Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Microbiology (Reading) ; 168(7)2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35852832

RESUMO

Nitrosopumilus maritimus is a marine ammonia-oxidizing archaeon with a high affinity for ammonia. It fixes carbon via a modified hydroxypropionate/hydroxybutyrate cycle and shows weak utilization of cyanate as a supplementary energy and nitrogen source. When oxygen is depleted, N. maritimus produces its own oxygen, which may explain its regular occurrence in anoxic waters. Several enzymes of the ammonia oxidation and oxygen production pathways remain to be identified.


Assuntos
Amônia , Archaea , Amônia/metabolismo , Archaea/metabolismo , Ciclo do Carbono , Oxirredução , Oxigênio/metabolismo
2.
Molecules ; 27(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36080244

RESUMO

Catalase mimics are low molecular weight metal complexes that reproduce the activity of catalase, an antioxidant metalloprotein that participates in the cellular regulation of H2O2 concentration by catalyzing its dismutation. H2O2 is a reactive oxygen species that is vital for the normal functioning of cells. However, its overproduction contributes to oxidative stress, which damages cells. Owing to their biocompatibility, peptidyl complexes are an attractive option for clinical applications to regulate H2O2 by enzyme mimics. We report here the synthesis and characterization of four new peptidyl di-copper complexes bearing two coordinating sequences. Characterization of the complexes showed that, depending on the linker used between the two coordinating sequences, their catalytic activity for H2O2 dismutation, their thermodynamic stability and their resistance to H2O2 degradation are very different, with (CATm2)Cu2 being the most promising catalyst.


Assuntos
Cobre , Peróxido de Hidrogênio , Antioxidantes , Catalase/metabolismo , Peróxido de Hidrogênio/metabolismo , Termodinâmica
3.
Chem Pharm Bull (Tokyo) ; 68(3): 258-264, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32115533

RESUMO

Oxo-octadecadienoic acids (OxoODEs) act as peroxisome proliferator-activated receptor (PPAR) agonists biologically, and are known to be produced in the lipoxygenase/linoleate system. OxoODEs seem to originate from the linoleate alkoxyl radicals that are generated from (E/Z)-hydroperoxy octadecadienoic acids ((E/Z)-HpODEs) by a pseudoperoxidase reaction that is catalyzed by ferrous lipoxygenase. However, the mechanism underlying the conversion of alkoxyl radical into OxoODE remains obscure. In the present study, we confirmed that OxoODEs are produced in the lipoxygenase/linoleate system in an oxygen-dependent manner. Interestingly, we revealed a correlation between the (E/Z)-OxoODEs content and the (E/E)-HpODEs content in the system. (E/E)-HpODEs could have been derived from (E/E)-linoleate peroxyl radicals, which are generated by the reaction between a free linoleate allyl radical and an oxygen molecule. Notably, the ferrous lipoxygenase-linoleate allyl radical (LOx(Fe2+)-L·) complex, which is an intermediate in the lipoxygenase/linoleate system, tends to dissociate into LOx(Fe2+) and a linoleate allyl radical. Subsequently, LOx(Fe2+) converts (E/Z)-HpODEs to an (E/Z)-linoleate alkoxyl radical through one-electron reduction. Taken together, we propose that (E/Z)-OxoODEs and (E/E)-HpODEs are produced through radical-radical dismutation between (E/Z)-linoleate alkoxyl radical and (E/E)-linoleate peroxyl radical. Furthermore, the production of (E/Z)-OxoODEs and (E/E)-HpODEs was remarkably inhibited by a hydrophobic radical scavenger, 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO). On the contrary, water-miscible radical scavengers, 4-hydroxyl-2,2,6,6-tetramethylpiperidine 1-oxyl (OH-TEMPO) and 3-carbamoyl-2,2,5,5-tetramethyl-3-pyrroline-N-oxyl (CmΔP) only modestly or sparingly inhibited the production of (E/Z)-OxoODEs and (E/E)-HpODEs. These facts indicate that the radical-radical dismutation between linoleate alkoxyl radical and linoleate peroxyl radical proceeds in the interior of micelles.


Assuntos
Álcoois/metabolismo , Ácidos Graxos/metabolismo , Lipoxigenases/metabolismo , Oxigênio/metabolismo , Peróxidos/metabolismo , Álcoois/química , Biocatálise , Ácidos Graxos/química , Estrutura Molecular , Oxigênio/química , Peróxidos/química
4.
Appl Environ Microbiol ; 83(4)2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27986721

RESUMO

It has recently been suggested that oxygenic dismutation of NO into N2 and O2 may occur in the anaerobic methanotrophic "Candidatus Methylomirabilis oxyfera" and the alkane-oxidizing gammaproteobacterium HdN1. It may represent a new pathway in microbial nitrogen cycling catalyzed by a putative NO dismutase (Nod). The formed O2 enables microbes to employ aerobic catabolic pathways in anoxic habitats, suggesting an ecophysiological niche space of substantial appeal for bioremediation and water treatment. However, it is still unknown whether this physiology is limited to "Ca Methylomirabilis oxyfera" and HdN1 and whether it can be coupled to the oxidation of electron donors other than alkanes. Here, we report insights into an unexpected diversity and remarkable abundance of nod genes in natural and engineered water systems. Phylogenetically diverse nod genes were recovered from a range of contaminated aquifers and N-removing wastewater treatment systems. Together with nod genes from "Ca Methylomirabilis oxyfera" and HdN1, the novel environmental nod sequences formed no fewer than 6 well-supported phylogenetic clusters, clearly distinct from canonical NO reductase (quinol-dependent NO reductase [qNor] and cytochrome c-dependent NO reductase [cNor]) genes. The abundance of nod genes in the investigated samples ranged from 1.6 × 107 to 5.2 × 1010 copies · g-1 (wet weight) of sediment or sludge biomass, accounting for up to 10% of total bacterial 16S rRNA gene counts. In essence, NO dismutation could be a much more widespread physiology than currently perceived. Understanding the controls of this emergent microbial capacity could offer new routes for nitrogen elimination or pollutant remediation in natural and engineered water systems. IMPORTANCE: NO dismutation into N2 and O2 is a novel process catalyzed by putative NO dismutase (Nod). To date, only two bacteria, the anaerobic methane-oxidizing bacterium "Ca Methylomirabilis oxyfera" and the alkane-oxidizing gammaproteobacterium HdN1, are known to harbor nod genes. In this study, we report efficient molecular tools that can detect and quantify a wide diversity of nod genes in environmental samples. A surprisingly high diversity and abundance of nod genes were found in contaminated aquifers as well as wastewater treatment systems. This evidence indicates that NO dismutation may be a much more widespread physiology in natural and man-made environments than currently perceived. The molecular tools presented here will facilitate further studies on these enigmatic microbes in the future.


Assuntos
Bactérias Anaeróbias/genética , Bactérias Anaeróbias/metabolismo , Óxido Nítrico/metabolismo , Superóxido Dismutase/genética , Águas Residuárias/química , Oxirredução , Purificação da Água
5.
Molecules ; 21(10)2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27689978

RESUMO

A capillary electrophoresis coupled to tandem mass spectrometry (CE-MS/MS) has been used to make a qualitative determination of hercynine-the main precursor of l-ergothioneine biosynthesis-in some key human biological specimens, such as urine, whole blood, plasma, and saliva. From semiquantitative analysis results, the highest concentrations of hercynine were detected in saliva and whole blood, whereas much lower concentrations were measured in urine and plasma. Whole blood was the biological matrix with the highest concentration of l-ergothioneine followed by plasma, saliva, and urine. The antioxidant effects attributed to l-ergothioneine, along with its peculiar antioxidant mechanism, offer a possible explanation for the presence of the hercynine, as well as its concentration, in the considered biological matrices.

6.
Biochim Biophys Acta ; 1844(2): 422-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24316252

RESUMO

A manganese superoxide dismutase from the thermophilic fungus Chaetomium thermophilum (CtMnSOD) was expressed in Pichia pastoris and purified to homogeneity. Its optimal temperature was 60°C with approximately 75% of its activity retained after incubation at 70°C for 60min. Recombinant yeast cells carrying C. thermophilum mnsod gene exhibited higher stress resistance to salt and oxidative stress-inducing agents than control yeast cells. In an effort to provide structural insights, CtMnSOD was crystallized and its structure was determined at 2.0Å resolution. The overall architecture of CtMnSOD was found similar to other MnSODs with highest structural similarities obtained against a MnSOD from the thermotolerant fungus Aspergillus fumigatus. In order to explain its thermostability, structural and sequence analysis of CtMnSOD with other MnSODs was carried out. An increased number of charged residues and an increase in the number of intersubunit salt bridges and the Thr:Ser ratio were identified as potential reasons for the thermostability of CtMnSOD.


Assuntos
Chaetomium/enzimologia , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Estresse do Retículo Endoplasmático/fisiologia , Estabilidade Enzimática , Modelos Moleculares , Dados de Sequência Molecular , Pichia , Conformação Proteica , Homologia de Sequência de Aminoácidos , Superóxido Dismutase/genética
7.
Arch Biochem Biophys ; 580: 75-83, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26116786

RESUMO

Manganese-induced toxicity has been recently associated with an increased ROS generation from mitochondrial complex II (succinate:ubiquinone oxidoreductase). To achieve a deeper mechanistic understanding how divalent manganese ions (Mn(2+)) could stimulate mitochondrial ROS production we performed investigations with bovine heart submitochondrial particles (SMP). In succinate fueled SMP, the Mn(2+) induced hydrogen peroxide (H2O2) production was blocked by the specific complex II ubiquinone binding site (IIQ) inhibitor atpenin A5 while a further downstream block at complex III increased the rate markedly. This suggests that site IIQ was the source of the reactive oxygen species. Moreover, Mn(2+) ions also accelerated the rate of superoxide dismutation, explaining the general increase in the measured rates of H2O2 production and an attenuation of direct superoxide detection.


Assuntos
Complexo II de Transporte de Elétrons/metabolismo , Peróxido de Hidrogênio/metabolismo , Manganês/farmacologia , Membranas Mitocondriais/efeitos dos fármacos , Partículas Submitocôndricas/efeitos dos fármacos , Animais , Cátions Bivalentes , Bovinos , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Membranas Mitocondriais/metabolismo , Piridonas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Partículas Submitocôndricas/metabolismo , Ácido Succínico/metabolismo , Ácido Succínico/farmacologia , Superóxido Dismutase/metabolismo , Ubiquinona/antagonistas & inibidores , Ubiquinona/metabolismo
8.
Environ Sci Pollut Res Int ; 30(13): 35958-35971, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36539664

RESUMO

Nitrite denitrification has received increasing attention due to its high efficiency, low energy consumption, and sludge yield. However, the nitric oxide (NO) and nitrous oxide (N2O) which are harmful to the environment, microorganisms, and humans are produced in this process. In order to mitigate NO and N2O production, the biological mechanisms of NO and N2O accumulation, as well as NO detoxification during nitrite denitrification in a sequencing batch reactor were studied. Results showed that the peak of NO accumulation increased from 0.29 [Formula: see text] 0.01 to 3.12 [Formula: see text] 0.34 mg L-1 with the increase of carbon to nitrogen ratio (COD/N), which is caused by the sufficient electron donor supply for NO2--N reduction process at high COD/N. Furthermore, the result suggested that NO accumulation with no pH adjustment was 12 times higher than that with pH adjustment. It is related to the inhibition on NO reductase caused by the high free nitrous acid (FNA) and NO concentration with no pH adjustment. The pathways of NO detoxification included NO emission, reduction, and dismutation, and the more NO produced, the high proportion of NO dismutation pathway. Result showed that the maximum of oxygen production during NO dismutation reached to 1.39 mg L-1. N2O accumulation was mainly associated with FNA and NO inhibition, COD/N. The peak of N2O accumulation presented a completely opposite trend at pH adjustment and no pH adjustment, it is because that the higher FNA and NO concentration at high COD/N without pH adjustment will inhibit the N2O reductase activity, resulting in the N2O reduction was hindered during nitrite denitrification.


Assuntos
Nitritos , Óxido Nitroso , Humanos , Nitritos/metabolismo , Óxido Nitroso/metabolismo , Óxido Nítrico , Desnitrificação , Oxigênio , Anaerobiose , Reatores Biológicos , Ácido Nitroso , Esgotos/química , Nitrogênio
9.
Front Vet Sci ; 9: 981664, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35990276

RESUMO

Alveolar echinococcosis is caused by the metacestode stage of the zoonotic parasite Echinococcus multilocularis. Current chemotherapeutic treatment options rely on benzimidazoles, which have limited curative capabilities and can cause severe side effects. Thus, novel treatment options are urgently needed. In search for novel targetable pathways we focused on the mitochondrial energy metabolism of E. multilocularis. The parasite relies hereby on two pathways: The classical oxidative phosphorylation including the electron transfer chain (ETC), and the anaerobic malate dismutation (MD). We screened 13 endochin-like quinolones (ELQs) in vitro for their activities against two isolates of E. multilocularis metacestodes and isolated germinal layer cells by the phosphoglucose isomerase (PGI) assay and the CellTiter Glo assay. For the five most active ELQs (ELQ-121, ELQ-136, ELQ-271, ELQ-400, and ELQ-437), EC50 values against metacestodes were assessed by PGI assay, and IC50 values against mammalian cells were measured by Alamar Blue assay. Further, the gene sequence of the proposed target, the mitochondrial cytochrome b, was analyzed. This allowed for a limited structure activity relationship study of ELQs against E. multilocularis, including analyses of the inhibition of the two functional sites of the cytochrome b. By applying the Seahorse XFp Extracellular Flux Analyzer, oxygen consumption assays showed that ELQ-400 inhibits the E. multilocularis cytochrome bc 1 complex under normoxic conditions. When tested under anaerobic conditions, ELQ-400 was hardly active against E. multilocularis metacestodes. These results were confirmed by transmission electron microscopy. ELQ-400 treatment increased levels of parasite-released succinate, the final electron acceptor of the MD. This suggests that the parasite switched to MD for energy generation. Therefore, MD was inhibited with quinazoline, which did not induce damage to metacestodes under anaerobic conditions. However, it reduced the production of succinate compared to control treated parasites (i.e., inhibited the MD). The combination treatment with quinazoline strongly improved the activity of the bc 1 inhibitor ELQ-400 against E. multilocularis metacestodes under anaerobic conditions. We conclude that simultaneous targeting of the ETC and the MD of E. multilocularis is a possible novel treatment approach for alveolar echinococcosis, and possibly also other foodborne diseases inflicted by platyhelminths, which cause substantial economic losses in livestock industry.

10.
Sci Total Environ ; 847: 157592, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35901882

RESUMO

The size effect of magnetite (Fe3O4) on the degradation of propionate (PA) in the PA-based anaerobic system was investigated. The sequential bench-scale experiments were conducted. Results showed that the effects of different sized magnetite particles on PA degradation varied, and reaction cycles also played a role in substrate removal/degradation. With the increase of reaction cycle, nano-magnetite promoted PA degradation and CH4 production, which caused faster PA degradation rate (0.997 g/L·d) than the control group (CK) without magnetite (0.834 g/L·d), whereas the groups with micron- and millimeter-sized magnetite had slower PA degradation rates (0.746 and 0.636 g/L·d) than CK group. The particle size or surface characteristics of the magnetite may become the main factor determining the PA degradation rate. Furthermore, the analysis of PA conversion and volatile fatty acids (VFAs) distribution showed the C6-dismutation pathway, which converses PA to butyrate, enhanced by the introduction of magnetite. Microbial community analysis showed that PA was degraded mainly by methyl-malonyl-CoA (MMC) pathway. The relative abundance of Syntrophobacter that catalyze MMC pathway in the group with nano-magnetite were much higher after three reaction cycles at 39 %, as compared to micro-magnetite at 28 %, and millimeter-sized magnetite at 27 %, which contributed to faster degradation of PA. Functional enzyme-encoding genes for the four methanogenesis pathways were identified with reference to KEGG database entries. The methanogenesis pathway using acetate was the most abundant pathway in all groups. The observations have important implications for enhancing the PA removal in PA-inhibited anaerobic digester.


Assuntos
Óxido Ferroso-Férrico , Propionatos , Acetatos , Anaerobiose , Reatores Biológicos , Butiratos/metabolismo , Coenzima A/metabolismo , Ácidos Graxos Voláteis/metabolismo , Metano/metabolismo , Tamanho da Partícula , Propionatos/metabolismo
11.
Sci Total Environ ; 760: 144032, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33348150

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) pollution as well as the emissions of nitric oxide (NO) and greenhouse gas nitrous oxide (N2O) in denitrification processes are currently two environmental issues of great concern. Although bioremediation of PAHs under denitrification is considered a promising approach, denitrification was an important contributor to N2O and NO emissions. This long-term study confirmed for the first time that microorganisms could utilize NO to efficiently degrade phenanthrene and fluoranthene. When the two systems of NO-dependent phenanthrene and fluoranthene degradation were stable, the first-order rate constants of phenanthrene and fluoranthene in the two systems (0.1940 and 0.0825 day-1, respectively) were close to those values (0.2290 and 0.1085 day-1, respectively) observed at nitrate-reducing conditions. Further analysis of functional genes revealed that phenanthrene and fluoranthene might be degraded under the combined action of the anaerobic pathway mediated by NO reduction and intra-aerobic pathway mediated by NO dismutation. The genomic analysis showed that Nod genes had high diversity and most of them were similar to aquifer cluster group in the two systems. Microbial community structure analysis indicated that Pseudomonas and Ochrobactrum might be key participants in NO-dependent phenanthrene degradation system, and Azoarcus, Alicycliphilus and Moheibacter might play vital roles in NO-dependent fluoranthene degradation system. This study provides new perspective for anaerobic remediation of PAH pollution and simultaneously reducing NO and N2O emissions during bioprocesses, which has important ecological significance for amending sediment and soil PAHs contamination and potential application for the removal of PAHs in flue gas.


Assuntos
Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Anaerobiose , Biodegradação Ambiental , Fluorenos , Humanos , Óxido Nítrico
12.
J Colloid Interface Sci ; 585: 302-311, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33302047

RESUMO

Porous Mn-based mullite SmMn2O5 was synthesized by the in-situ dismutation of solid state Mn3+ in bulk SmMnO3 perovskite to catalytic oxidation of benzene and chrolobenznen. The physicochemical property of catalyst was acquired by XRD, SEM, N2 adsorption-desorption, XPS, O2-TPD and H2-TPR. Compared with that of bulk SmMnO3 and bulk SmMn2O5, the porous SmMn2O5 mullite (SmMn2O5-ID) displayed higher molar ratios of Mn4+/Mn3+ and Olatt/Oads, and better active oxygen desorption capacity, reducibility and larger specific surface, which promoted the preferable low-temperature catalytic oxidation of VOC. The increase in the content of Mn4+ on the surface of the Sm-Mn mullite reduced the surface defects and increased the proportion of its surface lattice oxygen, thereby promoting the attack of VOC molecules by more lattice oxygen. Combined with the analysis of reactant intermediate for benzene oxidation by in situ diffuse reflectance infrared Fourier transform spectroscopy, the catalytic mechanism of the catalyst was also explored. Moreover, SmMn2O5-ID also showed the excellent stability and the superior removal of mixed VOCs with different concentration ratios. This finding provides an efficient and practical method for exploiting highly active Mn-based mullite with a high efficiency and stability for the purification of air pollution.

13.
Syst Appl Microbiol ; 43(5): 126105, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32847780

RESUMO

Two strains of sulfate-reducing bacteria (J.5.4.2-L4.2.8T and J.3.6.1-H7) were isolated from a pyrite-forming enrichment culture and were compared phylogenetically and physiologically to the closest related type strain Desulfovibrio sulfodismutans DSM 3696T. The isolated strains were vibrio-shaped, motile rods that stained Gram-negative. Growth occurred from 15 to 37°C and within a pH range of 6.5-8.5. Both strains used sulfate, thiosulfate, sulfite, and dimethyl sulfoxide (DMSO) as electron acceptor when grown with lactate. Lactate was incompletely oxidized to acetate. Formate and H2 were used as electron donor in the presence of acetate. Dismutation of thiosulfate and pyrosulfite was observed. The two new isolates differed from D. sulfodismutans by the utilization of DMSO as electron acceptor, 82% genome-wide average nucleotide identity (ANI) and 32% digital DNA-DNA hybridization (dDDH), thus representing a novel species. The type strain of the type species Desulfovibrio desulfuricans Essex6T revealed merely 88% 16S rRNA gene identity and 49% genome-wide average amino acid identity (AAI) to the new isolates as well as to D. sulfodismutans. Furthermore, the dominance of menaquinone MK-7 over MK-6 and the dominance of ai-C15:0 fatty acids were observed not only in the two new isolated strains but also in D. sulfodismutans. Therefore, the definition of a new genus is indicated for which the name Desulfolutivibrio is proposed. We propose for strains J.5.4.2-L4.2.8T and J.3.6.1-H7 the name Desulfolutivibrio sulfoxidireducens gen. nov. sp. nov. with strain J.5.4.2-L4.2.8T defined as type strain. In addition, we propose the reclassification of Desulfovibrio sulfodismutans as Desulfolutivibrio sulfodismutans comb. nov.


Assuntos
Desulfovibrio/classificação , Desulfovibrio/isolamento & purificação , Ferro/metabolismo , Sulfetos/metabolismo , Técnicas de Tipagem Bacteriana , Meios de Cultura , Desulfovibrio/citologia , Desulfovibrio/metabolismo , Desulfovibrio/fisiologia , Dimetil Sulfóxido/metabolismo , Ácidos Graxos/análise , Genes de RNAr , Genoma Bacteriano , Concentração de Íons de Hidrogênio , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Esgotos/microbiologia , Sulfatos/metabolismo , Temperatura
14.
Environ Sci Pollut Res Int ; 26(33): 34377-34387, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31637614

RESUMO

Nitrous oxide (N2O) accumulation in biological nitrogen removal has drawn much attention in recent years; however, nitric oxide (NO) accumulation in denitrification was rarely studied. In this study, NO and N2O accumulation during nitrite denitrification in a lab-scale sequencing batch reactor (SBR) were investigated. Results showed that low pH (< 7) and high influent loading (> 360:90) (COD:NO2--N) caused serious NO and N2O accumulation. The maximal NO accumulation of 4.96 mg L-1 was observed at influent loading of 720:180 and the maximal N2O accumulation of 46.29 mg L-1 was found at pH of 6. The NO accumulation was far higher than the values reported in previous studies. In addition, the high NO accumulation could completely inhibit the activities of reductases involved in denitrification. High NO and N2O accumulation were mainly caused by significant free nitrous acid (FNA) and NO inhibition at low pH and high influent loading. There were significant differences on NO and N2O accumulation at different carbon to nitrogen (COD/N). Low COD/N (≤ 4) could mitigate NO accumulation, but led to high N2O accumulation. It is speculated that NO accumulation is related to the rapid denitrification with accumulated electron in anaerobic stage at high COD/N. N2O accumulation is attributed to intense electron competition at low COD/N. High dissolved oxygen (DO) of 4.04 mg L-1 was detected during NO detoxification in this experiment, which is speculated to be partly caused by NO dismutation.


Assuntos
Desnitrificação , Óxido Nítrico/análise , Nitritos/análise , Dióxido de Nitrogênio/análise , Reatores Biológicos , Nitrogênio , Ácido Nitroso , Óxido Nitroso
15.
Neurotox Res ; 36(4): 746-755, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31228093

RESUMO

The preferential loss of dopaminergic neurons in the substantia nigra pars compacta is one of the pathological hallmarks characterizing Parkinson's disease. Although the pathogenesis of this disorder is not fully understood, oxidative stress plays a central role in the onset and/or progression of Parkinson's disease and dopamine itself has been suggested to participate in the preferential neuronal degeneration through the induction of oxidative conditions. In fact, the accumulation of dopamine into the cytosol can lead to the formation of reactive oxygen species as well as highly reactive dopamine-quinones. In the present work, we first analyzed the cellular damage induced by the addition of dopamine (DA) in the culture medium of SH-SY5Y cells, discriminating whether the harmful effects were related to the generation of reactive oxygen species or to the toxicity associated to dopamine-derived quinones. Then, we tested and demonstrated the capability of the antioxidant enzymes SOD1 and SOD2 to protect cells from the noxious effects induced by DA treatment. Our results support further exploration of superoxide dismutating molecules as a therapeutic strategy against Parkinson's disease.


Assuntos
Antioxidantes/metabolismo , Dopamina/metabolismo , Doença de Parkinson/metabolismo , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase/metabolismo , Linhagem Celular Tumoral , Humanos
16.
Front Microbiol ; 10: 1577, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31354671

RESUMO

Oxygenic denitrification represents a new route in reductive nitrogen turnover which differs from canonical denitrification in how nitric oxide (NO) is transformed into dinitrogen gas. Instead of NO reduction via N2O to N2, NO is proposed to be directly disproportionated into N2 and O2 in oxygenic denitrification, catalyzed by the putative NO dismutase (Nod). Although a high diversity of nod genes has been recovered from various environments, still little is known about the niche partitioning and ecophysiology of oxygenic denitrifiers. One constraint is that nod as a functional marker for oxygenic denitrifiers is not well established. To address this issue, we compared the diversity and phylogeny of nod, 16S rRNA and pmoA gene sequences of four NC10 enrichments that are capable of methane-driven oxygenic denitrification and one environmental sample. The phylogenies of nod, 16S rRNA and pmoA genes of these cultures were generally congruent. The diversity of NC10 bacteria inferred from different genes was also similar in each sample. A new set of NC10-specific nod primers was developed and used in qPCR. The abundance of NC10 bacteria inferred from nod genes was constantly lower than via 16S rRNA genes, but the difference was within one order of magnitude. These results suggest that nod is a suitable molecular marker for studying the diversity and phylogeny of methane-driven oxygenic denitrifiers, the further investigation of which may be of value to develop enhanced strategies for sustainable nitrogen or methane removal.

17.
Biomolecules ; 9(9)2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31487821

RESUMO

The world of medicinal therapies has been historically, and remains to be, dominated by the use of elegant organic molecular structures. Now, a novel medical treatment is emerging based on CeO2 nano-crystals that are discrete clusters of a few hundred atoms. This development is generating a great deal of exciting and promising research activity, as evidenced by this Special Issue of Biomolecules. In this paper, we provide both a steady-state and time-dependent mathematical description of a sequence of reactions: superoxide generation, superoxide dismutase, and hydrogen peroxide catalase and ceria regeneration. This sequence describes the reactive oxygen species (ROS); superoxide, O2-, molecular oxygen, O2, hydroxide ion OH- and hydrogen peroxide, H2O2, interacting with the Ce3+, and Ce4+ surface cations of nanoparticle ceria, CeO2. Particular emphasis is placed on the predicted time-dependent role of the Ce3+/Ce4+ ratio within the crystal. The net reaction is succinctly described as: H2O2 + 2O2- + 2H+ → 2H2O + 2O2. The chemical equations and mathematical treatment appears to align well with several critical in vivo observations such as; direct and specific superoxide dismutase (SOD), ROS control, catalytic regeneration, ceria self-regulation and self-limiting behavior. However, in contrast to experimental observations, the model predicts that the 4+ ceric ion state is the key SOD agent. Future work is suggested based on these calculations.


Assuntos
Cério/química , Modelos Químicos , Nanopartículas/química , Espécies Reativas de Oxigênio/química , Humanos , Cinética
18.
Food Waterborne Parasitol ; 15: e00040, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32095613

RESUMO

The lethal disease alveolar echinococcosis (AE) is caused by the metacestode stage of the fox tapeworm Echinococcus multilocularis. Current chemotherapeutical treatment of AE relies on albendazole and mebendazole, with the caveat that these compounds are not parasiticidal. Drugs have to be taken for a prolonged period of time, often life-long, which can cause adverse effects and reduces the patients' quality of life. In some individuals, benzimidazoles are inactive or cause toxicity, leading to treatment discontinuation. Alternatives to benzimidazoles are urgently needed. Over the recent years, in vivo and in vitro models for low-to-medium throughput drug discovery against AE have been set in place. In vitro drug tests include the phosphoglucose-isomerase (PGI) assay to measure physical damage induced to metacestodes, and viability assays to assess parasiticidal activity against metacestodes and stem cells. In vitro models are also employed for studies on mechanisms of action. In vivo models are thus far based on rodents, mainly mice, and benefits could be gained in future by comparative approaches in naturally infected dogs or captive monkeys. For the identification of novel drugs against AE, a rare disease with a low expected market return, drug-repurposing is the most promising strategy. A variety of chemically synthesized compounds as well as natural products have been analyzed with respect to in vitro and/or in vivo activities against AE. We here review and discuss the most active of these compounds including anti-infective compounds (benzimidazoles, nitazoxanide, amphotericin B, itraconazole, clarithromycin, DB1127, and buparvaquone), the anti-infective anti-malarials (artemisinin, ozonids, mefloquine, and MMV665807) and anti-cancer drugs (isoflavones, 2-methoxyestradiol, methotrexate, navelbine, vincristine, kinase inhibitors, metallo-organic ruthenium complexes, bortezomib, and taxanes). Taking into account the efficacy as well as the potential availability for patients, the most promising candidates are new formulations of benzimidazoles and mefloquine. Future drug-repurposing approaches should also target the energy metabolism of E. multilocularis, in particular the understudied malate dismutation pathway, as this offers an essential target in the parasite, which is not present in mammals.

19.
Biophys Chem ; 192: 20-6, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24995727

RESUMO

α-Tocopherol, the main component of vitamin E, traps highly reactive radicals which otherwise might react with lipids present in plasmatic lipoproteins or in cell membranes. The α-tocopheroxyl radicals generated by this process have also a pro-oxidant action which is contrasted by their reaction with ascorbate or by bimolecular self-reaction (dismutation). The kinetics of this bimolecular self-reaction were explored in solution such as ethanol, and in heterogeneous systems such as deoxycholic acid micelles and in human plasma. According to ESR measurements, the kinetic rate constant (2k(d)) of the bimolecular self-reaction of α-tocopheroxyl radicals in micelles and in human plasma was calculated to be of the order of 10(5) M(-1) s(-1) at 37 °C. This value was obtained considering that the reactive radicals are confined into the micellar pseudophase and is one to two orders of magnitude higher than the value we found in homogeneous phase. The physiological significance of this high value is discussed considering the competition between bimolecular self-reaction and the α-tocopheroxyl radical recycling by ascorbate.


Assuntos
Lipoproteínas/química , alfa-Tocoferol/química , Radicais Livres/química , Humanos , Lipoproteínas/sangue , Micelas
20.
Redox Biol ; 1: 599-607, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24363995

RESUMO

Radiation proctitis, an inflammation and damage to the lower part of colon, is a common adverse event of the radiotherapy of tumors in the abdominal and pelvic region (colon, prostate, cervical). Several Mn(III) porphyrin-based superoxide dismutase mimics have been synthesized and successfully evaluated in preclinical models as radioprotectants. Here we report for the first time the remarkable rectal radioprotection of frequently explored Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin, MnTE-2-PyP(5+). A batch prepared in compliance with good manufacturing practice (GMP), which has good safety/toxicity profile, was used for this study. MnTE-2-PyP(5+) was given subcutaneously at 5 mg/kg, either 1 h before or 1 h after irradiation, with additional drug administered at weekly intervals thereafter. MnTE-2-PyP(5+) ameliorated both acute and chronic radiation proctitis in male Sprague-Dawley rats irradiated with 20-30 Gy protons delivered to 2.5 cm span of rectum using spread-out Bragg peak of a proton treatment beam. Focal irradiation of the rectum produced acute proctitis, which healed, followed by chronic rectal dilation and symptomatic proctitis. MnTE-2-PyP(5+) protected rectal mucosa from radiation-induced crypt loss measured 10 days post-irradiation. Significant effects were observed with both pre- and post-treatment regimens. However, only MnTE-2-PyP(5+) pre-treatment, but not post-treatment, prevented the development of rectal dilation, indicating that proper dosing regimen is critical for radioprotection. The pre-treatment also prevented or delayed the development of chronic proctitis depending on the radiation dose. Further work aimed at developing MnTE-2-PyP(5+) and similar drugs as adjunctive agents for radiotherapy of pelvic tumors is warranted. The present study substantiates the prospects of employing this and similar analogs in preserving normal tissue during cancer radiation as well as any other radiation exposure.


Assuntos
Metaloporfirinas/administração & dosagem , Proctite/tratamento farmacológico , Protetores contra Radiação/administração & dosagem , Reto/efeitos da radiação , Animais , Materiais Biomiméticos , Relação Dose-Resposta a Droga , Injeções Subcutâneas , Masculino , Metaloporfirinas/uso terapêutico , Proctite/patologia , Protetores contra Radiação/uso terapêutico , Ratos , Ratos Sprague-Dawley , Reto/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA