Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1830(11): 5229-35, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23850640

RESUMO

BACKGROUND: Campylobacter jejuni is an important food-borne and zoonotic pathogen with a worldwide distribution. Humans and chickens are hosts of this pathogen. At present, there is no ideal vaccine for controlling human campylobacteriosis or the carriage of C. jejuni by chickens. Bacterial in vivo-induced antigens are useful as potential vaccine candidates and biomarkers of virulence. METHODS: In this study, we developed a novel systematic immunoproteomics approach to identify in vivo-induced antigens among the total cell proteins of C. jejuni using pre-adsorbed sera from patients infected with C. jejuni. RESULTS: Overall, 14 immunoreactive spots were probed on a PVDF membrane using pre-adsorbed human sera against C. jejuni. Then, we excised these protein spots from a duplicate gel and identified using MALDI-TOF MS. In total, 14 in vivo-induced antigens were identified using PMF and BLAST analysis. The identified proteins include CadF (CadF-1 and CadF-2), CheW, TufB, DnaK, MetK, LpxB, HslU, DmsA, PorA, ProS, CJBH_0976, CSU_0396 and hypothetical protein cje135_05017. Real-time RT-PCR was performed on 9 genes to compare their expression levels in vivo and in vitro. The data showed that 8 of the 9 analyzed genes were significantly upregulated in vivo relative to in vitro. CONCLUSION: We successfully developed a novel immunoproteomics method for identifying in vivo-induced Campylobacter jejuni antigens by using pre-adsorbed sera from infected patients. GENERAL SIGNIFICANCE: This new analysis method may prove to be useful for identifying in vivo-induced antigens within any host infected by bacteria and will contribute to the development of new subunit vaccines.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Infecções por Campylobacter/imunologia , Campylobacter jejuni/imunologia , Soros Imunes/imunologia , Ensaio Imunorradiométrico/métodos , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vacinas Bacterianas/genética , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/metabolismo , Infecções por Campylobacter/genética , Infecções por Campylobacter/metabolismo , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Soros Imunes/genética , Soros Imunes/metabolismo , Pessoa de Meia-Idade , Regulação para Cima
2.
Microb Pathog ; 63: 8-15, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23747686

RESUMO

Streptococcus suis (S. suis) serotype 2 usually cause infection in swine. Recently, two large-scale outbreaks in China with severe streptococcal toxic shock syndrome (STSS) and high mortality raised worldwide concern to human S. suis infection. To reveal the molecular pathogenesis of S. suis 2 during human infection, in-vivo induced antigen technology (IVIAT) was applied to identify the in-vivo induced genes (ivi genes) of S. suis 05ZYH33. The ivi genes are specifically expressed or up-regulated in-vivo and always associated with the in-vivo survival and pathogenicity of pathogens. In present study, convalescent sera from S. suis 05ZYH33 infected patients were pooled and fully adsorbed with in-vitro grown S. suis 05ZYH33 and Escherichia coli BL21 (DE3). Genomic expression library of 05ZYH33 was repeatedly screened with colony immunoblot assay using adsorbed sera. Finally, 19 genes were assessed as ivi genes of 05ZYH33. Fifteen of 19 genes encode proteins with biological functions in substance transport and metabolism, cell structure biogenesis, cell cycle control, replication, translation and other functions. The 4 remaining genes encode proteins with unknown functions. Of the 19 ivi genes, five (SSU05_0247, 0437, 1577, 1664 and 2144) encode proteins with no immunoreactivity to control sera from healthy individuals never exposed to 05ZYH33. The successful identification of ivi genes not only sheds light on understanding the pathogenesis of S. suis 05ZYH33 during its human infection, but also provides potential targets for the developments of new vaccines, therapeutic drugs and diagnostic reagents against human S. suis infection.


Assuntos
Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Perfilação da Expressão Gênica , Infecções Estreptocócicas/microbiologia , Streptococcus suis/genética , Anticorpos Antibacterianos , Proteínas de Bactérias/imunologia , Humanos , Immunoblotting/métodos
3.
Front Microbiol ; 11: 72, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32153515

RESUMO

Burkholderia pseudomallei, the causative agent of melioidosis, can survive and replicate in macrophages. Little is known about B. pseudomallei genes that are induced during macrophage infection. We constructed a B. pseudomallei K96243 promoter trap library with genomic DNA fragments fused to the 5' end of a plasmid-borne gene encoding enhanced green fluorescent protein (eGFP). Microarray analysis showed that the library spanned 88% of the B. pseudomallei genome. The recombinant plasmids were introduced into Burkholderia thailandensis E264, and promoter fusions active during in vitro culture were removed. J774A.1 murine macrophages were infected with the promoter trap library, and J774A.1 cells containing fluorescent bacteria carrying plasmids with active promoters were isolated using flow cytometric-based cell sorting. Candidate macrophage-induced B. pseudomallei genes were identified from the location of the insertions containing an active promoter activity. A proportion of the 138 genes identified in this way have been previously reported to be involved in metabolism and transport, virulence, or adaptation. Novel macrophage-induced B. pseudomallei genes were also identified. Quantitative reverse-transcription PCR analysis of 13 selected genes confirmed gene induction during macrophage infection. Deletion mutants of two macrophage-induced genes from this study were attenuated in Galleria mellonella larvae, suggesting roles in virulence. B. pseudomallei genes activated during macrophage infection may contribute to intracellular life and pathogenesis and merit further investigation toward control strategies for melioidosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA