Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 483
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(23): e2202189119, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35653574

RESUMO

SignificanceSemiconductor interfaces are among the most important in use in modern technology. The properties they exhibit can either enable or disable the characteristics of the materials they connect for functional performance. While much is known about important junctions involving conventional semiconductors such as Si and GaAs, there are several unsolved mysteries surrounding interfaces between oxide semiconductors. Here we resolve a long-standing issue concerning the measurement of anomalously low dielectric constants in SrTiO3 films with record high electron mobilities. We show that the junction between doped and undoped SrTiO3 required to make dielectric constant measurements masks the dielectric properties of the undoped film. Through modeling, we extract the latter and show that it is much higher than previously measured.

2.
Breast Cancer Res Treat ; 204(2): 193-222, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38100015

RESUMO

PURPOSE: To examine the current evidence on breast lymphedema (BL) diagnosis and treatment after breast-conserving surgery, identify gaps in the literature, and propose future research directions. METHODS: A comprehensive literature review was conducted using Ovid, PubMed, and Cochrane, including studies published between 2000 and 2023. References were reviewed manually for eligible studies. Inclusion criteria were as follows: patients who underwent breast conserving treatment (surgery ± radiation) for breast cancer, goals of the paper included analyzing or reviewing BL measurement with ultrasound or tissue dielectric constant, or BL treatment. Twenty-seven manuscripts were included in the review. RESULTS: There is variation in incidence, time course, and risk factors for BL. Risk factors for BL included breast size, primary and axillary surgery extent, radiation, and chemotherapy but require further investigation. Diagnostic methods for BL currently rely on patient report and lack standardized criteria. Tissue dielectric constant (TDC) and ultrasound (US) emerged as promising ambulatory BL assessment tools; however, diagnostic thresholds and validation studies with ICG lymphography are needed to establish clinical utility. The evidence base for treatment of BL is weak, lacking high-quality studies. CONCLUSION: The natural history of BL is not well defined. TDC and US show promise as ambulatory assessment tools for BL; however, further validation with lymphatic imaging is required. BL treatment is not established in the literature. Longitudinal, prospective studies including pre-radiation measurements and validating with lymphatic imaging are required. These data will inform screening, diagnostic criteria, and evidence-based treatment parameters for patients with BL after breast-conserving surgery and radiation.


Assuntos
Linfedema Relacionado a Câncer de Mama , Neoplasias da Mama , Linfedema , Humanos , Feminino , Neoplasias da Mama/cirurgia , Neoplasias da Mama/complicações , Estudos Prospectivos , Linfedema/diagnóstico , Linfedema/epidemiologia , Linfedema/etiologia , Mastectomia Segmentar/efeitos adversos , Axila , Linfedema Relacionado a Câncer de Mama/diagnóstico , Linfedema Relacionado a Câncer de Mama/epidemiologia , Linfedema Relacionado a Câncer de Mama/etiologia
3.
J Comput Chem ; 45(4): 204-209, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-37752737

RESUMO

The DFT-level computational investigations into Gibbs free energies (ΔG) demonstrate that as the dielectric constant of the solvent increases, the stabilities of [M(NH3 )n ]2+/3+ (n = 4, 6; M = selected 3d transition metals) complexes decrease. However, there is no observed correlation between the stability of the complex and the solvent donor number. Analysis of the charge transfer and Wiberg bond indices indicates a dative-bond character in all the complexes. The solvent effect assessed through solvation energy is determined by the change in the solvent accessible surface area (SASA) and the change in the charge distribution that occurs during complex formation. It has been observed that the SASA and charge transfer are different in the different coordination numbers, resulting in a variation in the solvent effect on complex stability in different solvents. This ultimately leads to a change between the relative stability of complexes with different coordination numbers while increasing the solvent polarity for a few complexes. Moreover, the findings indicate a direct relationship between ΔΔG (∆Gsolvent -∆Ggas ) and ΔEsolv , which enables the computation of ΔG for the compounds in a particular solvent using only ΔGgas and ΔEsolv . This approach is less computationally expensive.

4.
Environ Sci Technol ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39173047

RESUMO

Nanofiltration (NF) membranes play a critical role in separation processes, necessitating an in-depth understanding of their selective mechanisms. Existing NF models predominantly include steric and Donnan mechanisms as primary mechanisms. However, these models often fail in elucidating the NF selectivity between ions of similar dimensions and the same valence. To address this gap, an innovative methodology was proposed to unravel new selective mechanisms by quantifying the nominal dielectric effect isolated from steric and Donnan exclusion through fitted pore dielectric constants by regression analysis. We demonstrated that the nominal dielectric effect encompassed unidentified selective mechanisms of significant relevance by establishing the correlation between the fitted pore dielectric constants and these hindrance factors. Our findings revealed that dehydration-induced ion-membrane interaction, rather than ion dehydration, played a pivotal role in ion partitioning within NF membranes. This interaction was closely linked to the nondeformable fraction of hydrated ions. Further delineation of the dielectric effect showed that favorable interactions between ions and membrane functional groups contributed to entropy-driven selectivity, which is a key factor in explaining ion selectivity differences between ions sharing the same size and valence. This study deepens our understanding of NF selectivity and sheds light on the design of highly selective membranes for water and wastewater treatment.

5.
Macromol Rapid Commun ; : e2400295, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771981

RESUMO

Theoretically, separating the positive and negative charge centers of the chain segments of dielectric elastomers (DEs) is a viable alternative to the conventional decoration of chain backbone with polar handles, since it can dramatically increase the dipole vector and hence the dielectric constant (ε') of the DEs while circumvent the undesired impact of the decorated polar handles on the dielectric loss (tan δ). Herein, a novel and universal method is demonstrated to achieve effective separation of the charge centers of chain segments in homogeneous DEs by steric hindrance engineering, i.e., by incorporating a series of different included angle-containing building blocks into the networks. Both experimental and simulation results have shown that the introduction of these building blocks can create a spatially fixed included angle between two adjacent chain segments, thus separating the charge center of the associated region. Accordingly, incorporating a minimal amount of these building blocks (≈5 mol%) can lead to a considerably sharp increase (≈50%) in the ε' of the DEs while maintaining an extremely low tan δ (≈0.006@1 kHz), indicating that this methodology can substantially optimize the dielectric performance of DEs based on a completely different mechanism from the established methods.

6.
Macromol Rapid Commun ; 45(5): e2300601, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38232689

RESUMO

This study provides a comprehensive overview of the preparation methods for polyhedral oligomeric silsesquioxane (POSS) monomers and polymer/POSS nanocomposites. It focuses on the latest advancements in using POSS to design polymer nanocomposites with reduced dielectric constants. The study emphasizes exploring the potential of POSS, either alone or in combination with other materials, to decrease the dielectric constant and dielectric loss of various polymers, including polyimides, bismaleimide resins, poly(aryl ether)s, polybenzoxazines, benzocyclobutene resins, polyolefins, cyanate ester resins, and epoxy resins. In addition, the research investigates the impact of incorporating POSS on improving the thermal properties, mechanical properties, surface properties, and other aspects of these polymers. The entire study is divided into two parts, discussing systematically the role of POSS in reducing dielectric constants during the preparation of POSS composites using both physical blending and chemical synthesis methods. The goal of this research is to provide valuable strategies for designing a new generation of low dielectric constant materials suitable for large-scale integrated circuits in the semiconductor materials domain.


Assuntos
Nanocompostos , Polímeros , Polímeros/química , Nanocompostos/química
7.
Skin Res Technol ; 30(7): e13849, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38978227

RESUMO

BACKGROUND: Skin hydration (SKH) measurements are used for multiple purposes: to study skin physiology, to clinically investigate dermatological issues, and to assess localized skin water in pathologies like diabetes and lymphedema. Often the volar forearm is measured at various times of day (TOD). This report aims to characterize intra-day variations in volar forearm SKH to provide guidance on expected TOD dependence. MATERIALS AND METHODS: Forty medical students (20 male) self-measured tissue dielectric constant (TDC) on their non-dominant forearm in triplicate as an index of local skin tissue water every 2 h starting at 0800 and ending at 2400 h. All were trained and pre-certified in the procedure and had whole-body fat (FAT%) and water (H2O%) measured. Day average TDC (TDCAVG) was determined as the average of all time points expressed as mean ± SD. RESULTS: Males versus females had similar ages (25.1 ± 2.2 years vs. 25.1 ± 1.5 years), higher H2O% (56.6 ± 5.0 vs. 51.8 ± 5.7, p = 0.002), and higher TDCAVG (32.7 ± 4.1 vs. 28.5 ± 5.1, p = 0.008). TDC values were not significantly impacted by H2O% or FAT%. Female TDC exhibited a significant decreasing trend from morning to night (p = 0.004); male TDC showed no trend. CONCLUSION: Skin water assessed by TDC shows some intra-day variations for females and males but with quite different temporal patterns. Clinical relevance relates to the confidence level associated with skin hydration estimates when measured at different times of day during normal clinic hours which, based on the present data, is expected to be around 5% for both males and females.


Assuntos
Água Corporal , Antebraço , Humanos , Masculino , Feminino , Adulto , Pele , Adulto Jovem , Fenômenos Fisiológicos da Pele
8.
Skin Res Technol ; 30(8): e70028, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39167068

RESUMO

BACKGROUND: Our goal was to investigate linkages between skin color parameters and skin hydration. Since most prior studies focused on stratum corneum hydration, we focused on epidermal and dermal hydration in relation to skin color parameters in both sexes. MATERIALS AND METHODS: Thirty adults (16 female) with an age ± SD of 24.3 ± 0.6 years participated. Three sites on both volar forearms were evaluated for melanin index (MI), erythema index (EI), Individual Typology Angle (ITA), tissue dielectric constant (TDC) values to depths of 0.5 mm (TDC0.5) and 2.5 mm (TDC2.5), and Fitzpatrick skin type (FST). RESULTS: MI and EI were highly correlated (r = 0.800, p < 0.001) with maximum differences in MI and ITA along the arm of 3% and 6.3% with no difference between arms. Male MI was greater than females (p < 0.01). Male TDC2.5 was 36.1 ± 5.4 and correlated with EI (r = 0.231, p = 0.035). Contrastingly, female TDC25 was 28.5 ± 3.6 with no correlation with EI but was correlated with MI (r = -0.301, p = 0.003). These differential patterns held true for TDC0.5. For both sexes, FST and ITA were highly correlated (r = -0.756, p < 0.001). CONCLUSIONS: The findings revealed several correlations between skin color parameters and hydration that differed between males in females in some cases. The observed correlations may indicate that melanin may differentially impact water-holding capacity between sexes and provides a future research target. Further, these initial findings also may hold significance for dermatological assessments and the customization of skincare treatments tailored to individual skin types and demographics.


Assuntos
Epiderme , Melaninas , Pigmentação da Pele , Humanos , Feminino , Masculino , Pigmentação da Pele/fisiologia , Adulto , Epiderme/metabolismo , Adulto Jovem , Melaninas/metabolismo , Água Corporal/metabolismo , Eritema/patologia , Eritema/fisiopatologia , Pele , Água/metabolismo , Derme
9.
Sensors (Basel) ; 24(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38400447

RESUMO

Engine oil oxidation is one of the major reasons for oil aging which can result in variations in the physical and chemical properties of oil. Organic acids generated by oil oxidation can react with water to form inorganic acids and acidic substances (including organic and inorganic acids) that corrode engine parts, resulting in the generation of rust or damage to engine parts. This is one of the important reasons why oil should be regularly changed. One of the most commonly applied methods for judging the aging degree of engine oil is monitoring its acid number (AN). However, generally, the effect of oil water content on acid value measurement is not considered. When oils are used in engines, they are often contaminated by water due to condensation, which accelerates engine oil aging. Therefore, it is crucial to explore the water content effect on AN in the process of engine oil aging. In this research, a water content sensor was applied to characterize moisture content in oxidized oil samples. The sensor could also obtain oil sample electrical conductivity which corresponded to its dielectric constant. Using a mid-infrared spectrometer to measure oil sample AN at this point to obtain the variation in AN with oxidation time, oil sample AN was connected in series with the water content, dielectric constant and electrical conductivity. These parameters were monitored through sensors, and the effect of water content on AN was studied. Experimental results revealed that with the increase in oxidation time, the water content, electrical conductivity, dielectric constant increase and AN of oil were increased. At the same time, since the temperature had a greater effect on electrical conductivity, the application of an air-conditioned constant-temperature environment removed the effect of temperature change on electrical conductivity.

10.
Sensors (Basel) ; 24(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38339508

RESUMO

The possibility of determining the elastic modules, viscosity coefficients, dielectric constant and electrical conductivity of a viscous conducting liquid using a piezoelectric resonator with a longitudinal electric field is shown. For the research, we chose a piezoelectric resonator made on an AT-cut quartz plate with round electrodes, operating with a shear acoustic mode at a frequency of about 4.4 MHz. The resonator was fixed to the bottom of a 30 mL liquid container. The samples of a mixture of glycerol and water with different viscosity and conductivity were used as test liquids. First, the frequency dependences of the real and imaginary parts of the electrical impedance of a free resonator were measured and, using the Mason electromechanical circuit, the elastic module, viscosity coefficient, piezoelectric constant and dielectric constant of the resonator material (quartz) were determined. Then, the container was filled with the test sample of a liquid mixture so that the resonator was completely covered with liquid, and the measurement of the frequency dependences of the real and imaginary parts of the electrical impedance of the loaded resonator was repeated. The dependences of the frequency of parallel and series resonances, as well as the maximum values of the electrical impedance and admittance on the conductivity of liquids for various viscosity values, were plotted. It was shown that these dependences can be used to unambiguously determine the viscosity and conductivity of the test liquid. Next, by fitting the theoretical frequency dependences of the real and imaginary parts of the electrical impedance of the resonator loaded with the liquid under study to the experimental dependences, the elastic module of the liquid and its dielectric constant were determined.

11.
Molecules ; 29(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38893363

RESUMO

Zeta potential refers to the electrokinetic potential present in colloidal systems, exerting significant influence on the diverse properties of nano-drug delivery systems. The impact of the dielectric constant on the zeta potential and charge inversion of highly charged colloidal particles immersed in a variety of solvents spanning from polar, such as water, to nonpolar solvents and in the presence of multivalent salts was investigated through primitive Monte Carlo (MC) model simulations. Zeta potential, ξ, is decreased with the decreasing dielectric constant of the solvent and upon further increase in the salinity and the valency of the salt. At elevated levels of salt, the colloidal particles become overcharged in all solvents. As a result, their apparent charge becomes opposite in sign to the stoichiometric charge. This reversal of charge intensifies until reaching a saturation point with further increase in salinity.

12.
Small ; 19(27): e2300535, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37009996

RESUMO

Triboelectric nanogenerators are an emerging energy-scavenging technology that can harvest kinetic energy from various mechanical moments into electricity. The energy generated while humans walk is the most commonly available biomechanical energy. Herein, a multistage consecutively-connected hybrid nanogenerator (HNG) is fabricated and combined with a flooring system (MCHCFS) to efficiently harvest mechanical energy while humans walk. Initially, the electrical output performance of the HNG is optimized by fabricating a prototype device using various strontium-doped barium titanate (Ba1- x Srx TiO3 , BST) microparticles loaded polydimethylsiloxane (PDMS) composite films. The BST/PDMS composite film acts as a negative triboelectric layer that operates against aluminum. Single HNG operated in contact-separation mode could generate an electrical output of ≈280 V, ≈8.5 µA, and ≈90 µC m-2 . The stability and robustness of the fabricated HNG are confirmed and eight similar HNGs are assembled in a 3D-printed MCHCFS. The MCHCFS is specifically designed to distribute applied force on the single HNG to four nearby HNGs. The MCHCFS can be implemented in real-life floors with an enlarged surface area to harvest energy generated while humans walk into direct current electrical output. The MCHCFS is demonstrated as a touch sensor that can be utilized in sustainable path lighting to save enormous electricity waste.

13.
Small ; 19(30): e2302314, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37191278

RESUMO

Increasing the relative dielectric constant is a constant pursuit of organic semiconductors, but it often leads to multiple changes in device characteristics, hindering the establishment of a reliable relationship between dielectric constant and photovoltaic performance. Herein, a new non-fullerene acceptor named BTP-OE is reported by replacing the branched alkyl chains on Y6-BO with branched oligoethylene oxide chains. This replacement successfully increases the relative dielectric constant from 3.28 to 4.62. To surprise, BTP-OE offers consistently lower device performance relative to Y6-BO in organic solar cells (16.27% vs 17.44%) due to the losses in open-circuit voltage and fill factor. Further investigations unravel that BTP-OE has resulted in reduced electron mobility, increased trap density, enhanced first order recombination, and enlarged energetic disorder. These results demonstrate the complex relationship between dielectric constant and device performance, which provide valuable implications for the development of organic semiconductors with high dielectric constant for photovoltaic application.

14.
Chemistry ; 29(35): e202300635, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37066846

RESUMO

The present work aims to determine to what extent the value of the dielectric constant of the solvent can influence the dative bond in Lewis electron pair bonding systems. For this purpose, two different systems, namely H3 B←NH3 and {Zn←(NH3 )}2+ , were studied in selected solvents with significantly different dielectric constants. Based on the results from state-of-the-art computational methods using DFT, constrained DFT, energy decomposition analyses, solvent accessible surface area, and charge transfer calculations, we found that the stability of the neutral H3 B←NH3 system increases with increasing solvent polarity. In contrast, the opposite trend is observed for the positively charged {Zn←(NH3 )}2+ . The observed changes are attributed to different charge redistributions in neutral and charged complexes, which are reflected by a different response to the solvent and are quantified by changes in solvation energies.


Assuntos
Elétrons , Solventes
15.
Nanotechnology ; 35(4)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37669648

RESUMO

Zinc oxide (ZnO)-based thin-film transistors (TFTs) have attracted increasing attention towards flat-panel displays as alternatives to silicon-based TFTs due to their transparency to visible light. Magnesium oxide (MgO) has a wide bandgap (7.8 eV) and high dielectric constant (k). This leads to the development of TFTs using MgO as a gate oxide layer, which can significantly reduce the operating voltage. However, the electrical properties and dielectric constant of MgO are determined from the percentage of oxygen in MgO. In this study, a MgO gate-oxide was deposited on ZnO by magnetron sputtering at various oxygen concentrations (0%, 66%, and 100%) to fabricate TFTs. With an increase in the oxygen concentration, the oxygen vacancies of MgO were compensated, thereby improving the crystallinity and enhancing the dielectric constant from 6.53 to 12.9 for the oxygen concentrations of 0% and 100%. No pinch-off (saturation) behavior was observed in the TFTs with 0% oxygen; however, the pinch-off voltages were significantly reduced to 17 and 2 V in the TFTs with 66% and 100% oxygen, respectively; hence, the TFT-100 could be operated at a low operating voltage (2 V). With an increase in oxygen from 0% to 100%, the threshold voltage and trap-state density significantly decreased from -159 V and 1.6 × 1018cm-3to -31.4 V and 6.5 × 1016cm-3, respectively. The TFTs with 0% oxygen exhibited a higher field-effect mobility of 12 cm2V-1s-1due to the uncompensated oxygen vacancy in ZnO, which had a higher electron concentration. After introducing oxygen atoms, the field-effect mobility decreased to 0.16 cm2V-1s-1in the TFTs with 66% oxygen, which can be attributed to the compensated oxygen vacancy and lower electron concentration. In contrast, the field-effect mobility increased to 1.88 cm2V-1s-1for the TFTs with 100% oxygen due to the enhanced dielectric constant and crystallinity of MgO.

16.
Macromol Rapid Commun ; 44(12): e2200956, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37026742

RESUMO

The ever increasing demand for high-speed communication at high frequency promotes the rapid development of low-dielectric polymer films. Aromatic polyimide (PI) has been widely used as the main dielectrics in the flexible circuit board due to its excellent dielectric, mechanical, and thermal properties. Nevertheless, the dielectric constant of PI films at a high frequency range (several GHz) is relatively high and cannot satisfy the requirement of high-frequency communication. On this basis, a hyper-crosslinked polymer (HCP) and fabricated all-organic HCP/PI composite films through a physical blending method is synthesized. The porous structure of HCP is helpful to reduce the dielectric constant of PI matrix. The effects of HCP loadings on the dielectric, mechanical, and thermal properties of HCP/PI composite films are systematically investigated. The dielectric constants of the composite films can be reduced to 1.6-1.8 in the frequency range of 8.2-9.6 GHz when the HCP content reached 10 wt.%. The proposed method in this work is simple and effective to reduce the dielectric constant of PI and can be easily extended to other organic component-filled PI systems.


Assuntos
Polímeros , Porosidade
17.
Macromol Rapid Commun ; 44(10): e2200971, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37002911

RESUMO

This work describes an easy and effective process for preparing a homogeneous polybutadiene (PB) dielectric elastomer with improved actuated strain by utilizing a photochemical thiol-ene click reaction. The carboxyl groups and various ester groups are used for grafting on the PB. Since the length of the alkyl chains of the ester groups will significantly influence the polarities of the carbonyl groups and hydrogen bonding effect, the influence of polarity and hydrogen bonding effect on the dielectric properties and mechanical properties of the modified polybutadienes is carefully discussed. Very interestingly, it is found that the increment of dielectric constant of PB modified by carboxyl groups is the lowest one compared to other modified PBs with the ester groups. Meanwhile, the modified PBs with the ester groups could achieve pretty low dielectric loss factor, and finally, a high dielectric constant (3.6), low dielectric loss factor (0.0005), and large actuated strain (≈25%) of the modified polybutadienes could be achieved by the modified PBs with butyl acrylate groups. This work provides a simple and effective method for the designing and synthesizing of a homogeneous high electromechanical performance dielectric elastomer with high dielectric constant and low dielectric loss.


Assuntos
Butadienos , Elastômeros , Elastômeros/química , Ligação de Hidrogênio , Compostos de Sulfidrila
18.
Sensors (Basel) ; 23(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37300083

RESUMO

Agriculture is a major consumer of freshwater and is often associated with low water productivity. To prevent drought, farmers tend to over-irrigate, putting a strain on the ever-depleting groundwater resources. To improve modern agricultural techniques and conserve water, quick and accurate estimates of soil water content (SWC) should be made, and irrigation timed correctly in order to optimize crop yield and water use. In this study, soil samples common to the Maltese Islands having different clay, sand, and silt contents were, primarily, investigated to: (a) deduce whether the dielectric constant can be considered as a viable indicator of the SWC for the soils of Malta; (b) determine how soil compaction affects the dielectric constant measurements; and (c) to create calibration curves to directly relate the dielectric constant and the SWC for two different soil types of low and high density. The measurements, which were carried out in the X-band, were facilitated by an experimental setup comprising a two-port Vector Network Analyzer (VNA) connected to a rectangular waveguide system. From data analysis, it was found that for each soil investigated, the dielectric constant increases notably with an increase in both density and SWC. Our findings are expected to aid in future numerical analysis and simulations aimed at developing low-cost, minimally invasive Microwave (MW) systems for localized SWC sensing, and hence, in agricultural water conservation. However, it should be noted that a statistically significant relationship between soil texture and the dielectric constant could not be determined at this stage.


Assuntos
Água Subterrânea , Solo , Agricultura , Argila , Água/análise
19.
Sensors (Basel) ; 23(8)2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37112363

RESUMO

Detecting helium leakage is important in many applications, such as in dry cask nuclear waste storage systems. This work develops a helium detection system based on the relative permittivity (dielectric constant) difference between air and helium. This difference changes the status of an electrostatic microelectromechanical system (MEMS) switch. The switch is a capacitive-based device and requires a very negligible amount of power. Exciting the switch's electrical resonance enhances the MEMS switch sensitivity to detect low helium concentration. This work simulates two different MEMS switch configurations: a cantilever-based MEMS modeled as a single-degree-freedom model and a clamped-clamped beam MEMS molded using the COMSOL Multiphysics finite-element software. While both configurations demonstrate the switch's simple operation concept, the clamped-clamped beam was selected for detailed parametric characterization due to its comprehensive modeling approach. The beam detects at least 5% helium concentration levels when excited at 3.8 MHz, near electrical resonance. The switch performance decreases at lower excitation frequencies or increases the circuit resistance. The MEMS sensor detection level was relatively immune to beam thickness and parasitic capacitance changes. However, higher parasitic capacitance increases the switch's susceptibility to errors, fluctuations, and uncertainties.

20.
Sensors (Basel) ; 23(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37420899

RESUMO

Dielectric logging is a critical method for exploring and developing complex oil and gas reservoirs, such as tight reservoirs, low-resistivity contrast reservoirs, and shale oil and gas reservoirs. The sensitivity function is extended to high-frequency dielectric logging in this paper. The detection characteristics of attenuation and phase shift of an array dielectric logging tool in different modes are investigated, along with the influencing factors such as resistivity and dielectric constant. The results show the following: (1) The symmetrical coil system structure makes the sensitivity distribution symmetrically distributed, and the detection range is more focused. In the same measurement mode, the depth of investigation (DOI) becomes deeper under high resistivity formation, and the sensitivity range oscillates outward when the dielectric constant becomes greater. (2) The DOIs of different frequencies and source spacings cover the radial zone between 1 cm and 15 cm. The detection range has been enlarged to include part of the invasion zones, improving the measurement data's dependability. (3) With the increase in the dielectric constant, the curve tends to oscillate, and this behavior makes the DOI slightly shallower. Additionally, this oscillation phenomenon is obvious when the frequency, resistivity, and dielectric constant increase, particularly in high-frequency detection mode (F2, F3).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA