Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Environ ; 45(10): 2943-2953, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35906794

RESUMO

Anthropogenic aerosols have been shown to perturb CO2 exchange between the vegetation and the atmosphere. However, the climate effects of aerosols through carbon cycle feedback still have significant uncertainties. Taking advantage of the periodic fluctuations of aerosol loading in Beijing, we intensively measured the diurnal course of leaf microclimates and photosynthesis under different aerosol conditions during the growing season in 2014 and 2015. We found that increasing aerosol loadings altered the diurnal course of microclimates and thus sun and shade leaf photosynthesis. Our mechanistic photosynthesis model experiments further showed that aerosol-induced increase in sun leaf photosynthesis occurred around noon and afternoon, mainly by alleviating the depression of photosynthesis caused by high leaf temperature and leaf-air vapour pressure deficit. Meanwhile, aerosols enhanced shade leaf photosynthesis throughout the day by mitigating the light limitation within the canopy, with the highest increase occurring around noon. Overall, our study suggested that aerosol's diffuse fertilization effect, cooling effect and the accompanying low leaf-air vapour pressure deficit collectively drove the changes in the diurnal courses of sun and shade leaf photosynthesis. Our results provided an important benchmark for assessing how anthropogenic aerosols regulate ecosystem C balance under different meteorological conditions.


Assuntos
Ecossistema , Fotossíntese , Aerossóis , Microclima , Fotossíntese/fisiologia , Folhas de Planta/fisiologia
2.
Glob Chang Biol ; 27(3): 689-708, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33216414

RESUMO

Global dimming reduces incident global radiation but increases the fraction of diffuse radiation, and thus affects crop yields; however, the underlying mechanisms of such an effect have not been revealed. We hypothesized that crop source-sink imbalance of either carbon (C) or nitrogen (N) during grain filling is a key factor underlying the effect of global dimming on yields. We presented a practical framework to assess both C and N source-sink relationships, using data of biomass and N accumulation from periodical sampling conducted in field experiments for wheat and rice from 2013 to 2016. We found a fertilization effect of the increased diffuse radiation fraction under global dimming, which alleviated the negative impact of decreased global radiation on source supply and sink growth, but the source supply and sink growth were still decreased by dimming, for both C and N. In wheat, the C source supply decreased more than the C sink demand, and as a result, crops remobilized more pre-heading C reserves, in response to dimming. However, these responses were converse in rice, which presumably stemmed from the more increment in radiation use efficiency and the more limited sink size in rice than wheat. The global dimming affected source supply and sink growth of C more significantly than that of N. Therefore, yields in both crops were dependent more on the source-sink imbalance of C than that of N during grain filling. Our revealed source-sink relationships, and their differences and similarities between wheat and rice, provide a basis for designing strategies to alleviate the impact of global dimming on crop productivity.


Assuntos
Carbono , Oryza , Grão Comestível , Nitrogênio , Triticum
3.
Earths Future ; 9(7): e2021EF002035, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34435073

RESUMO

Aerosols have a dimming and cooling effect and change hydrological regimes, thus affecting carbon fluxes, which are sensitive to climate. Aerosols also scatter sunlight, which increases the fraction of diffuse radiation, increasing photosynthesis. There remains no clear conclusion whether the impact of aerosols on land carbon fluxes is larger through diffuse radiation change than through changes in other climate variables. In this study, we quantified the overall physical impacts of anthropogenic aerosols on land C fluxes and explored the contribution from each factor using a set of factorial simulations driven by climate and aerosol data from the IPSL-CM6A-LR experiments during 1850-2014. A newly developed land surface model which distinguishes diffuse and direct radiation in canopy radiation transmission, ORCHIDEE_DF, was used. Specifically, a subgrid scheme was developed to distinguish the cloudy and clear sky conditions. We found that anthropogenic aerosol emissions since 1850 cumulatively enhanced the land C sink by 22.6 PgC. Seventy-eight percent of this C sink enhancement is contributed by aerosol-induced increase in the diffuse radiation fraction, much larger than the effect of the aerosol-induced dimming. The cooling of anthropogenic aerosols has different impacts in different latitudes but overall increases the global land C sink. The dominant role of diffuse radiation changes found in this study implies that future aerosol emissions may have a much stronger impacts on the C cycle through changing radiation quality than through changing climate alone. Earth system models need to consider the diffuse radiation fertilization effect to better evaluate the impacts of climate change mitigation scenarios.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA