate and excellent interface contact ensured efficient heat transfer. To optimize bonding performance, a modified-diamond/Al(H2PO4)3@epoxy hybrid composite is subsequently developed using an organic modification method. The unique hybrid structure, combining inorganic thermal pathways and an organic adhesive network, enabled the hybrid composite to simultaneously possess a high TC (3.23 W m-1 K-1) and strong adhesion (14.35 MPa). Compared to previous reports, the comprehensive performance of this hybrid thermally conductive adhesive is exceptionally remarkable. The superior heat dissipation capability of the hybrid thermal adhesive is demonstrated in chip cooling scenarios. This organic/inorganic hybrid approach offered a new direction for obtaining advanced thermal interface materials, demonstrating significant application potential in chip soldering, packaging, and heat dissipation.

5.
Small ; 20(5): e2305512, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37759410

RESUMO

Transparent nano-polycrystalline diamond (t-NPD) possesses superior mechanical properties compared to single and traditional polycrystalline diamonds. However, the harsh synthetic conditions significantly limit its synthesis and applications. In this study, a synthesis routine is presented for t-NPD under low pressure and low temperature conditions, 10 GPa, 1600 °C and 15 GPa, 1350 °C similar with the synthesis condition of organic precursor. Self-catalyzed hydrogenated carbon nano-onions (HCNOs) from the combustion of naphthalene enable synthesis under nearly industrial conditions, which are like organic precursor and much lower than that of graphite and other carbon allotropes. This is made possible thanks to the significant impact of hydrogen on the thermodynamics, as it chemically facilitates phase transition. Ubiquitous nanotwinned structures are observed throughout t-NPD due to the high concentration of puckered layers and stacking faults of HCNOs, which impart a Vickers hardness about 140 GPa. This high hardness and optical transparency can be attributed to the nanocrystalline grain size, thin intergranular films, absence of secondary phase and pore-free features. The facile and industrial-scale synthesis of the HCNOs precursor, and mild synthesis conditions make t-NPD suitable for a wide range of potential applications.

6.
Nano Lett ; 23(18): 8406-8410, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37676737

RESUMO

Diamond-based T1 relaxometry is a new technique that allows nanoscale magnetic resonance measurements. Here we present its first application in patient samples. More specifically, we demonstrate that relaxometry can determine the free radical load in samples from arthritis patients. We found that we can clearly differentiate between osteoarthritis and rheumatoid arthritis patients in both the synovial fluid itself and cells derived from it. Furthermore, we tested how synovial fluid and its cells respond to piroxicam, a common nonsteroidal anti-inflammatory drug (NSAID). It is known that this drug leads to a reduction in reactive oxygen species production in fibroblast-like synoviocytes (FLS). Here, we investigated the formation of free radicals specifically. While FLS from osteoarthritis patients showed a drastic decrease in the free radical load, cells from rheumatoid arthritis retained a similar radical load after treatment. This offers a possible explanation for why piroxicam is more beneficial for patients with osteoarthritis than those with rheumatoid arthritis.


Assuntos
Artrite Reumatoide , Osteoartrite , Humanos , Líquido Sinovial , Membrana Sinovial/patologia , Piroxicam/uso terapêutico , Células Cultivadas , Artrite Reumatoide/diagnóstico por imagem , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , Osteoartrite/diagnóstico por imagem , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia , Fibroblastos/patologia
7.
Nano Lett ; 23(12): 5746-5754, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37289011

RESUMO

While nitrogen-vacancy (NV) centers in diamonds have emerged as promising solid-state quantum emitters for sensing applications, the tantalizing possibility of coupling them with photonic or broadband plasmonic nanostructures to create ultrasensitive biolabels has not been fully realized. Indeed, it remains technologically challenging to create free-standing hybrid diamond-based imaging nanoprobes with enhanced brightness and high temporal resolution. Herein, we leverage the bottom-up DNA self-assembly to develop hybrid free-standing plasmonic nanodiamonds, which feature a closed plasmonic nanocavity completely encapsulating a single nanodiamond. Correlated single nanoparticle spectroscopical characterizations suggest that the plasmonic nanodiamond displays dramatically and simultaneously enhanced brightness and emission rate. We believe that they hold huge potential to serve as a stable solid-state single-photon source and could serve as a versatile platform to study nontrivial quantum effects in biological systems with enhanced spatial and temporal resolution.

8.
Small ; 19(48): e2303976, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37530208

RESUMO

Micro-hotplate structures are increasingly being investigated for use in a host of applications ranging from broadband infra-red sources within absorption-based gas sensors to in situ heater stages for ultra-high-resolution imaging. With devices usually fabricated from a conductive electrode placed on top of a freestanding radiator element, coefficient of thermal expansion (CTE) mismatches between layers and electro-migration within the heating element typically lead to failure upon exceeding temperatures of 1600 K. In an attempt to mitigate such issues, a series of hotplates of varying geometry have been fabricated from a single layer of mechanically robust, high thermal conductivity, and low CTE boron-doped polycrystalline diamond. Upon testing under high vacuum conditions and characterization of the emission spectra, the resulting devices are shown to exhibit a grey-body like emission response and reach temperatures vastly in excess of conventional geometries of up to 2731 K at applied powers of ⩽100 mW. Characterization of the thermalization time meanwhile demonstrates rapid millisecond response times, while Raman spectroscopy reveals the performance of the devices is dictated by cumulative graphitization at elevated temperatures. As such, both diamond and sp2 carbon are shown to be promising materials for the fabrication of next-generation micro-hotplates.

9.
Small ; 19(43): e2302914, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37357169

RESUMO

Changes in atomic bonding configuration in carbon from sp3 to sp2 are known to exist in certain structural defects in diamond, such as twin boundaries, grain boundaries, and dislocations, which have a significant impact on many properties of diamond. In this work, the atomic structure of fivefold twinning in detonation synthesized ultra-dispersed diamonds is investigated using a combination of techniques, including spherical aberration-corrected high-resolution electron microscopy (HREM), HREM image simulations, and molecular mechanics (MM) calculations. The experimental HREM images reveal clearly that the fivefold twinning in diamond has two distinct structures. In addition to the concentric fivefold twins, where the core structure is the intersection of five {111} twinning boundaries, a new extended core structure with co-hybridization of bonding is identified and analyzed in fivefold twinning. The atomic structure forming these fivefold twinning boundaries and their respective core structures is proposed to involve both the tetrahedral sp3 and planar graphitic sp2 bonding configurations, in which a co-hybridized planar hexagon of carbon serves as a fundamental structural unit. The presence of this sp2 -bonded planar unit of hexagonal carbon rings in general grain boundaries is also discussed.

10.
Small ; 19(26): e2208265, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36949366

RESUMO

Polycrystalline boron-doped diamond is a promising material for high-power aqueous electrochemical applications in bioanalytics, catalysis, and energy storage. The chemical vapor deposition (CVD) process of diamond formation and doping is totally diversified by using high kinetic energies of deuterium substituting habitually applied hydrogen. The high concentration of deuterium in plasma induces atomic arrangements and steric hindrance during synthesis reactions, which in consequence leads to a preferential (111) texture and more effective boron incorporation into the lattice, reaching a one order of magnitude higher density of charge carriers. This provides the surface reconstruction impacting surficial populations of CC dimers, CH, CO groups, and COOH termination along with enhanced kinetics of their abstraction, as revealed by high-resolution core-level spectroscopies. A series of local densities of states were computed, showing a rich set of highly occupied and localized surface states for samples deposited in deuterium, negating the connotations of band bending. The introduction of enhanced incorporation of boron into (111) facet of diamond leads to the manifestation of surface electronic states below the Fermi level and above the bulk valence band edge. This unique electronic band structure affects the charge transfer kinetics, electron affinity, and diffusion field geometry critical for efficient electrolysis, electrocatalysis, and photoelectrochemistry.

11.
MAGMA ; 36(6): 921-932, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37578612

RESUMO

INTRODUCTION: Diffusion weighting in optically detected magnetic resonance experiments involving diamond nitrogen-vacancy (NV) centers can provide valuable microstructural information. Bi-planar gradient coils employed for diffusion weighting afford excellent spatial access, essential for integrating the NV-NMR components. Nevertheless, owing to the polar tilt of roughly [Formula: see text] of the diamond NV center, the primary magnetic field direction must be taken into account accordingly. METHODS: To determine the most effective bi-planar gradient coil configurations, we conducted an investigation into the impact of various factors, including the square side length, surface separation, and surface orientation. This was accomplished by generating over 500 bi-planar surface configurations using automated methods. RESULTS: We successfully generated and evaluated coil layouts in terms of sensitivity and field accuracy. Interestingly, inclined bi-planar orientations close to the NV-NMR setup's requirement, showed higher sensitivity for the transverse gradient channels than horizontal or vertical orientations. We fabricated a suitable solution as a three-channel bi-planar double-layered PCB system and experimentally validated the sensitivities at [Formula: see text] and [Formula: see text] for the transverse [Formula: see text] and [Formula: see text] gradients, and [Formula: see text] for the [Formula: see text] gradient. DISCUSSION: We found that the chosen relative bi-planar tilt of [Formula: see text] represents a reasonable compromise in terms of overall performance and allows for easier coil implementation with a straight, horizontal alignment within the overall experimental setup.


Assuntos
Diamante , Nitrogênio , Nitrogênio/química , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Difusão
12.
Proc Natl Acad Sci U S A ; 117(41): 25310-25318, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-32989146

RESUMO

The origin of diamonds in ureilite meteorites is a timely topic in planetary geology as recent studies have proposed their formation at static pressures >20 GPa in a large planetary body, like diamonds formed deep within Earth's mantle. We investigated fragments of three diamond-bearing ureilites (two from the Almahata Sitta polymict ureilite and one from the NWA 7983 main group ureilite). In NWA 7983 we found an intimate association of large monocrystalline diamonds (up to at least 100 µm), nanodiamonds, nanographite, and nanometric grains of metallic iron, cohenite, troilite, and likely schreibersite. The diamonds show a striking texture pseudomorphing inferred original graphite laths. The silicates in NWA 7983 record a high degree of shock metamorphism. The coexistence of large monocrystalline diamonds and nanodiamonds in a highly shocked ureilite can be explained by catalyzed transformation from graphite during an impact shock event characterized by peak pressures possibly as low as 15 GPa for relatively long duration (on the order of 4 to 5 s). The formation of "large" (as opposed to nano) diamond crystals could have been enhanced by the catalytic effect of metallic Fe-Ni-C liquid coexisting with graphite during this shock event. We found no evidence that formation of micrometer(s)-sized diamonds or associated Fe-S-P phases in ureilites require high static pressures and long growth times, which makes it unlikely that any of the diamonds in ureilites formed in bodies as large as Mars or Mercury.

13.
Sensors (Basel) ; 23(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36679526

RESUMO

In laser beam fusion cutting of metals, the interaction of the gas jet with the melt determines the dynamics of the melt extrusion and the quality of the resulting cutting kerf. The gas-dynamic phenomena occurring during laser beam cutting are not fully known, especially regarding temporal fluctuations in the gas jet. The observation of gas and melt dynamics is difficult because the gas flow is not directly visible in video recordings and access to the process zone for observation is limited. In this study, the problem of imaging the gas jet from the cutting nozzle is addressed in a novel way by utilizing the striation pattern formed at the cutting kerf as a background pattern for background-oriented Schlieren imaging (BOS). In this first feasibility study, jets of different gas nozzles were observed in front of a solidified cutting kerf, which served as a background pattern for imaging. The results show that imaging of the characteristic shock diamonds of cutting nozzles is possible. Furthermore, the resulting shock fronts from an interaction of the gas jet with a model of a cutting front can be observed. The possibility of high-speed BOS with the proposed method is shown, which could be suitable to extend the knowledge of gas-dynamic phenomena in laser beam fusion cutting.


Assuntos
Diagnóstico por Imagem , Lasers
14.
J Algebr Comb (Dordr) ; 56(4): 1309-1337, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36258801

RESUMO

Recently Corteel and Welsh outlined a technique for finding new sum-product identities by using functional relations between generating functions for cylindric partitions and a theorem of Borodin. Here, we extend this framework to include very general product-sides coming from work of Han and Xiong. In doing so, we are led to consider structures such as weighted cylindric partitions, symmetric cylindric partitions and weighted skew double-shifted plane partitions. We prove some new identities and obtain new proofs of known identities, including the Göllnitz-Gordon and Little Göllnitz identities as well as some beautiful Schmidt-type identities of Andrews and Paule.

15.
Nano Lett ; 19(3): 1570-1576, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30735045

RESUMO

For the first time, lonsdaleite-rich impact diamonds from one of the largest Popigai impact crater (Northern Siberia) with a high concentration of structural defects are investigated under hydrostatic compression up to 25 GPa. It is found that, depending on the nature of a sample, the bulk modulus for lonsdaleite experimentally obtained by X-ray diffraction in diamond-anvil cells is systematically lower and equal to 93.3-100.5% of the average values of the bulk moduli of a diamond matrix. Density functional theory calculations reveal possible coexistence of a number of diamond/lonsdaleite and twin diamond biphases. Among the different mutual configurations, separate inclusions of one lonsdaleite (001) plane per four diamond (111) demonstrate the lowest energy per carbon atom, suggesting a favorable formation of single-layer lonsdaleite (001) fragments inserted in the diamond matrix. Calculated formation energies and experimental diamond (311) and lonsdaleite (331) powder X-ray diffraction patterns indicate that all biphases could be formed under high-temperature, high-pressure conditions. Following the equation of states, the bulk modulus of the diamond (111)/lonsdaleite (001) biphase is the largest one among all bulk moduli, including pristine diamond and lonsdaleite.

16.
Rev Afr Polit Econ ; 45(158): 522-540, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31772418

RESUMO

This article explores the relationship between the 2014-2016 Ebola outbreak and the political economy of diamond mining in Kono District, Sierra Leone. The authors argue that foreign companies have recycled colonial strategies of indirect rule to facilitate the illicit flow of resources out of Sierra Leone. Drawing on field research conducted during the outbreak and in its aftermath, they show how this 'indirect rule redux' undermines democratic governance and the development of revenue-generation institutions. Finally, they consider the linkages between indirect rule and the Ebola outbreak, vis-à-vis the consequences of the region's intentionally underdeveloped health care infrastructure and the scaffolding of outbreak containment onto the paramount chieftaincy system.


Cet article explore la relation entre l'épidémie d'Ebola de 2014­2016 et la politique économique de l'extraction de diamants dans le district de Kono, au Sierra Leone. Les auteurs avancent que des entreprises étrangères ont recyclé les stratégies coloniales de la « règle indirecte ¼ afin de faciliter le flux de ressources hors du Sierra Leone. S'appuyant sur de la recherche de terrain conduite pendant l'épidémie et après, il est démontré comment ce retour de la « règle indirecte ¼ sape la gouvernance démocratique et le développement d'institutions qui génèrent du revenu. Enfin, cet article s'intéresse aux liens entre la « règle indirecte ¼ et l'épidémie d'Ebola, vis-à-vis des conséquences de l'infrastructure de soins de santé intentionnellement sous-développée dans la région et les tentatives de confinement de l'épidémie pour le système essentiel de chefferie.

17.
Nano Lett ; 17(7): 4217-4222, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28657323

RESUMO

The negatively charged nitrogen-vacancy (NV) color center in diamond is an important atom-like system for emergent quantum technologies and sensing at room temperature. The light emission rates and collection efficiency are key issues toward realizing NV-based quantum devices. In that aspect, we propose and experimentally demonstrate a selective and spatially localized method for enhancing the light-matter interaction of shallow NV centers in bulk diamonds. This was achieved by polarized doubly resonant plasmonic antennas, tuned to the NV phonon sideband transition peak in the red and the narrowband near infrared (NIR) singlet transition. We obtained a photoluminescence (PL) enhancement factor of about 10 from NV centers within the hot spot of the antenna area (excluding the extraction efficiency enhancement) and similar emission lifetime reduction. The functionality of the double resonance antenna is controlled by the impinging light polarization.

18.
Small ; 12(18): 2499-509, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27000766

RESUMO

Two profoundly different carbon allotropes - nanocrystalline diamond and graphene - are of considerable interest from the viewpoint of a wide range of biomedical applications including implant coating, drug and gene delivery, cancer therapy, and biosensing. Osteoblast adhesion and proliferation on nanocrystalline diamond and graphene are compared under various conditions such as differences in wettability, topography, and the presence or absence of protein interlayers between cells and the substrate. The materials are characterized in detail by means of scanning electron microscopy, atomic force microscopy, photoelectron spectroscopy, Raman spectroscopy, and contact angle measurements. In vitro experiments have revealed a significantly higher degree of cell proliferation on graphene than on nanocrystalline diamond and a tissue culture polystyrene control material. Proliferation is promoted, in particular, by hydrophobic graphene with a large number of nanoscale wrinkles independent of the presence of a protein interlayer, i.e., substrate fouling is not a problematic issue in this respect. Nanowrinkled hydrophobic graphene, thus, exhibits superior characteristics for those biomedical applications where high cell proliferation is required under differing conditions.


Assuntos
Proliferação de Células/efeitos dos fármacos , Diamante/farmacologia , Grafite/farmacologia , Nanopartículas , Células-Tronco/efeitos dos fármacos , Células Cultivadas , Humanos , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Espectroscopia Fotoeletrônica
19.
Chemphyschem ; 17(17): 2691-701, 2016 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-27416769

RESUMO

Dynamic nuclear polarization (DNP) is a versatile option to improve the sensitivity of NMR and MRI. This versatility has elicited interest for overcoming potential limitations of these techniques, including the achievement of solid-state polarization enhancement at ambient conditions, and the maximization of (13) C signal lifetimes for performing in vivo MRI scans. This study explores whether diamond's (13) C behavior in nano- and micro-particles could be used to achieve these ends. The characteristics of diamond's DNP enhancement were analyzed for different magnetic fields, grain sizes, and sample environments ranging from cryogenic to ambient temperatures, in both solution and solid-state experiments. It was found that (13) C NMR signals could be boosted by orders of magnitude in either low- or room-temperature solid-state DNP experiments by utilizing naturally occurring paramagnetic P1 substitutional nitrogen defects. We attribute this behavior to the unusually long electronic/nuclear spin-lattice relaxation times characteristic of diamond, coupled with a time-independent cross-effect-like polarization transfer mechanism facilitated by a matching of the nitrogen-related hyperfine coupling and the (13) C Zeeman splitting. The efficiency of this solid-state polarization process, however, is harder to exploit in dissolution DNP-enhanced MRI contexts. The prospects for utilizing polarized diamond approaching nanoscale dimensions for both solid and solution applications are briefly discussed.

20.
Nano Lett ; 15(3): 1493-7, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25714414

RESUMO

Efficient collection of the broadband fluorescence from the diamond nitrogen vacancy (NV) center is essential for a range of applications in sensing, on-demand single photon generation, and quantum information processing. Here, we introduce a circular "bullseye" diamond grating which enables a collected photon rate of (2.7 ± 0.09) × 10(6) counts per second from a single NV with a spin coherence time of 1.7 ± 0.1 ms. Back-focal-plane studies indicate efficient redistribution of the NV photoluminescence into low-NA modes by the bullseye grating.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA