Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.088
Filtrar
1.
J Comput Chem ; 45(8): 461-475, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37950586

RESUMO

A theoretical investigation on the cooperativity of a series of binary, ternary, and quaternary complexes interconnected by pnicogen bonds has been conducted using calculations at the M06-2X/aug-cc-pVTZ level of density functional theory. By measuring changes in the molecular electrostatic potential (MESP) at the nucleus of interacting atoms in all of the complexes, it is possible to quantify the substantial reorganization of the electron density triggered by the formation of pnicogen bonds. The positive change in MESP, indicating a loss of electron density from the donor molecule in a dimer, facilitates the acceptance of electron density from a third molecule, resulting in the formation of a ternary complex with a stronger pnicogen bond compared to the one present in the binary complex. Similarly, the acceptor molecule in a dimer with a negative change in MESP showed an enhanced tendency to donate electron density to an electron-deficient third molecule. The MESP analysis provided valuable insights into the donor/acceptor characteristics of pnicogen bonds within the quaternary complexes. The proposed MESP hypotheses are consistent with the positive cooperativity observed in the pnicogen-bonded clusters. To quantify the changes in MESP, both at the donor atom (ΔVdonor ) and the acceptor atom (ΔVacceptor ), for all pnicogen bonds in the cluster, the total change in MESP (ΔΔVn ) was measured as ΔΔVn = ∑(ΔVdonor )-∑(ΔVacceptor ). Remarkably, ΔΔVn exhibited a strong linear relationship with the sum of the bond energies of the pnicogen bonds in the cluster. This establishes the MESP analysis as a robust approach for understanding the strength and cooperative behavior of pnicogen-bonded clusters. Additionally, the MESP features provided clear evidence of pnicogen bond formation, further supporting the reliability of this approach.

2.
Small ; : e2400619, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593311

RESUMO

The challenges of Lithium-carbon dioxide (Li-CO2) batteries for ensuring long-term cycling stability arise from the thermodynamically stable and electrically insulating discharge products (e.g., Li2CO3), which primarily rely on their interaction with the active materials. To achieve the optimized intermediates, the bifunctional electron donor-acceptor (D-A) pairs are proposed in cathode design to adjust such interactions in the case of B-O pairs. The inclusion of BC2O sites allows for the optimized redistribution of electrons via p-π conjugation. The as-obtained DO-AB pairs endow the enhanced interactions with Li+, CO2, and various intermediates, accompanied by the adjustable growth mode of Li2CO3. The shift from solvation-mediated mode into surface absorption mode in turn manipulates the morphology and decomposition kinetics of Li2CO3. Therefore, the corresponding Li-CO2 battery got twofold improved in both the capacity and reversibility. The cycling prolongs exceed 1300 h and well operates at a wide temperature range (20-50 °C) and different folding angles (0-180°). Such a strategy of introducing electron donor-acceptor pairs provides a distinct direction to optimize the lifetime of Li-CO2 battery from local structure regulation at the atomic scale, further inspiring in-depth understandings for developing electrochemical energy storage and carbon capture technologies.

3.
Small ; : e2311798, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461518

RESUMO

The photocatalytic environmental decontamination ability of carbon nitride (g-C3 N4 , CN) typically suffers from their inherent structural defects, causing rapid recombination of photogenerated carriers. Conjugating CN with tailored donor-acceptor (D-A) units to counteract this problem through electronic restructuring becomes a feasible strategy, where confirmation by density functional theory (DFT) calculations becomes indispensable. Herein, DFT is employed to predirect the copolymerization modification of CN by benzene derivatives, screening benzaldehyde as the optimal electron-donating candidate for the construction of reoriented intramolecular charge transfer path. Experimental characterization and testing corroborate the formation of a narrowed bandgap as well as high photoinduced carrier separation. Consequently, the optimal BzCN-2 exhibited superior photocatalytic capacity in application for tetracycline hydrochloride degradation, with 3.73 times higher than that of CN. Besides, the BzCN-2-based photocatalytic system is determined to have a toxicity-mitigating effect on TC removal via T.E.S.T and prefers the removal of dissociable TC2- species under partial alkalinity. This work provides insight into DFT guidance for the design of D-A conjugated polymer and its application scenarios in photocatalytic decontamination.

4.
Small ; : e2310028, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651514

RESUMO

In this study, two novel donor-acceptor (D-A) copolymers are designed and synthesized, DTBT-2T and DTBT-2T2F with 2,2'-bithiophene or 3,3'-difluoro-2,2'-bithiophene as the donor unit and dithienobenzothiadiazole as the acceptor unit, and used them as donor materials in non-fullerene organic solar cells (OSCs). Due to enhanced planarity of polymer chains resulted by the intramolecular F···S noncovalent interactions, the incorporation of 3,3'-difluoro-2,2'-bithiophene unit instead of 2,2'-bithiophene into the polymers can enhance their molecular packing, crystallinity and hole mobility. The DTBT-2T:L8-BO based binary OSCs deliver a power conversion efficiency (PCE) of only 9.71% with a Voc of 0.78 V, a Jsc of 20.69 mA cm-2 , and an FF of 59.67%. Moreover, the introduction of fluoro atoms can lower the highest occupied molecular orbital levels. As a result, DTBT-2T2F:L8-BO based single-junction binary OSCs exhibited less recombination loss, more balanced charge mobility, and more favorable morphology, resulting in an impressive PCE of 17.03% with a higher Voc of 0.89 V, a Jsc of 25.40 mA cm-2, and an FF of 75.74%. These results indicate that 3,3'-difluoro-2,2'-bithiophene unit can be used as an effective building block to synthesize high performance polymer donor materials. This work greatly expands the selection range of donor units for constructing high-performance polymers.

5.
Small ; : e2311816, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396322

RESUMO

Converting carbon dioxide (CO2 ) into high-value chemicals using solar energy remains a formidable challenge. In this study, the CSC@PM6:IDT6CN-M:IDT8CN-M non-fullerene small-molecule organic semiconductor is designed with highly efficient electron donor-acceptor (D-A) interface for photocatalytic reduction of CO2 . Atomic Force Microscope and Transmission Electron Microscope images confirmed the formation of an interpenetrating fibrillar network after combination of donor and acceptor. The CO yield from the CSC@PM6:IDT6CN-M:IDT8CN-M reached 1346 µmol g-1  h-1 , surpassing those of numerous reported inorganic photocatalysts. The D-A structure effectively facilitated charge separation to enable electrons transfer from the PM6 to IDT6CN-M:IDT8CN-M. Meanwhile, attributing to the dipole moments of the strong intermolecular interactions between IDT6CN-M and IDT8CN-M, the intermolecular forces are enhanced, and laminar stacking and π-π stacking are strengthened, thereby reinforcing energy transfer between acceptor molecules and significantly enhanced charge separation. Moreover, the strong internal electric field in the D-A interface enhanced the excited state lifetime of PM6:IDT6CN-M:IDT8CN-M. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analysis demonstrated that carboxylate (COOH*) is the predominant intermediate during CO2 reduction, and possible pathways of CO2 reduction to CO are deduced. This study presents a novel approach for designing materials with D-A interface to achieve high photocatalytic activity.

6.
Chembiochem ; : e202400273, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38924297

RESUMO

A series of D-p-A indole-containing fluorescent probes were developed followed by an investigation of their photophysical properties and compounds' suitability for subcellular imaging in living cells. We demonstrate that the preference for mitochondrial localization was lost when morpholine was substituted, resulting in the accumulation of the molecule in the lysosomes. However, interestingly, the presence of a nitro group led to their localization within the lipid droplets despite the presence of the morpholine pendant. We also showcase the probes' sensitivity to pH, the influence of added chloroquine, and the temperature response on the changes in fluorescence intensity within lysosomes. The design of the probes with strong intramolecular charge transfer and substantial Stokes shift could facilitate extensive application in various cellular lysosomal models and contribute to a better understanding of the mechanisms involved in stimuli-responsive diseases.

7.
Chemistry ; 30(2): e202303067, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37902606

RESUMO

A new carbazole-substituted bisterpyridine with pronounced delayed fluorescence is presented. While the molecular donor-acceptor-donor design suggests the origin of this to be thermally activated delayed fluorescence (TADF), results from various photophysical characterizations, OLED characteristics, temperature-dependent NMR spectroscopy, and DFT calculations all point against the involvement of triplet states. The molecule exhibits blue emission at about 440 nm with two or more fast decay channels in the lower nanosecond range in both solution and thin films. The delayed emission is proposed to be caused by rotational vibrational modes. We suggest that these results are generally applicable, especially for more complex molecules, and should be considered as alternative or competitive emissive relaxation pathways in the field of organic light emitting materials.

8.
Chemistry ; 30(9): e202302365, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-37798939

RESUMO

The annulation of a methylenecyclopropane with acyl cyanoalkenes by using DABCO or quinuclidine as a catalyst to give 2,3-dihydofurans has been developed. A stoichiometric amount of the Lewis bases promoted the isomerization of 2,3-dihydrofurans to furans. 1 H NMR spectra of the reaction in situ revealed that the methylenecyclopropane is opened by the Lewis base to form a reaction intermediate that is added to the cyanoalkenes.

9.
Chemistry ; 30(5): e202303490, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37930279

RESUMO

Cycloparaphenylenes (CPPs) are the smallest possible armchair carbon nanotubes, the properties of which strongly depend on their ring size. They can be further tuned by either peripheral functionalization or by replacing phenylene rings for other aromatic units. Here we show how four novel donor-acceptor chromophores were obtained by incorporating fluorenone or 2-(9H-fluoren-9-ylidene)malononitrile into the loops of two differently sized CPPs. Synthetically, we managed to perform late-stage functionalization of the fluorenone-based rings by high-yielding Knoevenagel condensations. The structures were confirmed by X-ray crystallographic analyses, which revealed that replacing a phenylene for a fused-ring-system acceptor introduces additional strain. The donor-acceptor characters of the CPPs were supported by absorption and fluorescence spectroscopic studies, electrochemical studies (displaying the CPPs as multi-redox systems undergoing reversible or quasi-reversible redox events), as well as by computations. The oligophenylene parts were found to comprise the electron donor units of the macrocycles and the fluorenone parts the acceptor units.

10.
Chemistry ; 30(8): e202303120, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-37941296

RESUMO

Organic ferroelectric (FE) materials, though known for more than a century, are yet to reach close to the benchmark of inorganic or hybrid materials in terms of the magnitude of polarization. Amongst the different classes of organic systems, donor (D)-acceptor (A) charge-transfer (CT) complexes are recognized as promising for ferroelectricity owing to their neutral-to-ionic phase transition at low temperature. This review presents an overview of different supramolecular D-A systems that have been explored for FE phase transitions. The discussion begins with a general introduction of ferroelectricity and its different associated parameters. Then it moves on to show early examples of CT cocrystals that have shown FE properties at sub-ambient temperature. Subsequently, recent developments in the field of room temperature (RT) ferroelectricity, exhibited by H-bond-stabilized lock-arm supramolecular-ordering (LASO) in D-A co-crystals or other FE CT-crystals devoid of neutral-ionic phase transition are discussed. Then the discussion moves on to emerging reports on other D-A soft materials such as gel and foldable polymers; finally it shows very recent developments in ferroelectricity in supramolecular assemblies of single-component dipolar or ambipolar π-systems, exhibiting intra-molecular charge transfer. The effects of structural nuances such as H-bonding, balanced charge transfer and chirality on the observed ferroelectricity is described with the available examples. Finally, piezoelectricity in recently reported ambipolar ADA-type systems are discussed to highlight the future potential of these soft materials in micropower energy harvesting.

11.
Chemistry ; 30(4): e202302861, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38015005

RESUMO

Organic small molecules with high photothermal conversion efficiencies that absorb near-infrared light are desirable for photothermal therapy due to their improved biocompatibility compared to inorganic materials and their ability to absorb light in the biological transparency window (650-1350 nm). Here we report three donor-acceptor organic materials DM-ANDI, O-ANDI, and S-ANDI that show high photothermal conversion efficiencies of 46-68 % with near-infrared absorption. The design of these molecules is based on the rational modification of a thermally activated delayed fluorescence material to favour a low photoluminescence quantum yield by reducing HOMO-LUMO overlap. Encapsulating these materials into either neat nanoparticles or aggregated organic dots modulates their photothermal conversion efficiencies, and also facilitates dispersion in water.

12.
Chemistry ; : e202401349, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970416

RESUMO

Two star-shaped mesogens with a (meso-tetraphenylporphinato) zinc (II) core and bithiophene conjugated arms with 3,4,5-trisdodecyloxyphenyl periphery were synthesized. One of these molecules was decorated with four fullerenes via an aliphatic spacer. This is the sterically overcrowded compound with an octapodal morphology. The other star lacks the fullerenes and provides free space between the conjugated arms. This mesogen does not aggregate in solution, but in solid state it forms a hexagonal columnar and a highly ordered oblique helical columnar phase, while the octopus molecule assemble in an amorphous solid. Photophysical studies of the octapodal compound in solution and the solid thin film reveal the formation of J-type aggregates, in which the interaction between donors (porphyrin) and acceptors (fullerene) dominates leading to absorption bands in the NIR region of the spectra. The mixture of both compounds results in a self-assembly which is called the Click procedure. Fullerenes of the octopus nanosegregate in the pockets of the star mesogens generating hexagonal columnar structures with a regular stacking along the columnar axis. Thus providing free space is a tool to control the competition between supramolecular interactions and nanosegregation. Such liquid-crystalline donor-acceptor structures may play a role in future LC photovoltaic applications.

13.
Chemistry ; 30(37): e202401152, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38683696

RESUMO

Pyrene derivatives bearing substituents at positions 1, 3, 6, and 8 find numerous applications, as exemplified by their use in lasers, sensors, and bioimaging probes. However, these derivatives typically have point-symmetric or short-axially symmetric structures, whereas long-axially symmetric derivatives remain underexplored because of the difficulty in obtaining their precursor, 1,3-dibromopyrene. To address this problem, we herein synthesized 1,3-dibromopyrene from 1-methoxypyrene in an overall yield (71 % over four steps) considerably exceeding those of existing methods. 1,3-Dibromopyrene was converted into 13OPA, a long-axially symmetric pyrene dye with electron-donor (alkoxy) groups at positions 1 and 3 and electron-acceptor (formyl) groups at positions 6 and 8. 13OPA exhibited photophysical properties distinct from those of its point-symmetric and short-axially symmetric isomers, featuring a broad and strongly redshifted absorption, strong fluorescence with reduced sensitivity to protic solvents, and small dipole moment change upon photoexcitation. The derivatization of 13OPA into a Schiff base and its functionalization via Lewis acid-base pairing were also demonstrated. Thus, our work expands the design scope of pyrene-based molecules, particularly those used as emitters.

14.
Chemistry ; : e202401576, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735852

RESUMO

A yet-outstanding supramolecular chemistry challenge is isolation of novel varieties of stacked complexes with finely-tuned donor-acceptor bonding and optoelectronic properties, as herein reported for binary adducts comprising two different cyclic trinuclear complexes (CTC@CTC'). Most previous attempts focused only on 1-2 factors among metal/ligand/substituent combinations, resulting in heterobimetallic complexes. Instead, here we show that, when all 3 factors are carefully considered, a broadened variety of CTC@CTC' stacked pairs with intuitively-enhanced intertrimer coordinate-covalent bonding strength and ligand-ligand/metal-ligand dispersion are attained (dM-M' 2.868(2) Å; ΔE>50 kcal/mol, an order of magnitude higher than aurophilic/metallophilic interactions). Significantly, CTC@CTC' pairs remain intact/strongly-bound even in solution (Keq 4.67×105 L/mol via NMR/UV-vis titrations), and the gas phase (mass spectrometry revealing molecular peaks for the entire CTC@CTC' units in sublimed samples), rather than simple co-crystal formation. Photo-/electro-luminescence studies unravel metal-centered phosphorescence useful for novel all metal-organic light-emitting diodes (MOLEDs) optoelectronic device concepts. This work manifests systematic design of supramolecular bonding and multi-faceted spectral properties of pure metal-organic macrometallacyclic donor/acceptor (inorganic/inorganic) stacks with remarkably-rich optoelectronic properties akin to well-established organic/organic and organic/inorganic analogues.

15.
Chemistry ; 30(36): e202401044, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38679577

RESUMO

Covalent organic frameworks (COFs) with ordered π structures are very promising in porous light-emitting materials. However, most of these COFs are either poor in luminescence or lack of water-stability. Herein, a series of isostructural D-A vinylene-linked COFs were constructed based a new D2h symmetric linker 1,4-bis(4,6-dimethyl-1,3,5-triazin-2-yl)benzene (TMTA) with high crystallinity, comparative high surface area and excellent chemical/thermal stability. Impressively, their adsorption and luminescence wavelength vary with respect to the density of π-systems in the electron-donating group, which constitute the foundation for molecular engineering the luminescent properties of vinylene-linked COFs. The DFT calculations further established the relationship between the luminescence properties and the donor electronic structure. Moreover, one of representative COF named FZU-203 showed inspiring applications in bioimaging, which may further provide strategic guidance for the use of vinylene-linked COFs as fluorescent nanoprobes in non-invasive medical diagnosis and visualization therapy of tumors.

16.
Chemistry ; : e202401332, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38897923

RESUMO

Fused bicyclic cyclopropanes were converted by Lewis acid-catalysis with thioureas to furo-, pyrano, and pyrrolo-lactams with yields of up to 99% and high diastere-oselectivity. The formation of the title compounds, repre-senting a formal [4+1]-cycloaddition to a donor-acceptor substituted cyclopropane, follows a cascade reaction involving SN1-type ring-opening addition and cyclization. Thiourea, being a cost-effective and odorless reagent, acts as an N,N-bis-nucleophile to generate bicyclic compounds containing an N­substituted γ-lactam moiety.

17.
Chemistry ; 30(27): e202303799, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38319002

RESUMO

A series of near-IR absorbing 2,6-diarylated BF2-chelated aza-boron-dipyrromethenes (aza-BDPs) derivatives bearing different electron donors (benzene, naphthalene, phenanthrene, phenothiazine and carbazole) were designed and synthesized. The effect of different electron donor substitutions on the photophysical properties was studied by steady-state UV-vis absorption and fluorescence spectra, electrochemical, time-resolved nanosecond transient absorption (ns-TA) spectroscopy and theoretical computations. The UV-vis absorption spectra of AzaBDP-PTZ and AzaBDP-CAR (λabs=710 nm in toluene) showed a bathochromic absorption profile compared with the reference AzaBDP-Ph (λabs=685 nm in toluene), indicating the non-negligible electronic interaction at the ground state between donor and acceptor moieties. Moreover, the fluorescence is almost completely quenched for AzaBDP-PTZ/AzaBDP-CAR (fluorescence quantum yield, ΦF=0.2-0.7 % in toluene) as compared with the AzaBDP-Ph (ΦF=27 % in toluene). However, the apparent intersystem crossing ability of these compounds is poor, based on the singlet oxygen quantum yield (ΦΔ=0.3-1.5 %). The ns-TA spectral study showed typical Bodipy localized triplet state transient features, short-lived excited triplet state for AzaBDP-Ph (τT=53.2 µs) versus significantly long-lived triplet state for AzaBDP-CAR (τT=114 µs) was observed under deaerated experimental conditions. These triplet state lifetimes are much longer than that obtained with diiodoAzaBDP (intramolecular heavy atom effect, τT=1.5~7.2 µs). These information are useful for molecular structure design of triplet photosensitizers, for which longer triplet state lifetimes are usually desired. Theoretical computations displayed that the triplet state is mainly localized on the AzaBDP core, moreover, it was found that the HOMO/LUMO energy gap decreased after introducing donor moieties to the skeleton as compared with the reference.

18.
Chemistry ; 30(22): e202304124, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38380885

RESUMO

Two units of highly stable luminescent triarylmethyl radical, (3,5-dichloro-4-pyridyl)bis(2,4,6-trichlorophenyl)methyl radical (PyBTM), were bridged by p-phenylene linker. The photoluminescence quantum yield (PLQY) of PyBTM-PhPyBTM was at most 0.4 % in various organic solvents. Adding two mesityl groups on the terminals did not improve the PLQY. In the MesPyBTM-PhPyBTM-Mes, the mesityl group did not worked as an electron donor unlike the previously reported monoradical MesPyBTM. However, adding two n-hexyl groups on the bridging p-phenylene did greatly improve it, and the PLQY of the PyBTM-(Hex2Ph)PyBTM was 7 % in dichloromethane and acetone, and 12 % in poly(methyl methacrylate) (PMMA) film. Twisting p-phenylene linker by hexyl groups hindered the π-conjugation and suppressed the non-radiative decay of the excited state.

19.
Chemistry ; : e202400354, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373034

RESUMO

The acid-activation of 1,2-dicarbonyl compounds plays a key role in a variety of electrophilic reactions, some of which are only accessible in superacidic media when a superelectrophilic dication is formed. To obtain structural and electronic information about these elusive species, the vicinal dication [C2 (OH)2 Me2 ]2+ is synthesized and characterized by Raman spectroscopy and X-ray diffraction. Since this superelectrophile could not be stabilized in convenient superacids, the usage of liquid SO2 turned out to be crucial. The experimental data are discussed together with quantum-chemical calculations on the B3LYP/aug-cc-pVTZ level of theory. Natural Bond Orbital (NBO) analyses quantify the superelectrophilic interactions found in the solid state.

20.
Chemistry ; 30(27): e202400320, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38426580

RESUMO

NBN- and BNB-doped phenalenyls are isoelectronic to phenalenyl anions and cations, respectively. They represent a pair of complementary molecules that have essentially identical structures but opposite properties as electron donors and acceptors. The NBN-phenalenyls 1-4 considered here were prepared from N,N'-dimethyl-1,8-diaminonaphthalene and readily available boron-containing building blocks (i. e., BH3⋅SMe2 (1), p-CF3-C6H4B(OH)2 (2), C6H5B(OH)2 (3), or MesBCl2/iPr2NEt (4)). Treatment of 1 with 4-Me2N-2,6-Me2-C6H2Li gave the corresponding NBN derivative 5. The BNB-phenalenyl 6 was synthesized from 1,8-naphthalenediyl-bridged diborane(6), PhNH2, and MesMgBr. A computational study reveals that the photoemission of 1, 4, and 5 originates from locally excited (LE) states at the NBN-phenalenyl fragments, while that of 2 is dominated by charge transfer (CT) from the NBN-phenalenyl to the p-CF3-C6H4 fragment. Depending on the dihedral angle θ between its Ph and NBN planes, compound 3 emits mainly from a less polar LE (θ >55°) or more polar CT state (θ <55°). In turn, the energetic preference for either state is governed by the polarity of the solvent used. An equimolar aggregate of the NBN- and BNB-phenalenyls 3 and 6 (in THF/H2O) shows a distinct red-shifted emission compared to that of the individual components, which originates from an intermolecular CT state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA