Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Network ; : 1-27, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775271

RESUMO

Nowadays, Deep Learning (DL) techniques are being used to automate the identification and diagnosis of plant diseases, thereby enhancing global food security and enabling non-experts to detect these diseases. Among many DL techniques, a Deep Encoder-Decoder Cascaded Network (DEDCNet) model can precisely segment diseased areas from the leaf images to differentiate and classify multiple diseases. On the other hand, the model training depends on the appropriate selection of hyperparameters. Also, this network structure has weak robustness with different parameters. Hence, in this manuscript, an Optimized DEDCNet (ODEDCNet) model is proposed for improved leaf disease image segmentation. To choose the best DEDCNet hyperparameters, a brand-new Dingo Optimization Algorithm (DOA) is included in this model. The DOA depends on the foraging nature of dingoes, which comprises exploration and exploitation phases. In exploration, it attains many predictable decisions in the search area, whereas exploitation enables exploring the best decisions in a provided area. The segmentation accuracy is used as the fitness value of each dingo for hyperparameter selection. By configuring the chosen hyperparameters, the DEDCNet is trained to segment the leaf disease regions. The segmented images are further given to the pre-trained Convolutional Neural Networks (CNNs) followed by the Support Vector Machine (SVM) for classifying leaf diseases. ODEDCNet performs exceptionally well on the PlantVillage and Betel Leaf Image datasets, attaining an astounding 97.33% accuracy on the former and 97.42% accuracy on the latter. Both datasets achieve noteworthy recall, F-score, Dice coefficient, and precision values: the Betel Leaf Image dataset shows values of 97.4%, 97.29%, 97.35%, and 0.9897; the PlantVillage dataset shows values of 97.5%, 97.42%, 97.46%, and 0.9901, all completed in remarkably short processing times of 0.07 and 0.06 seconds, respectively. The achieved outcomes are evaluated with the contemporary optimization algorithms using the considered datasets to comprehend the efficiency of DOA.

2.
Biomedicines ; 11(4)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37189784

RESUMO

Wireless Body Area Network (WBAN) is a trending technology of Wireless Sensor Networks (WSN) to enhance the healthcare system. This system is developed to monitor individuals by observing their physical signals to offer physical activity status as a wearable low-cost system that is considered an unremarkable solution for continuous monitoring of cardiovascular health. Various studies have discussed the uses of WBAN in Personal Health Monitoring systems (PHM) based on real-world health monitoring models. The major goal of WBAN is to offer early and fast analysis of the individuals but it is not able to attain its potential by utilizing conventional expert systems and data mining. Multiple kinds of research are performed in WBAN based on routing, security, energy efficiency, etc. This paper suggests a new heart disease prediction under WBAN. Initially, the standard patient data regarding heart diseases are gathered from benchmark datasets using WBAN. Then, the channel selections for data transmission are carried out through the Improved Dingo Optimizer (IDOX) algorithm using a multi-objective function. Through the selected channel, the data are transmitted for the deep feature extraction process using One Dimensional-Convolutional Neural Networks (ID-CNN) and Autoencoder. Then, the optimal feature selections are done through the IDOX algorithm for getting more suitable features. Finally, the IDOX-based heart disease prediction is done by Modified Bidirectional Long Short-Term Memory (M-BiLSTM), where the hyperparameters of BiLSTM are tuned using the IDOX algorithm. Thus, the empirical outcomes of the given offered method show that it accurately categorizes a patient's health status founded on abnormal vital signs that is useful for providing the proper medical care to the patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA