Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Immunity ; 56(5): 944-958.e6, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37040761

RESUMO

Interferon-γ (IFN-γ) is a key cytokine in response to viral or intracellular bacterial infection in mammals. While a number of enhancers are described to promote IFN-γ responses, to the best of our knowledge, no silencers for the Ifng gene have been identified. By examining H3K4me1 histone modification in naive CD4+ T cells within Ifng locus, we identified a silencer (CNS-28) that restrains Ifng expression. Mechanistically, CNS-28 maintains Ifng silence by diminishing enhancer-promoter interactions within Ifng locus in a GATA3-dependent but T-bet-independent manner. Functionally, CNS-28 restrains Ifng transcription in NK cells, CD4+ cells, and CD8+ T cells during both innate and adaptive immune responses. Moreover, CNS-28 deficiency resulted in repressed type 2 responses due to elevated IFN-γ expression, shifting Th1 and Th2 paradigm. Thus, CNS-28 activity ensures immune cell quiescence by cooperating with other regulatory cis elements within the Ifng gene locus to minimize autoimmunity.


Assuntos
Linfócitos T CD8-Positivos , Interferon gama , Animais , Interferon gama/genética , Interferon gama/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular , Sequências Reguladoras de Ácido Nucleico , Homeostase , Células Th1 , Mamíferos
2.
Dev Dyn ; 249(2): 209-221, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31658410

RESUMO

BACKGROUND: Homeodomain transcription factor Otx2 is essential for embryonic development of multiple head tissues, including retinal pigment epithelium (RPE) and neuroretina. Temporospatial regulation of Otx2 expression is critical for its functions. Molecular dissection of the cis-acting enhancers will help elucidate how Otx2 expression is regulated. RESULTS: We comprehensively characterized distal enhancer hs1150 that was previously identified in a high throughput study. We established multiple transgenic mouse lines in which human hs1150, corresponding mouse hs1150, and two highly conserved sub-fragments in the mouse hs1150 were individually fused to a minimal hsp68 promoter to drive reporter expression. We found that hs1150 enhancer directed reporter expression in the RPE, neuroretina, and brain in a developmentally regulated manner. Human hs1150-directed reporter expression largely recapitulated Otx2 expression in the RPE, in the early neuroretina, and to a lesser degree in the early brain. Mouse hs1150, although shorter than human hs1150, exhibited similar enhancer activity, indicating functional conservation of hs1150 enhancer across species. Both of the highly conserved subfragments in mouse hs1150 enhancer directed reporter expression in the early neuroretina, indicating that the hs1150 enhancer has two functional components. CONCLUSIONS: Our findings provide insight into the molecular mechanisms underlying the regulation of Otx2 retinal expression.


Assuntos
Fatores de Transcrição Otx/metabolismo , Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Animais , Proteínas do Olho/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Transgênicos , Ligação Proteica , Fatores de Transcrição/metabolismo
3.
J Cell Biochem ; 118(12): 4240-4253, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28419519

RESUMO

Receptor activator of NF-κB ligand (RANKL) is a TNF-like cytokine which mediates diverse physiological functions including bone remodeling and immune regulation. RANKL has been identified in atherosclerotic lesions; however, its role in atherosclerotic plaque development remains elusive. An enhancer located 75 kb upstream of the murine Rankl gene's transcription start site designated D5 is important for its calciotropic hormone- and cytokine-mediated expression. Here, we determined the impact of RANKL levels in atherosclerotic plaque development in the D5 enhancer-null (D5-/- ) mice in an atherogenic Apoe-/- background fed a high-fat diet (HFD). Rankl mRNA transcripts were increased in aortic arches and thoracic aortae of Apoe-/- mice; however, this increase was blunted in Apoe-/- ;D5-/- mice. Similarly, higher Rankl transcripts were identified in splenic T lymphocytes in Apoe-/- mice, and their levels were reduced in Apoe-/- ;D5-/- mice. When analyzed by micro-computed tomography (µCT), atherosclerotic plaque calcification was identified in six out of eight Apoe-/- mice, whereas only one out of eight Apoe-/- ;D5-/- mice developed plaque calcification after 12 weeks of HFD. However, following 18 weeks of HFD challenge, all of Apoe-/- and Apoe-/- ;D5-/- animals developed atherosclerotic plaque calcification. Likewise, atherosclerotic lesion sizes were site-specifically reduced in the aortic arch of Apoe-/- ;D5-/- mice at initial stage of atherosclerosis and this effect was diminished as atherosclerosis proceeded to a more advanced stage. Our data suggest that deletion of the RANKL D5 enhancer delays the progression of atherosclerotic plaque development and plaque calcification in hypercholesterolemic mice. This work provides important insight into RANKL's regulatory role in atherosclerosis. J. Cell. Biochem. 118: 4240-4253, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Calcinose/metabolismo , Elementos Facilitadores Genéticos , Hipercolesterolemia/complicações , Placa Aterosclerótica/metabolismo , Ligante RANK/genética , Deleção de Sequência , Animais , Sequência de Bases , Calcinose/etiologia , Calcinose/genética , Dieta Hiperlipídica , Modelos Animais de Doenças , Progressão da Doença , Feminino , Camundongos , Camundongos Knockout , Placa Aterosclerótica/etiologia , Placa Aterosclerótica/genética
4.
Physiol Genomics ; 48(2): 167-72, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26645089

RESUMO

Insulin-like growth factor-2 (IGF2) is highly expressed in skeletal muscle and was identified as a quantitative trait locus for muscle mass. Yet little is known about mechanisms of its regulation in muscle. Recently, a DNA segment found ∼100 kb from the Igf2 gene was identified as a possible muscle transcriptional control element. Here we have developed an in vivo reporter system to assess this putative enhancer by substituting nuclear (n) EGFP for Igf2 coding exons in a bacterial artificial chromosome containing the mouse Igf2 - H19 chromosomal locus. After stable transfection into a mesenchymal stem cell line, individual clones were converted to myoblasts and underwent progressive muscle-specific gene expression and myotube formation in differentiation medium. Transgenic mRNA and nuclear-targeted enhanced green fluorescent protein were produced coincident with endogenous Igf2 mRNA, but only in lines containing an intact distal conserved DNA element. Our results show that a 294 bp DNA fragment containing two E-boxes is a necessary and sufficient long-range enhancer for induction of Igf2 gene transcription during skeletal muscle differentiation and provides a robust experimental platform for its further functional dissection.


Assuntos
Elementos Facilitadores Genéticos , Fator de Crescimento Insulin-Like II/genética , Músculos/metabolismo , Animais , Diferenciação Celular , Núcleo Celular/metabolismo , Cromossomos/metabolismo , Meios de Cultura , Éxons , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , RNA Longo não Codificante , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transcrição Gênica
5.
EBioMedicine ; 101: 105026, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38417378

RESUMO

BACKGROUND: An intergenic region at chromosome 4q31 is one of the most significant regions associated with COPD susceptibility and lung function in GWAS. In this region, the implicated causal gene HHIP has a unique epithelial expression pattern in adult human lungs, in contrast to dominant expression in fibroblasts in murine lungs. However, the mechanism underlying the species-dependent cell type-specific regulation of HHIP remains largely unknown. METHODS: We employed snATAC-seq analysis to identify open chromatin regions within the COPD GWAS region in various human lung cell types. ChIP-quantitative PCR, reporter assays, chromatin conformation capture assays and Hi-C assays were conducted to characterize the regulatory element in this region. CRISPR/Cas9-editing was performed in BEAS-2B cells to generate single colonies with stable knockout of the regulatory element. RT-PCR and Western blot assays were used to evaluate expression of HHIP and epithelial-mesenchymal transition (EMT)-related marker genes. FINDINGS: We identified a distal enhancer within the COPD 4q31 GWAS locus that regulates HHIP transcription at baseline and after TGFß treatment in a SMAD3-dependent, but Hedgehog-independent manner in human bronchial epithelial cells. The distal enhancer also maintains chromatin topological domains near 4q31 locus and HHIP gene. Reduced HHIP expression led to increased EMT induced by TGFß in human bronchial epithelial cells. INTERPRETATION: A distal enhancer regulates HHIP expression both under homeostatic condition and upon TGFß treatment in human bronchial epithelial cells. The interaction between HHIP and TGFß signalling possibly contributes to COPD pathogenesis. FUNDING: Supported by NIH grants R01HL127200, R01HL148667 and R01HL162783 (to X. Z).


Assuntos
Proteínas Hedgehog , Doença Pulmonar Obstrutiva Crônica , Adulto , Humanos , Animais , Camundongos , Proteínas Hedgehog/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Pulmão/patologia , Células Epiteliais/metabolismo , Cromatina/genética , Cromatina/metabolismo , Fator de Crescimento Transformador beta/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-33785414

RESUMO

Adult mammalian hearts are not regenerative. However, recent studies have evidenced that hypoxia enhances their regeneration. Islet1 (isl1) is known as a cardiac progenitor marker, which is quiescent in adult mammal hearts. In Xenopus hearts, transcriptional activation of isl1 was shown during cardiac regeneration of froglets at 3 months after metamorphosis. In this study, we examined transcriptional regulation of isl1 focusing on hypoxia-inducible factor 1α (hif1α) in Xenopus heart. We found that hif1α expression was increased in response to cardiac injury and overexpression of hif1α upregulated mRNA expression of isl1. Multiple conservation analysis including 9 species revealed that 8 multiple conserved regions (MCRs) were present upstream of isl1. DNA sequence analysis using JASPAR showed hif1α binding motifs in MCRs. By luciferase reporter assay and chromatin immunoprecipitation analysis, we found that hif1α directly bound to hif1α motifs in the most distant MCR8 and showed a specific transcriptional activity on the MCR8. In the luciferase assay using constructs carrying MCR8 without a responsive motif of hif1α, the reporter activity was lost. Pharmacologically inhibition of hif1α affected isl1 transcription and downstream events including cardiac phenotypes, suggesting functional defects of islet1. Contrarily in murine hearts, transcription of isl1 was unresponsive even after cryoinjury to adult hearts while hif1α mRNA was induced. In comparative analysis of multiple alignment, hif1α elements present in MCR8 of Xenopus or zebrafish were found to be disrupted as species are evolutionarily distant from Xenopus and zebrafish. Our results suggested an altered switch of isl1 transcription between mammals and Xenopus laevis.


Assuntos
Loci Gênicos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Miocárdio/metabolismo , Elementos de Resposta , Transcrição Gênica , Proteínas de Xenopus/metabolismo , Animais , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Camundongos , Proteínas de Xenopus/genética , Xenopus laevis
7.
J Genet Genomics ; 47(8): 407-424, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-33187878

RESUMO

CCCTC-binding factor (CTCF) is a multifunctional zinc finger protein that is conserved in metazoan species. CTCF is consistently found to play an important role in many diverse biological processes. CTCF/cohesin-mediated active chromatin 'loop extrusion' architects three-dimensional (3D) genome folding. The 3D architectural role of CTCF underlies its multifarious functions, including developmental regulation of gene expression, protocadherin (Pcdh) promoter choice in the nervous system, immunoglobulin (Ig) and T-cell receptor (Tcr) V(D)J recombination in the immune system, homeobox (Hox) gene control during limb development, as well as many other aspects of biology. Here, we review the pleiotropic functions of CTCF from the perspective of its essential role in 3D genome architecture and topological promoter/enhancer selection. We envision the 3D genome as an enormous complex architecture, with tens of thousands of CTCF sites as connecting nodes and CTCF proteins as mysterious bonds that glue together genomic building parts with distinct articulation joints. In particular, we focus on the internal mechanisms by which CTCF controls higher order chromatin structures that manifest its many façades of physiological and pathological functions. We also discuss the dichotomic role of CTCF sites as intriguing 3D genome nodes for seemingly contradictory 'looping bridges' and 'topological insulators' to frame a beautiful magnificent house for a cell's nuclear home.


Assuntos
Fator de Ligação a CCCTC/genética , Cromatina/genética , Genoma Humano/genética , Sítios de Ligação/genética , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Elementos Facilitadores Genéticos/genética , Humanos , Regiões Promotoras Genéticas/genética , Receptores de Antígenos de Linfócitos T/genética , Coesinas
8.
Genome Biol ; 20(1): 197, 2019 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-31514731

RESUMO

BACKGROUND: Robustness and evolutionary stability of gene expression in the human genome are established by an array of redundant enhancers. RESULTS: Using Hi-C data in multiple cell lines, we report a comprehensive map of promoters and active enhancers connected by chromatin contacts, spanning 9000 enhancer chains in 4 human cell lines associated with 2600 human genes. We find that the first enhancer in a chain that directly contacts the target promoter is commonly located at a greater genomic distance from the promoter than the second enhancer in a chain, 96 kb vs. 45 kb, respectively. The first enhancer also features higher similarity to the promoter in terms of tissue specificity and higher enrichment of loop factors, suggestive of a stable primary contact with the promoter. In contrast, a chain of enhancers which connects to the target promoter through a neutral DNA segment instead of an enhancer is associated with a significant decrease in target gene expression, suggesting an important role of the first enhancer in initiating transcription using the target promoter and bridging the promoter with other regulatory elements in the locus. CONCLUSIONS: The widespread chained structure of gene enhancers in humans reveals that the primary, critical enhancer is distal, commonly located further away than other enhancers. This first, distal enhancer establishes contacts with multiple regulatory elements and safeguards a complex regulatory program of its target gene.


Assuntos
Elementos Facilitadores Genéticos , Regiões Promotoras Genéticas , Linhagem Celular , Cromatina/química , Regulação da Expressão Gênica , Humanos
9.
Genetics ; 208(3): 1165-1179, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29301908

RESUMO

Distal enhancers are thought to play important roles in the spatiotemporal regulation of gene expression during embryonic development, but few predicted enhancer elements have been shown to affect transcription of their endogenous genes or to alter phenotypes when disrupted. Here, we demonstrate that a 123.6-kb deletion within the mouse Slc25a13 gene is associated with reduced transcription of Dlx5, a gene located 660 kb away. Mice homozygous for the Slc25a13 deletion mutation [named hyperspin (hspn)] have malformed inner ears and are deaf with balance defects, whereas previously reported Slc25a13 knockout mice showed no phenotypic abnormalities. Inner ears of Slc25a13hspn/hspn mice have malformations similar to those of Dlx5-/- embryos, and Dlx5 expression is severely reduced in the otocyst but not the branchial arches of Slc25a13hspn/hspn embryos, indicating that the Slc25a13hspn deletion affects otic-specific enhancers of Dlx5 In addition, transheterozygous Slc25a13+/hspn Dlx5+/- mice exhibit noncomplementation with inner ear dysmorphologies similar to those of Slc25a13hspn/hspn and Dlx5-/-embryos, verifying a cis-acting effect of the Slc25a13hspn deletion on Dlx5 expression. CRISPR/Cas9-mediated deletions of putative enhancer elements located within the Slc25a13hspn deleted region failed to phenocopy the defects of Slc25a13hspn/hspn mice, suggesting the possibility of multiple enhancers with redundant functions. Our findings in mice suggest that analogous enhancer elements in the human SLC25A13 gene may regulate DLX5 expression and underlie the hearing loss that is associated with split-hand/-foot malformation 1 syndrome. Slc25a13hspn/hspn mice provide a new animal model for studying long-range enhancer effects on Dlx5 expression in the developing inner ear.


Assuntos
Orelha Interna/metabolismo , Elementos Facilitadores Genéticos , Proteínas de Homeodomínio/genética , Deleção de Sequência , Animais , Sistemas CRISPR-Cas , Mapeamento Cromossômico , Cromossomos Humanos Par 7 , Orelha Interna/embriologia , Orelha Interna/ultraestrutura , Feminino , Genótipo , Heterozigoto , Humanos , Camundongos , Camundongos Knockout , Mutação , Fenótipo , Complexo de Endopeptidases do Proteassoma/genética , Análise de Sequência de DNA
10.
Biochem. biophys. res. commun ; 358(2): 655-600, jun. 29, 2007. ilus
Artigo em Inglês | Coleciona SUS | ID: biblio-944387

RESUMO

A comparative analysis between sequences of Msx1 promoter gene from human, mouse, and fugu allowed us to identify sequenceshighly conserved among these animals. One of the regions of great homology is localized between the positions -4622 and -4572,including the region described as distal enhancer. In this region putative transcription factors binding sites for Nkx2.5, CTF-CBP,Bicoid, Brn2, and Oct were found. To evaluate the functionality of these sites we performed EMSA analysis using two different regionsfrom the distal enhancer and nuclear protein extracts from embryos. The results showed that in the presence of a Bicoid consensus bindingsite a DNA–protein complex can be formed. The identification of the proteins involved in this complex by mass spectrometry andWestern blotting identified OTX2, a Bicoid-like protein. This protein was shown to be present in nuclear extracts of the embryonic stagesanalyzed by Western blot. Altogether these results suggest that OTX2 is a putative candidate to activate mice Msx1 gene from distalenhancer.


Assuntos
Masculino , Feminino , Humanos , Fator de Transcrição MSX1 , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA