Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29.655
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 42(1): 289-316, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38277691

RESUMO

The intestinal epithelium, which segregates the highly stimulatory lumen from the underlying tissue, harbors one of the largest lymphocyte populations in the body, intestinal intraepithelial lymphocytes (IELs). IELs must balance tolerance, resistance, and tissue protection to maintain epithelial homeostasis and barrier integrity. This review discusses the ontogeny, environmental imprinting, T cell receptor (TCR) repertoire, and function of intestinal IELs. Despite distinct developmental pathways, IEL subsets share core traits including an epithelium-adapted profile, innate-like properties, cytotoxic potential, and limited TCR diversity. IELs also receive important developmental and functional cues through interactions with epithelial cells, microbiota, and dietary components. The restricted TCR diversity of IELs suggests that a limited set of intestinal antigens drives IEL responses, with potential functional consequences. Finally, IELs play a key role in promoting homeostatic immunity and epithelial barrier integrity but can become pathogenic upon dysregulation. Therefore, IELs represent intriguing but underexamined therapeutic targets for inflammatory diseases and cancer.


Assuntos
Mucosa Intestinal , Linfócitos Intraepiteliais , Humanos , Animais , Linfócitos Intraepiteliais/imunologia , Linfócitos Intraepiteliais/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Homeostase , Receptores de Antígenos de Linfócitos T/metabolismo , Intestinos/imunologia
2.
Annu Rev Immunol ; 35: 371-402, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28446062

RESUMO

Nutrition and the gut microbiome regulate many systems, including the immune, metabolic, and nervous systems. We propose that the host responds to deficiency (or sufficiency) of dietary and bacterial metabolites in a dynamic way, to optimize responses and survival. A family of G protein-coupled receptors (GPCRs) termed the metabolite-sensing GPCRs bind to various metabolites and transmit signals that are important for proper immune and metabolic functions. Members of this family include GPR43, GPR41, GPR109A, GPR120, GPR40, GPR84, GPR35, and GPR91. In addition, bile acid receptors such as GPR131 (TGR5) and proton-sensing receptors such as GPR65 show similar features. A consistent feature of this family of GPCRs is that they provide anti-inflammatory signals; many also regulate metabolism and gut homeostasis. These receptors represent one of the main mechanisms whereby the gut microbiome affects vertebrate physiology, and they also provide a link between the immune and metabolic systems. Insufficient signaling through one or more of these metabolite-sensing GPCRs likely contributes to human diseases such as asthma, food allergies, type 1 and type 2 diabetes, hepatic steatosis, cardiovascular disease, and inflammatory bowel diseases.


Assuntos
Doenças Cardiovasculares/imunologia , Diabetes Mellitus Tipo 1/imunologia , Microbioma Gastrointestinal/imunologia , Hipersensibilidade/imunologia , Doenças Inflamatórias Intestinais/imunologia , Mucosa Intestinal/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Dieta , Homeostase , Humanos , Imunidade , Receptores Acoplados a Proteínas G/imunologia
3.
Cell ; 186(19): 4117-4133.e22, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37591239

RESUMO

Aging is the key risk factor for cognitive decline, yet the molecular changes underlying brain aging remain poorly understood. Here, we conducted spatiotemporal RNA sequencing of the mouse brain, profiling 1,076 samples from 15 regions across 7 ages and 2 rejuvenation interventions. Our analysis identified a brain-wide gene signature of aging in glial cells, which exhibited spatially defined changes in magnitude. By integrating spatial and single-nucleus transcriptomics, we found that glial aging was particularly accelerated in white matter compared with cortical regions, whereas specialized neuronal populations showed region-specific expression changes. Rejuvenation interventions, including young plasma injection and dietary restriction, exhibited distinct effects on gene expression in specific brain regions. Furthermore, we discovered differential gene expression patterns associated with three human neurodegenerative diseases, highlighting the importance of regional aging as a potential modulator of disease. Our findings identify molecular foci of brain aging, providing a foundation to target age-related cognitive decline.


Assuntos
Envelhecimento , Disfunção Cognitiva , Substância Branca , Animais , Humanos , Camundongos , Disfunção Cognitiva/genética , Perfilação da Expressão Gênica , Núcleo Solitário , Substância Branca/patologia , Análise da Expressão Gênica de Célula Única , Encéfalo/patologia
4.
Cell ; 185(22): 4206-4215.e11, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36206754

RESUMO

Mucus protects the epithelial cells of the digestive and respiratory tracts from pathogens and other hazards. Progress in determining the molecular mechanisms of mucus barrier function has been limited by the lack of high-resolution structural information on mucins, the giant, secreted, gel-forming glycoproteins that are the major constituents of mucus. Here, we report how mucin structures we determined enabled the discovery of an unanticipated protective role of mucus: managing the toxic transition metal copper. Using two juxtaposed copper binding sites, one for Cu2+ and the other for Cu1+, the intestinal mucin, MUC2, prevents copper toxicity by blocking futile redox cycling and the squandering of dietary antioxidants, while nevertheless permitting uptake of this important trace metal into cells. These findings emphasize the value of molecular structure in advancing mucosal biology, while introducing mucins, produced in massive quantities to guard extensive mucosal surfaces, as extracellular copper chaperones.


Assuntos
Cobre , Mucinas , Mucinas/metabolismo , Mucina-2 , Cobre/análise , Cobre/metabolismo , Intestinos , Muco/metabolismo , Mucosa Intestinal/metabolismo
5.
Cell ; 185(14): 2495-2509.e11, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35764090

RESUMO

Plant fibers in byproduct streams produced by non-harsh food processing methods represent biorepositories of diverse, naturally occurring, and physiologically active biomolecules. To demonstrate one approach for their characterization, mass spectrometry of intestinal contents from gnotobiotic mice, plus in vitro studies, revealed liberation of N-methylserotonin from orange fibers by human gut microbiota members including Bacteroides ovatus. Functional genomic analyses of B. ovatus strains grown under permissive and non-permissive N-methylserotonin "mining" conditions revealed polysaccharide utilization loci that target pectins whose expression correlate with strain-specific liberation of this compound. N-methylserotonin, orally administered to germ-free mice, reduced adiposity, altered liver glycogenesis, shortened gut transit time, and changed expression of genes that regulate circadian rhythm in the liver and colon. In human studies, dose-dependent, orange-fiber-specific fecal accumulation of N-methylserotonin positively correlated with levels of microbiome genes encoding enzymes that digest pectic glycans. Identifying this type of microbial mining activity has potential therapeutic implications.


Assuntos
Citrus sinensis , Microbioma Gastrointestinal , Animais , Citrus sinensis/metabolismo , Fibras na Dieta , Microbioma Gastrointestinal/fisiologia , Vida Livre de Germes , Humanos , Camundongos , Pectinas/metabolismo , Polissacarídeos/metabolismo , Serotonina/análogos & derivados
6.
Cell ; 176(5): 1098-1112.e18, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30794774

RESUMO

Increased levels of intestinal bile acids (BAs) are a risk factor for colorectal cancer (CRC). Here, we show that the convergence of dietary factors (high-fat diet) and dysregulated WNT signaling (APC mutation) alters BA profiles to drive malignant transformations in Lgr5-expressing (Lgr5+) cancer stem cells and promote an adenoma-to-adenocarcinoma progression. Mechanistically, we show that BAs that antagonize intestinal farnesoid X receptor (FXR) function, including tauro-ß-muricholic acid (T-ßMCA) and deoxycholic acid (DCA), induce proliferation and DNA damage in Lgr5+ cells. Conversely, selective activation of intestinal FXR can restrict abnormal Lgr5+ cell growth and curtail CRC progression. This unexpected role for FXR in coordinating intestinal self-renewal with BA levels implicates FXR as a potential therapeutic target for CRC.


Assuntos
Neoplasias Intestinais/metabolismo , Células-Tronco Neoplásicas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Ácidos e Sais Biliares/metabolismo , Linhagem Celular , Proliferação de Células/genética , Neoplasias Colorretais/metabolismo , Ácido Desoxicólico/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Intestinais/genética , Intestinos , Fígado , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neoplásicas/fisiologia , Organoides/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Fatores de Risco , Transdução de Sinais , Ácido Taurocólico/análogos & derivados , Ácido Taurocólico/metabolismo , Via de Sinalização Wnt/genética , Via de Sinalização Wnt/fisiologia
7.
Cell ; 175(1): 146-158.e15, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30100182

RESUMO

Pathogen virulence exists on a continuum. The strategies that drive symptomatic or asymptomatic infections remain largely unknown. We took advantage of the concept of lethal dose 50 (LD50) to ask which component of individual non-genetic variation between hosts defines whether they survive or succumb to infection. Using the enteric pathogen Citrobacter, we found no difference in pathogen burdens between healthy and symptomatic populations. Iron metabolism-related genes were induced in asymptomatic hosts compared to symptomatic or naive mice. Dietary iron conferred complete protection without influencing pathogen burdens, even at 1000× the lethal dose of Citrobacter. Dietary iron induced insulin resistance, increasing glucose levels in the intestine that were necessary and sufficient to suppress pathogen virulence. A short course of dietary iron drove the selection of attenuated Citrobacter strains that can transmit and asymptomatically colonize naive hosts, demonstrating that environmental factors and cooperative metabolic strategies can drive conversion of pathogens toward commensalism.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Ferro/metabolismo , Virulência/fisiologia , Animais , Infecções Assintomáticas , Citrobacter rodentium/metabolismo , Citrobacter rodentium/patogenicidade , Colite/tratamento farmacológico , Colite/metabolismo , Colo/microbiologia , Suplementos Nutricionais , Infecções por Enterobacteriaceae/tratamento farmacológico , Feminino , Resistência à Insulina/fisiologia , Intestino Delgado/microbiologia , Ferro/farmacologia , Dose Letal Mediana , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos DBA
8.
Immunity ; 56(8): 1862-1875.e9, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37478853

RESUMO

Loss of oral tolerance (LOT) to gluten, driven by dendritic cell (DC) priming of gluten-specific T helper 1 (Th1) cell immune responses, is a hallmark of celiac disease (CeD) and can be triggered by enteric viral infections. Whether certain commensals can moderate virus-mediated LOT remains elusive. Here, using a mouse model of virus-mediated LOT, we discovered that the gut-colonizing protist Tritrichomonas (T.) arnold promotes oral tolerance and protects against reovirus- and murine norovirus-mediated LOT, independent of the microbiota. Protection was not attributable to antiviral host responses or T. arnold-mediated innate type 2 immunity. Mechanistically, T. arnold directly restrained the proinflammatory program in dietary antigen-presenting DCs, subsequently limiting Th1 and promoting regulatory T cell responses. Finally, analysis of fecal microbiomes showed that T. arnold-related Parabasalid strains are underrepresented in human CeD patients. Altogether, these findings will motivate further exploration of oral-tolerance-promoting protists in CeD and other immune-mediated food sensitivities.


Assuntos
Antígenos , Imunidade Inata , Animais , Camundongos , Humanos , Dieta , Glutens , Células Dendríticas , Tolerância Imunológica
9.
Annu Rev Biochem ; 85: 1-4, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27050288

RESUMO

Aging and longevity are controlled by a multiplicity of molecular and cellular signaling events that interface with environmental factors to maintain cellular homeostasis. Modulation of these pathways to extend life span, including insulin-like signaling and the response to dietary restriction, identified the cellular machineries and networks of protein homeostasis (proteostasis) and stress resistance pathways as critical players in the aging process. A decline of proteostasis capacity during aging leads to dysfunction of specific cell types and tissues, rendering the organism susceptible to a range of chronic diseases. This volume of the Annual Review of Biochemistry contains a set of two reviews addressing our current understanding of the molecular mechanisms underlying aging in model organisms and humans.


Assuntos
Envelhecimento/genética , Caenorhabditis elegans/genética , Fator de Iniciação 2 em Eucariotos/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Serina-Treonina Quinases/genética , Resposta a Proteínas não Dobradas , Envelhecimento/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Restrição Calórica , Fator de Iniciação 2 em Eucariotos/metabolismo , Homeostase/genética , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade Proteica , Proteólise , Deficiências na Proteostase/genética , Deficiências na Proteostase/metabolismo , Deficiências na Proteostase/patologia , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Annu Rev Biochem ; 85: 5-34, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27145842

RESUMO

Dietary restriction (DR), a moderate reduction in food intake, improves health during aging and extends life span across multiple species. Specific nutrients, rather than overall calories, mediate the effects of DR, with protein and specific amino acids (AAs) playing a key role. Modulations of single dietary AAs affect traits including growth, reproduction, physiology, health, and longevity in animals. Epidemiological data in humans also link the quality and quantity of dietary proteins to long-term health. Intricate nutrient-sensing pathways fine tune the metabolic responses to dietary AAs in a highly conserved manner. In turn, these metabolic responses can affect the onset of insulin resistance, obesity, neurodegenerative disease, and other age-related diseases. In this review we discuss how AA requirements are shaped and how ingested AAs regulate a spectrum of homeostatic processes. Finally, we highlight the resulting opportunity to develop nutritional strategies to improve human health during aging.


Assuntos
Envelhecimento/genética , Aminoácidos/metabolismo , Dieta com Restrição de Proteínas/métodos , Proteínas Alimentares/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Serina-Treonina Quinases/genética , Envelhecimento/metabolismo , Aminoácidos/administração & dosagem , Animais , Restrição Calórica , Proteínas Alimentares/administração & dosagem , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Homeostase/genética , Humanos , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/prevenção & controle , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Obesidade/prevenção & controle , Proteínas Serina-Treonina Quinases/metabolismo , Deficiências na Proteostase/genética , Deficiências na Proteostase/metabolismo , Deficiências na Proteostase/patologia , Deficiências na Proteostase/prevenção & controle , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
11.
Immunity ; 55(12): 2454-2469.e6, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36473469

RESUMO

Although food-directed immunoglobulin E (IgE) has been studied in the context of allergies, the prevalence and magnitude of IgG responses against dietary antigens are incompletely characterized in the general population. Here, we measured IgG binding against food and environmental antigens obtained from allergen databases and the immune epitope database (IEDB), represented in a phage displayed library of 58,233 peptides. By profiling blood samples of a large cohort representing the average adult Israeli population (n = 1,003), we showed that many food antigens elicited systemic IgG in up to 50% of individuals. Dietary intake of specific food protein correlated with antibody binding, suggesting that diet can shape the IgG epitope repertoire. Our work documents abundant systemic IgG responses against food antigens and provides a reference map of the exact immunogenic epitopes on a population scale, laying the foundation to unravel the role of food- and environmental antigen-directed antibody binding in disease contexts.


Assuntos
Alérgenos , Hipersensibilidade Alimentar , Humanos , Imunoglobulina G , Formação de Anticorpos , Epitopos , Proteínas Alimentares
12.
Immunity ; 55(2): 210-223, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35139351

RESUMO

Nutrition affects all physiological processes including those linked to the development and function of our immune system. Here, we discuss recent evidence and emerging concepts supporting the idea that our newfound relationship with nutrition in industrialized countries has fundamentally altered the way in which our immune system is wired. This will be examined through the lens of studies showing that mild or transient reductions in dietary intake can enhance protective immunity while also limiting aberrant inflammatory responses. We will further discuss how trade-offs and priorities begin to emerge in the context of severe nutritional stress. In those settings, specific immunological functions are heightened to re-enforce processes and tissue sites most critical to survival. Altogether, these examples will emphasize the profound influence nutrition has over the immune system and highlight how a mechanistic exploration of this cross talk could ultimately lead to the design of novel therapeutic approaches that prevent and treat disease.


Assuntos
Dietoterapia , Imunidade , Envelhecimento/imunologia , Restrição Calórica , Humanos , Inflamação , Corpos Cetônicos/biossíntese , Corpos Cetônicos/imunologia , Desnutrição/imunologia , Microbiota/imunologia , Fenômenos Fisiológicos da Nutrição/imunologia
13.
Cell ; 167(5): 1339-1353.e21, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27863247

RESUMO

Despite the accepted health benefits of consuming dietary fiber, little is known about the mechanisms by which fiber deprivation impacts the gut microbiota and alters disease risk. Using a gnotobiotic mouse model, in which animals were colonized with a synthetic human gut microbiota composed of fully sequenced commensal bacteria, we elucidated the functional interactions between dietary fiber, the gut microbiota, and the colonic mucus barrier, which serves as a primary defense against enteric pathogens. We show that during chronic or intermittent dietary fiber deficiency, the gut microbiota resorts to host-secreted mucus glycoproteins as a nutrient source, leading to erosion of the colonic mucus barrier. Dietary fiber deprivation, together with a fiber-deprived, mucus-eroding microbiota, promotes greater epithelial access and lethal colitis by the mucosal pathogen, Citrobacter rodentium. Our work reveals intricate pathways linking diet, the gut microbiome, and intestinal barrier dysfunction, which could be exploited to improve health using dietary therapeutics.


Assuntos
Fibras na Dieta/administração & dosagem , Microbioma Gastrointestinal , Mucosa Intestinal/microbiologia , Animais , Citrobacter rodentium/fisiologia , Colite/microbiologia , Colo/microbiologia , Suscetibilidade a Doenças , Infecções por Enterobacteriaceae/microbiologia , Escherichia coli , Feminino , Vida Livre de Germes , Humanos , Masculino , Camundongos , Mucina-2/genética
14.
Immunity ; 54(10): 2273-2287.e6, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34644558

RESUMO

Diets high in cholesterol alter intestinal immunity. Here, we examined how the cholesterol metabolite 25-hydroxycholesterol (25-HC) impacts the intestinal B cell response. Mice lacking cholesterol 25-hydroxylase (CH25H), the enzyme generating 25-HC, had higher frequencies of immunoglobulin A (IgA)-secreting antigen-specific B cells upon immunization or infection. 25-HC did not affect class-switch recombination but rather restrained plasma cell (PC) differentiation. 25-HC was produced by follicular dendritic cells and increased in response to dietary cholesterol. Mechanistically, 25-HC restricted activation of the sterol-sensing transcription factor SREBP2, thereby regulating B cell cholesterol biosynthesis. Ectopic expression of SREBP2 in germinal center B cells induced rapid PC differentiation, whereas SREBP2 deficiency reduced PC output in vitro and in vivo. High-cholesterol diet impaired, whereas Ch25h deficiency enhanced, the IgA response against Salmonella and the resulting protection from systemic bacterial dissemination. Thus, a 25-HC-SREBP2 axis shapes the humoral response at the intestinal barrier, providing insight into the effect of high dietary cholesterol in intestinal immunity.


Assuntos
Diferenciação Celular/imunologia , Hidroxicolesteróis/metabolismo , Imunoglobulina A/imunologia , Plasmócitos/imunologia , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Animais , Colesterol na Dieta/imunologia , Colesterol na Dieta/metabolismo , Hidroxicolesteróis/imunologia , Imunoglobulina A/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Camundongos , Nódulos Linfáticos Agregados/imunologia , Nódulos Linfáticos Agregados/metabolismo , Plasmócitos/metabolismo
15.
CA Cancer J Clin ; 72(3): 230-262, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35294043

RESUMO

The overall 5-year relative survival rate for all cancers combined is now 68%, and there are over 16.9 million survivors in the United States. Evidence from laboratory and observational studies suggests that factors such as diet, physical activity, and obesity may affect risk for recurrence and overall survival after a cancer diagnosis. The purpose of this American Cancer Society guideline is to provide evidence-based, cancer-specific recommendations for anthropometric parameters, physical activity, diet, and alcohol intake for reducing recurrence and cancer-specific and overall mortality. The audiences for this guideline are health care providers caring for cancer survivors as well as cancer survivors and their families. The guideline is intended to serve as a resource for informing American Cancer Society programs, health policy, and the media. Sources of evidence that form the basis of this guideline are systematic literature reviews, meta-analyses, pooled analyses of cohort studies, and large randomized clinical trials published since 2012. Recommendations for nutrition and physical activity during cancer treatment, informed by current practice, large cancer care organizations, and reviews of other expert bodies, are also presented. To provide additional context for the guidelines, the authors also include information on the relationship between health-related behaviors and comorbidities, long-term sequelae and patient-reported outcomes, and health disparities, with attention to enabling survivors' ability to adhere to recommendations. Approaches to meet survivors' needs are addressed as well as clinical care coordination and resources for nutrition and physical activity counseling after a cancer diagnosis.


Assuntos
Sobreviventes de Câncer , Neoplasias , American Cancer Society , Dieta , Exercício Físico , Humanos , Neoplasias/terapia , Sobreviventes , Estados Unidos/epidemiologia
16.
Trends Immunol ; 45(1): 4-10, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37949784

RESUMO

Nutrition is emerging as a promising therapeutic tool to modulate the immune system in health and disease. We propose that the timing of dietary interventions is probably what determines their success. In this context, we explore recent research that identifies the early phases of dietary intervention as critical time windows for modulating immunity and optimizing cancer therapy. Furthermore, we highlight how the timing of intervention can yield different outcomes. The data suggest that nutrient availability and absorption over a short period can significantly impact mammalian immune and even non-immune landscapes. This, in turn, can lead to changes in mucosal and systemic immunity, potentially exacerbating or ameliorating inflammation, and perhaps influencing tumor cells and their response to cancer therapies.


Assuntos
Dieta , Neoplasias , Animais , Humanos , Sistema Imunitário , Neoplasias/terapia , Mamíferos
17.
CA Cancer J Clin ; 70(4): 245-271, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32515498

RESUMO

The American Cancer Society (ACS) publishes the Diet and Physical Activity Guideline to serve as a foundation for its communication, policy, and community strategies and, ultimately, to affect dietary and physical activity patterns among Americans. This guideline is developed by a national panel of experts in cancer research, prevention, epidemiology, public health, and policy, and reflects the most current scientific evidence related to dietary and activity patterns and cancer risk. The ACS guideline focuses on recommendations for individual choices regarding diet and physical activity patterns, but those choices occur within a community context that either facilitates or creates barriers to healthy behaviors. Therefore, this committee presents recommendations for community action to accompany the 4 recommendations for individual choices to reduce cancer risk. These recommendations for community action recognize that a supportive social and physical environment is indispensable if individuals at all levels of society are to have genuine opportunities to choose healthy behaviors. This 2020 ACS guideline is consistent with guidelines from the American Heart Association and the American Diabetes Association for the prevention of coronary heart disease and diabetes as well as for general health promotion, as defined by the 2015 to 2020 Dietary Guidelines for Americans and the 2018 Physical Activity Guidelines for Americans.


Assuntos
Exercício Físico/fisiologia , Comportamento Alimentar/fisiologia , Promoção da Saúde/normas , Estilo de Vida Saudável/fisiologia , Neoplasias/prevenção & controle , American Cancer Society , Humanos , Estados Unidos
18.
Semin Immunol ; 66: 101736, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36857893

RESUMO

Despite decades of fiercely competitive research and colossal financial investments, the majority of patients with advanced solid cancers cannot be treated with curative intent. To improve this situation, conceptually novel treatment approaches are urgently needed. Cancer is increasingly appreciated as a systemic disease and numerous organismal factors are functionally linked to neoplastic growth, e.g. systemic metabolic dysregulation, chronic inflammation, intestinal dysbiosis and disrupted circadian rhythms. It is tempting to hypothesize that interventions targeting these processes could be of significant account for cancer patients. One important driver of tumor-supporting systemic derangements is inordinate consumption of simple and highly processed carbohydrates. This dietary pattern is causally linked to hyperinsulinemia, insulin resistance, chronic inflammation and intestinal dysbiosis, begging the pertinent question whether the adoption of dietary carbohydrate restriction can be beneficial for patients with cancer. This review summarizes the published data on the role of dietary carbohydrate restriction in the pathogenesis of Hepatocellular Carcinoma (HCC), the most frequent type of primary liver cancer. In addition to outlining the functional interplay between diet, the intestinal microbiome and immunity, the review underscores the importance of bile acids as interconnectors between the intestinal microbiota and immune cells.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carboidratos da Dieta , Disbiose , Inflamação
19.
Semin Immunol ; 66: 101737, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36857894

RESUMO

Diet and the gut microbiota have a profound influence on physiology and health, however, mechanisms are still emerging. Here we outline several pathways that gut microbiota products, particularly short-chain fatty acids (SCFAs), use to maintain gut and immune homeostasis. Dietary fibre is fermented by the gut microbiota in the colon, and large quantities of SCFAs such as acetate, propionate, and butyrate are produced. Dietary fibre and SCFAs enhance epithelial integrity and thereby limit systemic endotoxemia. Moreover, SCFAs inhibit histone deacetylases (HDAC), and thereby affect gene transcription. SCFAs also bind to 'metabolite-sensing' G-protein coupled receptors (GPCRs) such as GPR43, which promotes immune homeostasis. The enormous amounts of SCFAs produced in the colon are sufficient to lower pH, which affects the function of proton sensors such as GPR65 expressed on the gut epithelium and immune cells. GPR65 is an anti-inflammatory Gαs-coupled receptor, which leads to the inhibition of inflammatory cytokines. The importance of GPR65 in inflammatory diseases is underscored by genetics associated with the missense variant I231L (rs3742704), which is associated with human inflammatory bowel disease, atopic dermatitis, and asthma. There is enormous scope to manipulate these pathways using specialized diets that release very high amounts of specific SCFAs in the gut, and we believe that therapies that rely on chemically modified foods is a promising approach. Such an approach includes high SCFA-producing diets, which we have shown to decrease numerous inflammatory western diseases in mouse models. These diets operate at many levels - increased gut integrity, changes to the gut microbiome, and promotion of immune homeostasis, which represents a new and highly promising way to prevent or treat human disease.


Assuntos
Acetatos , Ácidos Graxos Voláteis , Animais , Camundongos , Humanos , Ácidos Graxos Voláteis/metabolismo , Butiratos/metabolismo , Fibras na Dieta , Imunomodulação
20.
Proc Natl Acad Sci U S A ; 121(26): e2317945121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38889154

RESUMO

Chaperone-mediated autophagy (CMA) is part of the mammalian cellular proteostasis network that ensures protein quality control, maintenance of proteome homeostasis, and proteome changes required for the adaptation to stress. Loss of proteostasis is one of the hallmarks of aging. CMA decreases with age in multiple rodent tissues and human cell types. A decrease in lysosomal levels of the lysosome-associated membrane protein type 2A (LAMP2A), the CMA receptor, has been identified as a main reason for declined CMA in aging. Here, we report constitutive activation of CMA with calorie restriction (CR), an intervention that extends healthspan, in old rodent livers and in an in vitro model of CR with cultured fibroblasts. We found that CR-mediated upregulation of CMA is due to improved stability of LAMP2A at the lysosome membrane. We also explore the translational value of our observations using calorie-restriction mimetics (CRMs), pharmacologically active substances that reproduce the biochemical and functional effects of CR. We show that acute treatment of old mice with CRMs also robustly activates CMA in several tissues and that this activation is required for the higher resistance to lipid dietary challenges conferred by treatment with CRMs. We conclude that part of the beneficial effects associated with CR/CRMs could be a consequence of the constitutive activation of CMA mediated by these interventions.


Assuntos
Restrição Calórica , Autofagia Mediada por Chaperonas , Proteína 2 de Membrana Associada ao Lisossomo , Lisossomos , Animais , Camundongos , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/genética , Lisossomos/metabolismo , Humanos , Envelhecimento/metabolismo , Fibroblastos/metabolismo , Proteostase , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Autofagia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA