RESUMO
RESEARCH HIGHLIGHTS: First confirmation of AOAV-16 in domestic and wild birds in China.AOAV-16 are low virulent viruses for chickens.Co-circulation/co-infection of AOAV-16 and H9N2 subtype AIV enhanced pathogenicity.Different intergenic sequences and recombination events exist within AOAV-16.
RESUMO
Wild-bird origin influenza A viruses (IAVs or avian influenza) have led to sporadic outbreaks among domestic poultry in the United States and Canada, resulting in economic losses through the implementation of costly containment practices and destruction of birds. We used evolutionary analyses of virus sequence data to determine that 78 H5 low-pathogenic avian influenza viruses (LPAIVs) isolated from domestic poultry in the United States and Canada during 2001 to 2017 resulted from 18 independent virus introductions from wild birds. Within the wild-bird reservoir, the hemagglutinin gene segments of H5 LPAIVs exist primarily as two cocirculating genetic sublineages, and our findings suggest that the H5 gene segments flow within each migratory bird flyway and among adjacent flyways, with limited exchange between the nonadjacent Atlantic and Pacific Flyways. Phylogeographic analyses provided evidence that IAVs from dabbling ducks and swans/geese contributed to the emergence of viruses among domestic poultry. H5 LPAIVs isolated from commercial farm poultry (i.e., turkey) that were descended from a single introduction typically remained a single genotype, whereas those from live-bird markets sometimes led to multiple genotypes, reflecting the potential for reassortment with other IAVs circulating within live-bird markets. H5 LPAIVs introduced from wild birds to domestic poultry represent economic threats to the U.S. poultry industry, and our data suggest that such introductions have been sporadic, controlled effectively through production monitoring and a stamping-out policy, and are, therefore, unlikely to result in sustained detections in commercial poultry operations.IMPORTANCE Integration of viral genome sequencing into influenza surveillance for wild birds and domestic poultry can elucidate evolutionary pathways of economically costly poultry pathogens. Evolutionary analyses of H5 LPAIVs detected in domestic poultry in the United States and Canada during 2001 to 2017 suggest that these viruses originated from repeated introductions of IAVs from wild birds, followed by various degrees of reassortment. Reassortment was observed where biosecurity was low and where opportunities for more than one virus to circulate existed (e.g., congregations of birds from different premises, such as live-bird markets). None of the H5 lineages identified were maintained for the long term in domestic poultry, suggesting that management strategies have been effective in minimizing the impacts of virus introductions on U.S. poultry production.
Assuntos
Genótipo , Vírus da Influenza A Subtipo H5N2/genética , Influenza Aviária , Doenças das Aves Domésticas , Aves Domésticas/virologia , Animais , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/patogenicidade , Vírus da Influenza A Subtipo H5N2/patogenicidade , Influenza Aviária/epidemiologia , Influenza Aviária/genética , América do Norte/epidemiologia , Filogeografia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/genéticaRESUMO
Migratory birds may play a role in transmission of avian influenza virus. We report the infection of black-tailed gulls and chickens in eastern China with avian influenza (H13N2) and (H13N8) viruses. We found that these H13 viruses were transmitted from migratory birds to domestic poultry.
Assuntos
Animais Selvagens , Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/virologia , Animais , Aves , China/epidemiologia , Genes Virais , Filogenia , RNA ViralRESUMO
IntroductionFrance is one of Europe's foremost poultry producers and the world's fifth largest producer of poultry meat. In November 2016, highly pathogenic avian influenza (HPAI) virus subtype H5N8 emerged in poultry in the country. As of 23 March 2017, a total of 484 confirmed outbreaks were reported, with consequences on animal health and socio-economic impacts for producers. Methods: We examined the spatio-temporal distribution of outbreaks that occurred in France between November 2016 and March 2017, using the space-time K-function and space-time permutation model of the scan statistic test. Results: Most outbreaks affected duck flocks in south-west France. A significant space-time interaction of outbreaks was present at the beginning of the epidemic within a window of 8 km and 13 days. This interaction disappeared towards the epidemic end. Five spatio-temporal outbreak clusters were identified in the main poultry producing areas, moving sequentially from east to west. The average spread rate of the epidemic front wave was estimated to be 5.5 km/week. It increased from February 2017 and was negatively associated with the duck holding density. Conclusion: HPAI-H5N8 infections varied over time and space in France. Intense transmission events occurred at the early stages of the epidemic, followed by long-range jumps in the disease spread towards its end. Findings support strict control strategies in poultry production as well as the maintenance of high biosecurity standards for poultry holdings. Factors and mechanisms driving HPAI spread need to be further investigated.
Assuntos
Surtos de Doenças/veterinária , Patos/virologia , Vírus da Influenza A Subtipo H5N8/patogenicidade , Influenza Aviária/epidemiologia , Doenças das Aves Domésticas/virologia , Animais , França , Vírus da Influenza A Subtipo H5N8/genética , Vírus da Influenza A Subtipo H5N8/isolamento & purificação , Influenza Aviária/virologia , Aves Domésticas/virologia , Doenças das Aves Domésticas/epidemiologia , Análise Espaço-TemporalRESUMO
BACKGROUND: National surveillance of avian influenza virus (AIV) in South Korea has been annually conducted for the early detection of AIV and responses to the introduction of highly pathogenic avian influenza (HPAI) virus. In this study, we report on a nationwide surveillance study of AIV in domestic poultry and wild birds in South Korea between 2012 and 2014. METHODS: During the surveillance programs between 2012 and 2014, 141,560 samples were collected. Of these, 102,199 were from poultry farms, 8215 were from LBMs, and 31,146 were from wild bird habitats. The virus isolation was performed by inoculation of embryonated chicken eggs and AIV isolates were detected using hemagglutination assay. For subtying of AIV, the hemagglutinin and neuraminidase genes were confirmed by sequencing. Phylogenetic analysis of the H5 subtypes was performed using 28 H5 AIV isolates. RESULTS: Between 2012 and 2014, a total of 819 AIV were isolated from 141,560 samples. Virus isolation rates for AIV were 0.6, 0.4, 0.1, and 2.7% in wild birds (n = 202), domestic ducks (n = 387), minor poultry (n = 11), and the live bird market (LBM) (n = 219), respectively. In wild birds, various subtypes were found including H1-H7 and H9-H13. The major subtypes were H5 (n = 48, 23.9%: N3 (n = 4) and N8 (n = 44)), H4 (n = 39, 19.4%), and H1 (n = 29, 14.4%). In domestic poultry, mainly ducks, the H5N8 (n = 275, 59.3%), H3 (n = 30, 17.2%), and H6 (n = 53, 11.4%) subtypes were predominantly found. The most frequently detected subtypes in LBM, primarily Korean native chicken, were H9 (n = 169, 77.2%). H3 (n = 10, 4%) and H6 (n = 30, 13.7%) were also isolated in LBM. Overall, the prevalence of AIV was found to be higher between winter and spring and in western parts of South Korea. The unusual high prevalence of the H5 subtype of AIV was due to the large scale outbreak of H5N8 HPAI in wild birds and domestic poultry in 2014. CONCLUSIONS: Enhanced surveillance and application of effective control measures in wild birds and domestic poultry, including LBM, should be implemented to control AI and eradicate HPAI.
Assuntos
Vírus da Influenza A/classificação , Vírus da Influenza A/isolamento & purificação , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Animais , Aves , Monitoramento Epidemiológico , Testes de Inibição da Hemaglutinação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Neuraminidase/genética , Filogenia , República da Coreia/epidemiologia , Análise de Sequência de DNA , Homologia de Sequência , Cultura de VírusRESUMO
In spite of highly pathogenic avian influenza H5N1 vaccination campaigns for domestic poultry, H5N1 viruses continue to circulate in Vietnam. To estimate the prevalence of avian influenza virus in Vietnam, surveillance was conducted between November 2011 and February 2013. Genetic analysis of 312 highly pathogenic avian influenza H5 viruses isolated from poultry in Vietnam was conducted and possible genetic relationships with strains from neighboring countries were investigated. As previously reported, phylogenetic analysis of the avian influenza virus revealed two H5N1 HPAI clades that were circulating in Vietnam. Clade 1.1, related to Cambodian strains, was predominant in the southern provinces, while clade 2.3.2.1 viruses were predominant in the northern and central provinces. Sequence analysis revealed evidence of active genetic evolution. In the gene constellation of clade 2.3.2.1, genotypes A, B, and B(II) existed during the 2011/2012 winter season. In June 2012, new genotype C emerged by reassortment between genotype A and genotype B(II), and this genotype was predominant in 2013 in the northern and central provinces. Interestingly, enzootic Vietnamese clade 2.3.2.1C H5 virus subsequently reassorted with N2, which originated from wild birds, to generate H5N2 highly pathogenic avian influenza, which was isolated from duck in the northeast region. This investigation indicated that H5N1 outbreaks persist in Vietnam and cause genetic reassortment with circulating viruses. It is necessary to strengthen active influenza surveillance to eradicate highly pathogenic avian influenza viruses and sever the link between highly pathogenic avian influenza and other circulating influenza viruses.
Assuntos
Evolução Molecular , Vírus da Influenza A/genética , Influenza Aviária/epidemiologia , Aves Domésticas , Animais , Genótipo , Influenza Aviária/virologia , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA/veterinária , Vietnã/epidemiologiaRESUMO
In this study, we report the first outbreak of highly pathogenic avian influenza (HPAI) A H5N8, clade 2.3.4.4b in Kosovo on 19 May 2021. The outbreak consisted of three phases: May-June 2021, September-November 2021, and January-May 2022. In total, 32 backyards and 10 commercial holdings tested positive for the virus. Interestingly, the third and last phase of the outbreak coincided with the massive H5N1 clade 2.3.4.4b epidemic in Europe. Phylogenetic analyses of 28 viral strains from Kosovo revealed that they were closely related to the H5N8 clade 2.3.4.4.b viruses that had been circulating in Albania, Bulgaria, Croatia, Hungary, and Russia in early 2021. Whole genome sequencing of the 25 and partial sequencing of three H5N8 viruses from Kosovo showed high nucleotide identity, forming a distinctive cluster and suggesting a single introduction. The results of the network analysis were in accordance with the three epidemic waves and suggested that the viral diffusion could have been caused by secondary spreads among farms and/or different introductions of the same virus from wild birds. The persistent circulation of the same virus over a one-year period highlights the potential risk of the virus becoming endemic, especially in settings with non-adequate biosecurity.
RESUMO
Zoonotic diseases are of considerable concern to the human population and viruses such as avian influenza (AIV) threaten food security, wildlife conservation and human health. Wild waterfowl and the natural wetlands they use are known AIV reservoirs, with birds capable of virus transmission to domestic poultry populations. While infection risk models have linked migration routes and AIV outbreaks, there is a limited understanding of wild waterfowl presence on commercial livestock facilities, and movement patterns linked to natural wetlands. We documented 11 wild waterfowl (three Anatidae species) in or near eight commercial livestock facilities in Washington and California with GPS telemetry data. Wild ducks used dairy and beef cattle feed lots and facility retention ponds during both day and night suggesting use for roosting and foraging. Two individuals (single locations) were observed inside poultry facility boundaries while using nearby wetlands. Ducks demonstrated high site fidelity, returning to the same areas of habitats (at livestock facilities and nearby wetlands), across months or years, showed strong connectivity with surrounding wetlands, and arrived from wetlands up to 1251 km away in the week prior. Telemetry data provides substantial advantages over observational data, allowing assessment of individual movement behaviour and wetland connectivity that has significant implications for outbreak management. Telemetry improves our understanding of risk factors for waterfowl-livestock virus transmission and helps identify factors associated with coincident space use at the wild waterfowl-domestic livestock interface. Our research suggests that even relatively small or isolated natural and artificial water or food sources in/near facilities increases the likelihood of attracting waterfowl, which has important consequences for managers attempting to minimize or prevent AIV outbreaks. Use and interpretation of telemetry data, especially in near-real-time, could provide key information for reducing virus transmission risk between waterfowl and livestock, improving protective barriers between wild and domestic species, and abating outbreaks.
Assuntos
Doenças dos Bovinos , Vírus da Influenza A , Influenza Aviária , Animais , Animais Selvagens , Bovinos , Patos , Humanos , Gado , Aves Domésticas , Água , Áreas AlagadasRESUMO
Understanding transmission dynamics that link wild and domestic animals is a key element of predicting the emergence of infectious disease, an event that has highest likelihood of occurring wherever human livelihoods depend on agriculture and animal trade. Contact between poultry and wild birds is a key driver of the emergence of highly pathogenic avian influenza (HPAI), a process that allows for host switching and accelerated reassortment, diversification, and spread of virus between otherwise unconnected regions. This study addresses questions relevant to the spillover of HPAI at a transmission hotspot: what is the nature of the wild bird-poultry interface in Egypt and adjacent Black Sea-Mediterranean countries and how has this contributed to outbreaks occurring worldwide? Using a spatiotemporal model of infection risk informed by satellite tracking of waterfowl and viral phylogenetics, this study identified ecological conditions that contribute to spillover in this understudied region. Results indicated that multiple ducks (Northern Shoveler and Northern Pintail) hosted segments that shared ancestry with HPAI H5 from both clade 2.2.1 and clade 2.3.4 supporting the role of Anseriformes in linking viral populations in East Asia and Africa over large distances. Quantifying the overlap between wild ducks and H5N1-infected poultry revealed an increasing interface in late winter peaking in early spring when ducks expanded their range before migration, with key differences in the timing of poultry contact risk between local and long-distance migrants.
RESUMO
The geographical distribution and impact on animal and human health of both West Nile and Usutu viruses, two flaviviruses of the Japanese encephalitis complex, have been increasing during the past two decades. Both viruses circulate in Europe and Africa within a natural cycle between wild birds and mosquitoes, mainly from the Culex genus. We retrospectively analyzed sera from domestic and wild birds sampled in 2008 in two wetlands, namely the Inner Niger Delta, Mali, and the Lake Alaotra area, Madagascar. Sera were first tested using a commercial ID Screen West Nile Competition Multi-species ELISA kit. Then, positive sera and sera with insufficient volume for testing with ELISA were tested with a Microneutralization Test. In Mali, the observed seroprevalence in domestic birds was 28.5% [24.5; 32.8] 95%CI, 3.1 % [1.8; 5.2] 95%CI, 6.2% [3.4; 10.2] 95%CI and 9.8 % [7.3; 12.8] 95%CI, for West Nile virus (WNV), Usutu virus (USUV), undetermined flavivirus, and WNV/USUV respectively. Regarding domestic birds of Madagascar, the observed seroprevalence was 4.4 % [2.1; 7.9]95%CI for WNV, 0.9% [0.1; 3.1] 95%CI for USUV, 1.3% [0.5; 2.8] 95%CI for undetermined flavivirus, and null for WNV/USUV. Among the 150 wild birds sampled in Madagascar, two fulvous whistling-ducks (Dendrocygna bicolor) were positive for WNV and two for an undetermined flavivirus. One white-faced whistling-duck (Dendrocygna viduata) and one Hottentot teal (Spatula hottentota) were tested positive for USUV. African and European wetlands are linked by wild bird migrations. This first detection of USUV-as well as the confirmed circulation of WNV in domestic birds of two wetlands of Mali and Madagascar-emphasizes the need to improve the surveillance, knowledge of epidemiological patterns, and phylogenetic characteristics of flavivirus in Africa, particularly in areas prone to sustained, intense flavivirus transmission such as wetlands.
Assuntos
Aves , Infecções por Flavivirus , Flavivirus , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Adulto , Animais , Aves/virologia , Feminino , Flavivirus/isolamento & purificação , Humanos , Madagáscar , Masculino , Mali , Filogenia , Estudos Retrospectivos , Estudos Soroepidemiológicos , Áreas AlagadasRESUMO
A total of 15 dead or sick birds from 13 clinical outbreaks of avian influenza in ducks, geese, chickens and turkeys in 2017 in Bangladesh were examined. The presence of H5N1 influenza A virus in the affected birds was detected by RT-PCR. Phylogenetic analysis based on full-length gene sequences of all eight gene segments revealed that these recent outbreaks were caused by a new reassortant of clade 2.3.2.1a H5N1 virus, which had been detected earlier in 2015 during surveillance in live bird markets (LBMs) and wet lands. This reassortant virus acquired PB2, PB1, PA, NP and NS genes from low pathogenic avian influenza viruses mostly of non-H9N2 subtypes but retained HA, NA and M genes of the old clade 2.3.2.1a viruses. Nevertheless, the HA gene of these new viruses was 2.7% divergent from that of the old clade 2.3.2.1a viruses circulated in Bangladesh. Interestingly, similar reassortment events could be traced back in four 2.3.2.1a virus isolates of 2013 from backyard ducks. It suggests that this reassortant virus emerged in 2013, which took two years to be detected at a broader scale (i.e. in LBMs), another two years until it became widely spread in poultry and fully replaced the old viruses. Several mutations were detected in the recent Bangladeshi isolates, which are likely to influence possible phenotypic alterations such as increased mammalian adaptation, reduced susceptibility to antiviral agents and reduced host antiviral response.
Assuntos
Virus da Influenza A Subtipo H5N1/isolamento & purificação , Influenza Aviária/virologia , Doenças das Aves Domésticas/virologia , Vírus Reordenados/isolamento & purificação , Animais , Bangladesh , Galinhas , Patos , Gansos , Virus da Influenza A Subtipo H5N1/classificação , Filogenia , Vírus Reordenados/classificação , PerusRESUMO
Up to now only nine whole genome sequences of avian avulavirus 6 (AAvV-6) had been documented in the world since the first discovery of AAvV-6 (AAvV-6/duck/HongKong/18/199/77) at a domestic duck in 1977 from Hong Kong of China. Very limited information is known about the regularities of transmission, genetic and biological characteristics of AAvV-6 because of the lower isolation rate and mild losses for poultry industry. To better further explore the relationships among above factors, an AAvV-6 epidemiological surveillance of domestic poultry and wild birds in six provinces of China suspected of sites of inter-species transmission and being intercontinental flyways during the year 2013-2017 was conducted. Therefore, 9,872 faecal samples from wild birds and 1,642 cloacal and tracheal swab samples from clinically healthy poultry of live bird market (LBM) were collected respectively. However, only one novel hemagglutination-negative AAvV-6 isolate (AAvV-6/mallard/Hubei/2015) was isolated from a fresh faecal sample obtained from mallard at a wetland of Hubei province. Sequencing and phylogenetic analyses of this AAvV-6 isolate (AAvV-6/mallard/Hubei/2015) indicated that this isolate grouping to genotype I were epidemiological intercontinentally linked with viruses from the wild birds in Europe and America. Meanwhile, at least two genotypes (I and II) are existed within serotype AAvV-6. In additional, this novel hemagglutination-negative AAvV-6 isolate in chicken embryos restored its hemagglutination when pre-treated with trypsin. These findings, together with data from other AAvV-6, suggest potential epidemiological intercontinental spreads among AAvV-6 transmission by wild migratory birds, and reveal potential threats to wild birds and domestic poultry worldwide.
Assuntos
Animais Domésticos/virologia , Animais Selvagens/virologia , Infecções por Avulavirus/transmissão , Avulavirus/isolamento & purificação , Doenças das Aves/transmissão , Doenças das Aves Domésticas/transmissão , Animais , Avulavirus/genética , Infecções por Avulavirus/veterinária , Infecções por Avulavirus/virologia , Doenças das Aves/virologia , Galinhas/virologia , China/epidemiologia , Patos/virologia , Fezes/virologia , Genótipo , Hemaglutinação , Testes de Hemaglutinação/veterinária , Influenza Aviária/epidemiologia , Filogenia , Doenças das Aves Domésticas/virologia , SorogrupoRESUMO
Recently, an increased incidence of outbreaks of highly pathogenic avian influenza (HPAI) H5N8 in poultry linked to infected migratory birds has been reported from different European, Asian and African countries. In Egypt, incursion of HPAI H5N8 virus of clade 2.3.4.4b has been recently registered. Full genomic characterization of 3 virus isolates from wild birds and poultry (backyard and commercial farm sectors) showed high nucleotide similarity among the HA, NA, M, and NS gene segments of the three Egyptian HPAI H5N8 viruses, indicating that they are descendants of a common ancestral virus. However, the analyzed Egyptian H5N8 viruses revealed distinct genotypes involving different origins of the PB2, PB1, PA and/or NP segments. In genotype-1 represented by strain A/common-coot/Egypt/CA285/2016 the PB2 and NP segments showed closest relationship to H5N6 and H6N2 viruses, recently detected in Italy. The second is replacement of PB1 and NP genes A novel reassortant, represented by strain A/duck/Egypt/SS19/2017, showed an exchange of PB1 and NP genes which might have originated from H6N8 or H1N1 and H6N2 viruses. Finally, replacement of PA and NP genes characterized strain A/duck/Egypt/F446/2017. Bayesian phylogeographic analyses revealed that Egyptian H5N8 viruses are highly likely derived from Russian 2016 HPAI H5N8 virus (A/great_crested_grebe/Uvs-Nuur_Lake/341/2016 (H5N8)) and the reassortment likely occurred before incursion to Egypt.
Assuntos
Animais Selvagens , Vírus da Influenza A Subtipo H5N8/genética , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/virologia , Vírus Reordenados , Animais , Aves/virologia , Surtos de Doenças , Egito/epidemiologia , Genes Virais , Genótipo , Geografia Médica , Vírus da Influenza A Subtipo H5N8/classificação , Filogenia , Aves Domésticas/virologia , RNA ViralRESUMO
In March 2017, a novel highly pathogenic avian influenza A(H7N9) virus was detected at two commercial broiler breeder facilities in Tennessee, United States. In this study, a wild bird low pathogenic avian influenza A virus, A/blue-winged teal/Wyoming/AH0099021/2016(H7N9), was shown to be the probable precursor of the novel H7N9 virus; this low pathogenic virus has eight possible progenitor genes sharing >â¯99% sequence identity with the novel H7N9 virus. Phylogeographic analyses showed that viral gene constellations that formed and circulated among dabbling ducks contributed to the emergence of the novel H7N9 virus. This is in contrast to the virus that caused the 2016 H7N8 outbreak, which had more genetic contributions from viruses circulating among diving ducks. Study findings support the need for ongoing wild bird surveillance to monitor circulating viruses and to understand possible evolutionary pathways of virus emergence in poultry.
Assuntos
Evolução Molecular , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Influenza Aviária/virologia , Animais , Animais Domésticos , Animais Selvagens , Aves , Genótipo , Subtipo H7N9 do Vírus da Influenza A/genética , Influenza Aviária/epidemiologia , Filogenia , Alinhamento de Sequência , Tennessee/epidemiologia , Fatores de TempoRESUMO
Avian paramyxovirus serotype 4 (APMV-4) is found sporadically in wild birds worldwide, and it is an economically important poultry pathogen. Despite the existence of several published strains, very little is known about the distribution, host species, and transmission of APMV-4 strains. To better understand the relationships among these factors, we conducted an APMV-4 surveillance of wild birds and domestic poultry in six provinces of China suspected of being intercontinental flyways and sites of interspecies transmission. APMV-4 surveillance was conducted in 9,160 wild birds representing seven species, and 1,461 domestic poultry in live bird markets (LMBs) from December 2013 to June 2016. The rate of APMV-4 isolation was 0.10% (11/10,621), and viruses were isolated from swan geese, bean geese, cormorants, mallards, and chickens. Sequencing and phylogenetic analyses of the 11 isolated viruses indicated that all the isolates belonging to genotype I were epidemiologically connected with wild bird-origin viruses from the Ukraine and Italy. Moreover, chicken-origin APMV-4 strains isolated from the LBMs were highly similar to wild bird-origin viruses from nearby lakes with free-living wild birds. In additional, a hemagglutination-negative APMV-4 virus was identified. These findings, together with recent APMV-4 studies, suggest potential virus interspecies transmission between wild birds and domestic poultry, and reveal possible epidemiological intercontinental connections between APMV-4 transmission by wild birds.
Assuntos
Animais Domésticos/virologia , Animais Selvagens/virologia , Infecções por Avulavirus/transmissão , Infecções por Avulavirus/veterinária , Avulavirus/patogenicidade , Doenças das Aves/transmissão , Aves/virologia , Aves Domésticas/virologia , Animais , Avulavirus/genética , Avulavirus/isolamento & purificação , Infecções por Avulavirus/epidemiologia , Infecções por Avulavirus/virologia , Doenças das Aves/epidemiologia , Doenças das Aves/virologia , Galinhas/virologia , China/epidemiologia , Monitoramento Epidemiológico , Genótipo , Testes de Hemaglutinação , Epidemiologia Molecular , Filogenia , RNA Viral/genética , Análise de Sequência , SorogrupoRESUMO
Previous work suggests domestic poultry are important contributors to the emergence and transmission of highly pathogenic avian influenza throughout Asia. In Poyang Lake, China, domestic duck production cycles are synchronized with arrival and departure of thousands of migratory wild birds in the area. During these periods, high densities of juvenile domestic ducks are in close proximity to migratory wild ducks, increasing the potential for the virus to be transmitted and subsequently disseminated via migration. In this paper, we use GPS dataloggers and dynamic Brownian bridge models to describe movements and habitat use of free-grazing domestic ducks in the Poyang Lake basin and identify specific areas that may have the highest risk of H5N1 transmission between domestic and wild birds. Specifically, we determine relative use by free-grazing domestic ducks of natural wetlands, which are the most heavily used areas by migratory wild ducks, and of rice paddies, which provide habitat for resident wild ducks and lower densities of migratory wild ducks. To our knowledge, this is the first movement study on domestic ducks, and our data show potential for free-grazing domestic ducks from farms located near natural wetlands to come in contact with wild waterfowl, thereby increasing the risk for disease transmission. This study provides an example of the importance of movement ecology studies in understanding dynamics such as disease transmission on a complicated landscape.
RESUMO
Since the first H7N9 human case in Shanghai, February 19, 2013, the emerging avian-origin H7N9 influenza A virus has become an epizootic virus in China, posing a potential pandemic threat to public health. From April 2 to April 28, 2013, some 422 oral-pharyngeal and cloacal swabs were collected from birds and environmental surfaces at five live poultry markets (LPMs) and 13 backyard poultry farms (BPFs) across three cities, Wuxi, Suzhou, and Nanjing, in the Yangtze Delta region. In total 22 isolates were recovered, and six were subtyped as H7N9, nine as H9N2, four as H7N9/H9N2, and three unsubtyped influenza A viruses. Genomic sequences showed that the HA and NA genes of the H7N9 viruses were similar to those of the H7N9 human isolates, as well as other avian-origin H7N9 isolates in the region, but the PB1, PA, NP, and MP genes of the sequenced viruses were more diverse. Among the four H7N9/H9N2 mixed infections, three were from LPM, whereas the other one was from the ducks at one BPF, which were H7N9 negative in serologic analyses. A survey of the bird trading records of the LPMs and BPFs indicates that trading was a likely route for virus transmission across these regions. Our results suggested that better biosecurity and more effective vaccination should be implemented in backyard farms, in addition to biosecurity management in LPMs.