Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(25)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34161256

RESUMO

Perovskite oxides (ABO3) have been widely recognized as a class of promising noble-metal-free electrocatalysts due to their unique compositional flexibility and structural stability. Surprisingly, investigation into their size-dependent electrocatalytic properties, in particular barium titanate (BaTiO3), has been comparatively few and limited in scope. Herein, we report the scrutiny of size- and dopant-dependent oxygen reduction reaction (ORR) activities of an array of judiciously designed pristine BaTiO3 and doped BaTiO3 (i.e., La- and Co-doped) nanoparticles (NPs). Specifically, a robust nanoreactor strategy, based on amphiphilic star-like diblock copolymers, is employed to synthesize a set of hydrophobic polymer-ligated uniform BaTiO3 NPs of different sizes (≤20 nm) and controlled compositions. Quite intriguingly, the ORR activities are found to progressively decrease with the increasing size of BaTiO3 NPs. Notably, La- and Co-doped BaTiO3 NPs display markedly improved ORR performance over the pristine counterpart. This can be attributed to the reduced limiting barrier imposed by the formation of -OOH species during ORR due to enhanced adsorption energy of intermediates and the possibly increased conductivity as a result of change in the electronic states as revealed by our density functional theory-based first-principles calculations. Going beyond BaTiO3 NPs, a variety of other ABO3 NPs with tunable sizes and compositions may be readily accessible by exploiting our amphiphilic star-like diblock copolymer nanoreactor strategy. They could in turn provide a unique platform for both fundamental and practical studies on a suite of physical properties (dielectric, piezoelectric, electrostrictive, catalytic, etc.) contingent upon their dimensions and compositions.

2.
Proc Natl Acad Sci U S A ; 117(50): 31639-31647, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33262279

RESUMO

Hierarchical nanomaterials have received increasing interest for many applications. Here, we report a facile programmable strategy based on an embedded segmental crystallinity design to prepare unprecedented supramolecular planar nanobrush-like structures composed of two distinct molecular packing motifs, by the self-assembly of one particular diblock copolymer poly(ethylene glycol)-block-poly(N-octylglycine) in a one-pot preparation. We demonstrate that the superstructures result from the temperature-controlled hierarchical self-assembly of preformed spherical micelles by optimizing the crystallization-solvophobicity balance. Particularly remarkable is that these micelles first assemble into linear arrays at elevated temperatures, which, upon cooling, subsequently template further lateral, crystallization-driven assembly in a living manner. Addition of the diblock copolymer chains to the growing nanostructure occurs via a loosely organized micellar intermediate state, which undergoes an unfolding transition to the final crystalline state in the nanobrush. This assembly mechanism is distinct from previous crystallization-driven approaches which occur via unimer addition, and is more akin to protein crystallization. Interestingly, nanobrush formation is conserved over a variety of preparation pathways. The precise control ability over the superstructure, combined with the excellent biocompatibility of polypeptoids, offers great potential for nanomaterials inaccessible previously for a broad range of advanced applications.

3.
Molecules ; 28(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446777

RESUMO

The effective control over the vesicle formation pathways is vital for tuning its function. Recently, a liquid-liquid phase-separated intermediate (LLPS) is observed before a vesicular structure during the solvent exchange self-assembly of block copolymers. Though the understanding of polymer structures and chemical compositions on the competition between LLPS and micellization has made some progress, little is known about the role of cosolvent on it. In this study, the influence of cosolvent on the vesicle formation pathways is investigated by using dissipative particle dynamics. The results show that the range of water fraction within which the LLPS is favored will be highly dependent on the affinity difference of cosolvent to water and to polymer repeat units. The change of the cosolvent-water interaction and the water fraction impact the distribution of cosolvent in the polymer domain, the miscibility between the components in the system as well as the chain conformations, which finally induce different self-assembly behaviors. Our findings would be helpful for understanding the LLPS and controlling the morphologies of diblock polymers in solutions for further applications.


Assuntos
Polímeros , Água , Solventes/química , Polímeros/química , Água/química
4.
Angew Chem Int Ed Engl ; 62(42): e202308372, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37409380

RESUMO

It is well-known that polymerization-induced self-assembly (PISA) is a powerful and highly versatile technique for the rational synthesis of colloidal dispersions of diblock copolymer nanoparticles, including spheres, worms or vesicles. PISA can be conducted in water, polar solvents or non-polar media. In principle, the latter formulations offer a wide range of potential commercial applications. However, there has been just one review focused on PISA syntheses in non-polar media and this prior article was published in 2016. The purpose of the current review article is to summarize the various advances that have been reported since then. In particular, PISA syntheses conducted using reversible addition-fragmentation chain-transfer (RAFT) polymerization in various n-alkanes, poly(α-olefins), mineral oil, low-viscosity silicone oils or supercritical CO2 are discussed in detail. Selected formulations exhibit thermally induced worm-to-sphere or vesicle-to-worm morphological transitions and the rheological properties of various examples of worm gels in non-polar media are summarized. Finally, visible absorption spectroscopy and small-angle X-ray scattering (SAXS) enable in situ monitoring of nanoparticle formation, while small-angle neutron scattering (SANS) can be used to examine micelle fusion/fission and chain exchange mechanisms.

5.
Proc Natl Acad Sci U S A ; 116(10): 4031-4036, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30760590

RESUMO

The expression and integration of membrane proteins into vesicle membranes is a critical step in the design of cell-mimetic biosensors, bioreactors, and artificial cells. While membrane proteins have been integrated into a variety of nonnatural membranes, the effects of the chemical and physical properties of these vesicle membranes on protein behavior remain largely unknown. Nonnatural amphiphiles, such as diblock copolymers, provide an interface that can be synthetically controlled to better investigate this relationship. Here, we focus on the initial step in a membrane protein's life cycle: expression and folding. We observe improvements in both the folding and overall production of a model mechanosensitive channel protein, the mechanosensitive channel of large conductance, during cell-free reactions when vesicles containing diblock copolymers are present. By systematically tuning the membrane composition of vesicles through incorporation of a poly(ethylene oxide)-b-poly(butadiene) diblock copolymer, we show that membrane protein folding and production can be improved over that observed in traditional lipid vesicles. We then reproduce this effect with an alternate membrane-elasticizing molecule, C12E8 Our results suggest that global membrane physical properties, specifically available membrane surface area and the membrane area expansion modulus, significantly influence the folding and yield of a membrane protein. Furthermore, our results set the stage for explorations into how nonnatural membrane amphiphiles can be used to both study and enhance the production of biological membrane proteins.


Assuntos
Proteínas de Membrana/química , Membranas Artificiais , Polietilenoglicóis/química , Propriedades de Superfície
6.
Proc Natl Acad Sci U S A ; 112(41): 12639-44, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26420873

RESUMO

Recently, there has been renewed interest in the coupling between geometry and topological defects in crystalline and striped systems. Standard lore dictates that positive disclinations are associated with positive Gaussian curvature, whereas negative disclinations give rise to negative curvature. Here, we present a diblock copolymer system exhibiting a striped columnar phase that preferentially forms wrinkles perpendicular to the underlying stripes. In free-standing films this wrinkling behavior induces negative Gaussian curvature to form in the vicinity of positive disclinations.

7.
Macromol Rapid Commun ; 38(15)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28564492

RESUMO

Herein, a novel photoinitiated polymerization-induced self-assembly formulation via photoinitiated reversible addition-fragmentation chain transfer dispersion polymerization of glycidyl methacrylate (PGMA) in ethanol-water at room temperature is reported. It is demonstrated that conducting polymerization-induced self-assembly (PISA) at low temperatures is crucial for obtaining colloidal stable PGMA-based diblock copolymer nano-objects. Good control is maintained during the photo-PISA process with a high rate of polymerization. The polymerization can be switched between "ON" and "OFF" in response to visible light. A phase diagram is constructed by varying monomer concentration and degree of polymerization. The PGMA-based diblock copolymer nano-objects can be further cross-linked by using a bifunctional primary amine reagent. Finally, silver nanoparticles are loaded within cross-linked vesicles via in situ reduction, exhibiting good catalytic properties.


Assuntos
Técnicas de Química Analítica/métodos , Compostos de Epóxi/química , Metacrilatos/síntese química , Polímeros/síntese química , Compostos de Epóxi/síntese química , Fotoquímica , Polimerização
8.
React Funct Polym ; 119: 37-46, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29217967

RESUMO

Simvastatin was polymerized into copolymers to better control drug loading and release for therapeutic delivery. When using the conventional stannous octoate catalyst in ring-opening polymerization (ROP), reaction temperatures ≥200 °C were required, which promoted uncontrollable and undesirable side reactions. Triazabicyclodecene (TBD), a highly reactive guanidine base organocatalyst, was used as an alternative to polymerize simvastatin. Polymerization was achieved at 150 °C using 5 kDa methyl-terminated poly(ethylene glycol) (mPEG) as the initiator. ROP reactions with 2 kDa or 550 Da mPEG initiators were also successful using TBD at 150 °C instead of stannous octoate, which required a higher reaction temperature. Biodegradability of the poly(simvastatin) copolymer in phosphate-buffered saline was also improved, losing twice as much mass than the copolymer synthesized via stannous octoate. The three copolymers exhibited modified rates of simvastatin release, demonstrating tunablity for drug delivery applications.

9.
Int J Mol Sci ; 18(7)2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28753915

RESUMO

Encapsulation of proteins can be beneficial for food and biomedical applications. To study their biophysical properties in complex coacervate core micelles (C3Ms), we previously encapsulated enhanced green fluorescent protein (EGFP) and its monomeric variant, mEGFP, with the cationic-neutral diblock copolymer poly(2-methyl-vinyl-pyridinium)n-b-poly(ethylene-oxide)m (P2MVPn-b-PEOm) as enveloping material. C3Ms with high packaging densities of fluorescent proteins (FPs) were obtained, resulting in a restricted orientational freedom of the protein molecules, influencing their structural and spectral properties. To address the generality of this behavior, we encapsulated seven FPs with P2MVP41-b-PEO205 and P2MVP128-b-PEO477. Dynamic light scattering and fluorescence correlation spectroscopy showed lower encapsulation efficiencies for members of the Anthozoa class (anFPs) than for Hydrozoa FPs derived from Aequorea victoria (avFPs). Far-UV CD spectra of the free FPs showed remarkable differences between avFPs and anFPs, caused by rounder barrel structures for avFPs and more elliptic ones for anFPs. These structural differences, along with the differences in charge distribution, might explain the variations in encapsulation efficiency between avFPs and anFPs. Furthermore, the avFPs remain monomeric in C3Ms with minor spectral and structural changes. In contrast, the encapsulation of anFPs gives rise to decreased quantum yields (monomeric Kusabira Orange 2 (mKO2) and Tag red fluorescent protein (TagRFP)) or to a pKa shift of the chromophore (FP variant mCherry).


Assuntos
Antozoários/metabolismo , Proteínas de Fluorescência Verde/química , Polietilenoglicóis/química , Animais , Sistemas de Liberação de Medicamentos , Difusão Dinâmica da Luz , Concentração de Íons de Hidrogênio , Micelas , Modelos Moleculares , Teoria Quântica , Espectrometria de Fluorescência
10.
Des Monomers Polym ; 20(1): 190-200, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29491792

RESUMO

This article describes the synthesis and characterization of a novel 'schizophrenic' diblock copolymer [poly(2-succinyloxyethyl methacrylate)-b-poly[(N-4-vinylbenzyl),N,N-diethylamine)]; PSEMA-b-PVEA] via reversible addition of fragmentation chain transfer (RAFT) polymerization technique. The chemical structures of all samples as representatives were characterized by means of Fourier transform infrared (FTIR), and 1H nuclear magnetic resonance (NMR) spectroscopies. The molecular weights of PHEMA and PVEA segments were calculated to be 9770 and 12,630 gmol-1, respectively, from 1H NMR spectroscopy. The self-assembly behavior of the synthesized PSEMA-b-PVEA diblock copolymer was investigated by means of 1H NMR spectroscopy, dynamic light scattering (DLS) measurements, and transmission electron microscopy (TEM) observation. The average sizes of the PSEMA-b-PVEA micelles at pHs 3.0, 6.0, and 10.0 were obtained to be 294, 237, and 201 nm, respectively, from DLS analysis. The zeta potential measurements at various pHs demonstrated that the synthesized PSEMA-b-PVEA diblock copolymer has zwitterionic properties, and the range of isoelectric point's (IEP's) was determined as 5.8-7.3. It is expected that the synthesized PSEMA-b-PVEA diblock copolymer considered as a prospective candidate in nanomedicine applications such as drug delivery, mainly due to its excellent 'schizophrenic' micellization behavior.

11.
AAPS PharmSciTech ; 18(6): 2095-2101, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28004344

RESUMO

Luteolin (LUT) and luteoloside (LUS) belong to flavonoids with high anticancer potential and were loaded into biodegradable diblock copolymer micelles of methoxy polyethylene glycol-polycaprolactone (mPEG5K-PCL10K), methoxy polyethylene glycol-polylactide-co-glycolide (mPEG5K-PLGA10K), and methoxy polyethylene glycol-polylactide (mPEG5K-PDLLA10K) by a self-assembly method, creating water-soluble LUT and LUS copolymer micelles, respectively. The solubilization formulations of the copolymer micelles were optimized with response surface methodology (RSM). The obtained drug micelles are torispherical under transmission electron microscope (TEM) with an average diameter of about 70 nm. The mPEG5K-PLGA10K exhibited higher loading capacity for LUS which was 4.33%, and LUT- (or LUS)-loaded mPEG5K-PCL10K exhibited a better stability and encapsulation efficiency which was 65.1 and 55.8%, respectively. The in vitro drug release study showed above 47% of LUT was released from micelles at pH 7.4 PBS; however, no more than 35% of LUT was released at pH 6.4 PBS within 24 h. Meanwhile, no more than 30% of LUS was released from micelles whether at pH 6.4 or 7.4 PBS solution within 24 h.


Assuntos
Glucosídeos/síntese química , Luteolina/síntese química , Micelas , Polímeros/síntese química , Portadores de Fármacos/síntese química , Portadores de Fármacos/farmacocinética , Liberação Controlada de Fármacos , Medicamentos de Ervas Chinesas/síntese química , Medicamentos de Ervas Chinesas/farmacocinética , Glucosídeos/farmacocinética , Luteolina/farmacocinética , Polímeros/farmacocinética
12.
Materials (Basel) ; 17(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38730912

RESUMO

Methoxy poly(ethylene glycol)-block-poly(L-lactide) (MPEG-b-PLLA) has a wide range of applications in pharmaceuticals and biology, and its structure and morphology have been thoroughly studied. In the experiment, we synthesized MPEG-b-PLLA with different block lengths using the principle of ring-opening polymerization by controlling the amount of lactic acid added. The thermodynamic properties of copolymers and the crystallization properties of blends were studied separately. The crystallization kinetics of PDLA/MPEG-b-PLA and PLLA/MPEG-b-PLA composite films were studied using differential scanning calorimetry (DSC). The results indicate that the crystallization kinetics of composite films are closely related to the amount of block addition. The crystallinity of the sample first increases and then decreases with an increase in MPEG-b-PLLA content. These results were also confirmed in polarized optical microscope (POM) and wide-angle X-ray diffraction (WAXD) tests. When 3% MPEG-b-PLLA was added to the PDLA matrix, the blend exhibited the strongest crystallization performance.

13.
Pest Manag Sci ; 80(2): 669-677, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37759365

RESUMO

BACKGROUND: Chemical insecticides are an important tool to control damaging pest infestations. However, lack of species specificity, the rise of resistance and the demand for biological alternatives with improved ecotoxicity profiles means that chemicals with new modes of action are required. RNA interference (RNAi)-based strategies using double-stranded RNA (dsRNA) as a species-specific bio-insecticide offer an exquisite solution that addresses these issues. Many species, such as the fruit pest Drosophila suzukii, do not exhibit RNAi when dsRNA is orally administered due to degradation by gut nucleases and slow cellular uptake pathways. Thus, delivery vehicles that protect and deliver dsRNA are highly desirable. RESULTS: In this work, we demonstrate the complexation of D. suzukii-specific dsRNA for degradation of vha26 mRNA with bespoke diblock copolymers. We study the ex vivo protection of dsRNA against enzymatic degradation by gut enzymes, which demonstrates the efficiency of this system. Flow cytometry then investigates the cellular uptake of Cy3-labelled dsRNA, showing a 10-fold increase in the mean fluorescence intensity of cells treated with polyplexes. The polymer/dsRNA polyplexes induced a significant 87% decrease in the odds of survival of D. suzukii larvae following oral feeding only when formed with a diblock copolymer containing a long neutral block length (1:2 cationic block/neutral block). However, there was no toxicity when fed to the closely related Drosophila melanogaster. CONCLUSION: We provide evidence that dsRNA complexation with diblock copolymers is a promising strategy for RNAi-based species-specific pest control, but optimisation of polymer composition is essential for RNAi success. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Inseticidas , Polímeros , Animais , Polímeros/metabolismo , Inseticidas/farmacologia , RNA de Cadeia Dupla/genética , Drosophila melanogaster/genética , Interferência de RNA
14.
ACS Appl Mater Interfaces ; 16(17): 22482-22492, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38651802

RESUMO

Herein, we present the preparation and properties of an ultrathin, mechanically robust, quasi-solid composite electrolyte (SEO-QSCE) for solid-state lithium metal battery (SLB) from a well-defined polystyrene-b-poly(ethylene oxide) diblock copolymer (SEO), Li6.75La3Zr1.75Ta0.25O12 nanofiller, and fluoroethylene carbonate plasticizer. Compared with the ordered lamellar microphase separation of SEO, the SEO-QSCE displays bicontinuous phases, consisting of a Li+ ion conductive poly(ethylene oxide) domain and a mechanically robust framework of the polystyrene domain. Therefore, the 12 µm-thick SEO-QSCE membrane exhibits an exceptional ionic conductivity of 1.3 × 10-3 S cm-1 at 30 °C, along with a remarkable tensile strength of 5.1 MPa and an elastic modulus of 2.7 GPa. The high mechanical robustness and the self-generated LiF-rich SEI enable the SEO-QSCE to have an extraordinary lithium dendrite prohibition effect. The SLB of Li|SEO-QSCE|LiFePO4 reveals superior cycling performances at 30 °C for over 600 cycles, maintaining an initial discharge capacity of 145 mAh g-1 and a remarkable capacity retention of 81% (117 mAh g-1) after 400 cycles at 0.5 C. The high-voltage SLB of Li|SEO-QSCE|LiNi0.5Co0.3Mn0.2O2 displays good cycling stability for over 150 cycles at 30 °C. Moreover, the exceptional robustness of SEO-QSCE enables the high-voltage solid-state pouch cell of Li|SEO-QSCE|LiNi0.5Co0.3Mn0.2O2 with high flexibility and excellent safety features. The current investigation delivers a promising and innovative approach for preparing quasi-solid electrolytes with features of ultrathin design, mechanical robustness, and exceptional electrochemical performance for high-voltage SLBs.

15.
J Colloid Interface Sci ; 671: 124-133, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38795533

RESUMO

HYPOTHESIS: Amphiphilic diblock copolymers are known to increase the surfactant's efficiency to stabilize microemulsion, leading to higher structural order and monolayer rigidity. We thus seek to evaluate whether the addition of such polymers alters the shear behavior of bicontinuous microemulsions, in particular, their shear transformation towards lamellar structures. EXPERIMENTS: We examine the initial structure and shear response of bicontinuous /n-octane//PEP5-b-PEO5 microemulsions by coupling microfluidics with small-angle neutron scattering (SANS), attaining wall shear rates in excess of . The azimuthal analysis of the obtained 2D scattering patterns allows us to follow their structural transformation by means of the degree of anisotropy. FINDINGS: The amphiphilic diblock copolymer promotes the shear-induced transformation of bicontinuous microemulsions, resulting in up to ∼ higher degrees of anisotropy than for corresponding polymer-free microemulsions. The increased shear response observed with increasing polymer content is rationalized by combining the influence of domain size and viscosity with the stability limits of the bicontinuous microemulsion in the isothermal phase diagram. As a result, a consistent description of the degree of anisotropy is obtained, enabling the prediction of the shear-induced bicontinuous-to-lamellar transformation.

16.
Polymers (Basel) ; 16(7)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38611144

RESUMO

A heterograft copolymer with an alginate backbone, hetero-grafted by polymer pendant chains displaying different lower critical solution temperatures (LCSTs), combined with a pH-responsive poly(2-vinyl pyridine)-b-poly(ethylene oxide) (P2VP-b-PEO) diblock copolymer forming micellar nanoparticles, was investigated in aqueous media at various pHs. Due to its thermo-responsive side chains, the copolymer forms hydrogels with a thermo-induced sol-gel transition, above a critical temperature, Tgel (thermo-thickening). However, by lowering the pH of the medium in an acidic regime, a remarkable increase in the elasticity of the formulation was observed. This effect was more pronounced in low temperatures (below Tgel), suggesting secondary physical crosslinking, which induces significant changes in the hydrogel thermo-responsiveness, transforming the sol-gel transition to soft gel-strong gel. Moreover, the onset of thermo-thickening shifted to lower temperatures followed by the broadening of the transition zone, implying intermolecular interactions between the uncharged alginate backbone with the PNIPAM side chains, likely through H-bonding. The shear-thinning behavior of the soft gel in low temperatures provides injectability, which allows potential applications for 3D printing. Furthermore, the heterograft copolymer/nanoparticles composite hydrogel, encapsulating a model hydrophobic drug in the hydrophobic cores of the nanoparticles, was evaluated as a pH-responsive drug delivery system. The presented tunable drug delivery system might be useful for biomedical potential applications.

17.
Macromol Rapid Commun ; 34(16): 1289-95, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23843127

RESUMO

The structural evolution in poly(styrene-b-butadiene) (P(S-b-B)) diblock copolymer thin films during solvent vapor treatment is investigated in situ using time-resolved grazing-incidence small-angle X-ray scattering (GISAXS). Using incident angles above and below the polymer critical angle, structural changes near the film surface and in the entire film are distinguished. The swelling of the film is one-dimensional along the normal of the substrate. During swelling, the initially perpendicular lamellae tilt within the film to be able to shrink. In contrast, at the film surface, the lamellae stay perpendicular, and eventually vanish at the expense of a thin PB wetting layer. During the subsequent drying, the perpendicular lamellae reappear at the surface, and finally, PS blocks protrude. By modeling, the time-dependent height of the protrusions can be quantitatively extracted.


Assuntos
Polímeros/química , Solventes/química , Gases/química , Espalhamento a Baixo Ângulo , Propriedades de Superfície , Difração de Raios X
18.
J Colloid Interface Sci ; 649: 364-371, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37354793

RESUMO

HYPOTHESIS: Diffusiophoresis of colloidal latex particles has been reported for molecular anions and cations of comparable size. In the present study, this phenomenon is observed for two types of charged colloids acting as multivalent electrolyte: (i) anionic charge-stabilised silica nanoparticles or (ii) minimally-charged sterically-stabilised diblock copolymer nanoparticles. EXPERIMENTS: Using a Hele-Shaw cell, a thin layer of relatively large latex particles is established within a sharp concentration gradient of nanoparticles by sequential filling with water, latex particles and nanoparticles. Asymmetric diffusion is observed, which provides strong evidence for diffusiophoresis. Quantification involves turbidity measurements from backlit images. FINDINGS: The latex particles diffuse across a concentration gradient of charged nanoparticles and the latex concentration front scales approximately with time1/2. Moreover, the latex particle flux is inversely proportional to the concentration of background salt, confirming electrostatically-driven motion. These observations are consistent with theory recently developed to account for diffusiophoretic motion driven by multivalent ions.

19.
Front Bioeng Biotechnol ; 11: 1268458, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107612

RESUMO

Porphyrin compound-based photochemical molecules and biomaterials have been synthesized for photosensitivity and bioimaging experiments. However, most porphyrin photosensitizers have limited application in biological environments owing to severe aggregation in aqueous solutions. In the present study, we prepared amphipathic and photosensitive copolymers using zinc porphyrin via consecutive atom transfer-free radical polymerizations (ATRPs) comprising photoresponsive and thermosensitive chain segments. Furthermore, we evaluated the photocatalytic activity of the copolymer for methylene blue (MB) in water. Methods: First, we synthesized a photoresponsive ain segment of poly (6-[4-(4-methoxyphenylazo)phenoxy]hexyl methacrylate) (ZnPor-PAzo); then, ZnPor-PAzo was used as a macroinitiator and was polymerized with N-isopropylacrylamide (NIPAM) via ATRPs to obtain a novel photochemical and thermoresponsive diblock biomaterial with end-functionalized zinc porphyrin [(ZnPor-PAzo)-PNIPAMs]. Results: The polydispersity index (M w/M n) of (ZnPor-PAzo)-PNIPAMs was 1.19-1.32. Furthermore, its photoresponsive and thermosensitive characteristics were comprehensively studied. Discussion: The end-functionalized diblock copolymer (ZnPor-PAzo)-PNIPAM exhibits obvious fluorescence and efficient photocatalytic activity for aqueous MB under visible light.

20.
Polymers (Basel) ; 15(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38231987

RESUMO

Poly(glycerol monomethacrylate)-block-poly(2-hydroxypropyl methacrylate) (PGMA-PHPMA) with worm-like morphology is a typical example of reversible addition-fragmentation chain transfer (RAFT) dispersion polymerized thermo-responsive copolymer via polymerization-induced self-assembly (PISA) in aqueous solution. Chain transfer agents (CTAs) are the key component in controlling RAFT, the structures of which determine the end functional groups of the polymer chain. It is therefore of interest to monofunctionalize the polymers via CTA moiety, for bioactive functionality conjugation and in the meantime maintain the precisely controlled morphology of the copolymers and the related property. In this work, a newly designed CTA 5-(2-(tert-butoxycarbonylamino) ethylamino)-2-cyano-5-oxopentan-2-yl benzodithioate (t-Boc CPDB) was synthesized and used for the RAFT polymerization of PGMA45-PHPMA120. Subsequently, PGMA45-PHPMA120 copolymers with primary amine, maleimide, and reduced L-glutathione (a tripeptide) monofunctionalized terminals were synthesized via deprotection and conjugation reactions. These monofunctionalized copolymers maintain worm-like morphology and thermo-responsive property in aqueous solution (10% w/v), as confirmed by the transmission electron microscopy (TEM) images, and the observation of the phase transition behavior in between 4 °C and room temperature (~20 °C), respectively. Summarily, a range of thermo-responsive monofunctionalized PGMA45-PHPMA120 diblock copolymer worms were successfully synthesized, which are expected to offer potential biomedical applications, such as in polymer therapeutics, drug delivery, and diagnostics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA