Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Diabetes Obes Metab ; 18(10): 1013-24, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27357054

RESUMO

AIMS: To investigate the antidiabetic actions of three dogfish glucagon peptide analogues [known glucagon-like peptide-1 and glucagon receptor co-agonists] after chronic administration in diet-induced high-fat-diet-fed diabetic mice. MATERIALS AND METHODS: National Institutes of Health Swiss mice were pre-conditioned to a high-fat diet (45% fat) for 100 days, and control mice were fed a normal diet (10% fat). Normal diet control and high-fat-fed control mice received twice-daily intraperitoneal (i.p.) saline injections, while the high-fat-fed treatment groups (n = 8) received twice-daily injections of exendin-4(1-39), [S2a]dogfish glucagon, [S2a]dogfish glucagon exendin-4(31-39) or [S2a]dogfish glucagon-Lys(30) -γ-glutamyl-PAL (25 nmol/kg body weight) for 51 days. RESULTS: After dogfish glucagon analogue treatment, there was a rapid and sustained decrease in non-fasting blood glucose and an associated insulinotropic effect (analysis of variance, p < .05 to <.001) compared with saline-treated high-fat-fed controls. All peptide treatments significantly improved i.p. and oral glucose tolerance with concomitant increased insulin secretion compared with saline-treated high-fat-fed controls (p <.05 to <.001). After chronic treatment, no receptor desensitization was observed but insulin sensitivity was enhanced for all peptide-treated groups (p < .01 to <.001) except [S2a]dogfish glucagon. Both exendin-4 and [S2a]dogfish glucagon exendin-4(31-39) significantly reduced plasma triglyceride concentrations compared with those found in lean controls (p = .0105 and p = .0048, respectively). Pancreatic insulin content was not affected by peptide treatments but [S2a]dogfish glucagon and [S2a]dogfish glucagon exendin-4(31-39) decreased pancreatic glucagon by 28%-34% (p = .0221 and p = .0075, respectively). The percentage of ß-cell area within islets was increased by exendin-4 and peptide analogue treatment groups compared with high-fat-fed controls and the ß-cell area decreased (p < .05 to <.01). CONCLUSIONS: Overall, dogfish glucagon co-agonist analogues had several beneficial metabolic effects, showing therapeutic potential for type 2 diabetes.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Glucagon/farmacologia , Hiperglicemia/prevenção & controle , Insulina/metabolismo , Insulina/fisiologia , Obesidade/metabolismo , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Diabetes Mellitus Experimental/complicações , Dieta Hiperlipídica , Cação (Peixe)/metabolismo , Glucagon/análogos & derivados , Glucagon/metabolismo , Teste de Tolerância a Glucose , Hiperglicemia/complicações , Resistência à Insulina , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Masculino , Camundongos , Camundongos Obesos , Obesidade/etiologia
2.
Peptides ; 147: 170706, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34861327

RESUMO

The long-acting glucagon-like peptide-1 receptor (GLP1R) agonist, semaglutide and the unimolecular glucose-dependent insulinotropic polypeptide receptor (GIPR)/GLP1R dual-agonist, tirzepatide have been successfully introduced as therapeutic options for patients with Type-2 diabetes (T2DM) and obesity. Proglucagon-derived peptides from phylogenetically ancient fish act as naturally occurring dual agonists at the GLP1R and the glucagon receptor (GCGR) with lamprey GLP-1 and paddlefish glucagon being the most potent and effective in stimulating insulin release from BRIN-BD11 clonal ß-cells. These peptides were also the most effective in lowering blood glucose and elevating plasma insulin concentrations when administered intraperitoneally to overnight-fasted mice together with a glucose load. Zebrafish GIP acts as a dual agonist at the GIPR and GLP1R receptors. Studies with the high fat-fed mouse, an animal model with obesity, impaired glucose-tolerance and insulin-resistance, have shown that twice-daily administration of the long-acting analogs [D-Ala2]palmitoyl-lamprey GLP-1 and [D-Ser2]palmitoyl-paddlefish glucagon over 21 days improves glucose tolerance and insulin sensitivity. This was associated with ß-cell proliferation, protection of ß-cells against apoptosis, decreased pancreatic glucagon content, improved lipid profile, reduced food intake and selective alteration in the expression of genes involved in ß-cell stimulus-secretion coupling. In insulin-deficient GluCreERT2;ROSA26-eYFP transgenic mice, the peptides promoted an increase in ß-cell mass with positive effects on transdifferentiation of glucagon-producing to insulin-producing cells. Naturally occurring fish dual agonist peptides, particularly lamprey GLP-1 and paddlefish glucagon, provide templates for development into therapeutic agents for obesity-related T2DM.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Proteínas de Peixes/farmacologia , Incretinas/agonistas , Obesidade/tratamento farmacológico , Animais , Fármacos Antiobesidade/farmacologia , Diabetes Mellitus Tipo 2/etiologia , Ingestão de Alimentos/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Glucose/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Incretinas/farmacologia , Resistência à Insulina , Obesidade/complicações , Proglucagon/química
3.
Mol Cell Endocrinol ; 431: 133-44, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27179756

RESUMO

The antidiabetic potential of thirteen novel dogfish glucagon derived analogues were assessed in vitro and in acute in vivo studies. Stable peptide analogues enhanced insulin secretion from BRIN-BD11 ß-cells (p < 0.001) and reduced acute glycaemic responses following intraperitoneal glucose (25 nmol/kg) in healthy NIH Swiss mice (p < 0.05-p<0.001). The in vitro insulinotropic actions of [S2a]dogfish glucagon, [S2a]dogfish glucagon-exendin-4(31-39) and [S2a]dogfish glucagon-Lys(30)-γ-glutamyl-PAL, were blocked (p < 0.05-p<0.001) by the specific GLP-1 and glucagon receptor antagonists, exendin-4(9-39) and (desHis(1)Pro(4)Glu(9))glucagon amide but not by (Pro(3))GIP, indicating lack of GIP receptor involvement. These analogues dose-dependently stimulated cAMP production in GLP-1 and glucagon (p < 0.05-p<0.001) but not GIP-receptor transfected cells. They improved acute glycaemic and insulinotropic responses in high-fat fed diabetic mice and in wild-type C57BL/6J and GIPR-KO mice (p < 0.05-p<0.001), but not GLP-1R-KO mice, confirming action on GLP-1 but not GIP receptors. Overall, dogfish glucagon analogues have potential for diabetes therapy, exerting beneficial metabolic effects via GLP-1 and glucagon receptors.


Assuntos
Cação (Peixe)/metabolismo , Glucagon/metabolismo , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Peptídeos/farmacologia , Animais , Linhagem Celular , Cricetinae , Polipeptídeo Inibidor Gástrico/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucose/metabolismo , Células HEK293 , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores dos Hormônios Gastrointestinais/metabolismo , Receptores de Glucagon/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA