Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
J Neurosci ; 44(33)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39025678

RESUMO

The hippocampal CA3 region plays an important role in learning and memory. CA3 pyramidal neurons (PNs) receive two prominent excitatory inputs-mossy fibers (MFs) from dentate gyrus (DG) and recurrent collaterals (RCs) from CA3 PNs-that play opposing roles in pattern separation and pattern completion, respectively. Although the dorsoventral heterogeneity of the hippocampal anatomy, physiology, and behavior has been well established, nothing is known about the dorsoventral heterogeneity of synaptic connectivity in CA3 PNs. In this study, we performed Timm's sulfide silver staining, dendritic and spine morphological analyses, and ex vivo electrophysiology in mice of both sexes to investigate the heterogeneity of MF and RC pathways along the CA3 dorsoventral axis. Our morphological analyses demonstrate that ventral CA3 (vCA3) PNs possess greater dendritic lengths and more complex dendritic arborization, compared with dorsal CA3 (dCA3) PNs. Moreover, using ChannelRhodopsin2 (ChR2)-assisted patch-clamp recording, we found that the ratio of the RC-to-MF excitatory drive onto CA3 PNs increases substantially from dCA3 to vCA3, with vCA3 PNs receiving significantly weaker MFs, but stronger RCs, excitation than dCA3 PNs. Given the distinct roles of MF versus RC inputs in pattern separation versus completion, our findings of the significant dorsoventral variations of MF and RC excitation in CA3 PNs may have important functional implications for the contribution of CA3 circuit to the dorsoventral difference in hippocampal function.


Assuntos
Região CA3 Hipocampal , Células Piramidais , Sinapses , Animais , Camundongos , Células Piramidais/fisiologia , Região CA3 Hipocampal/fisiologia , Região CA3 Hipocampal/citologia , Masculino , Feminino , Sinapses/fisiologia , Camundongos Endogâmicos C57BL , Fibras Musgosas Hipocampais/fisiologia , Dendritos/fisiologia , Vias Neurais/fisiologia
2.
Dev Dyn ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38288855

RESUMO

The limb anatomy displays well-defined dorsal and ventral compartments, housing extensor, and flexor muscles, which play a crucial role in facilitating limb locomotion and manipulation. Despite its importance, the study of limb dorsoventral patterning has been relatively neglected compared to the other two axes leaving many crucial questions about the genes and developmental processes implicated unanswered. This review offers a thorough overview of the current understanding of limb dorsoventral patterning, synthesizing classical literature with recent research. It covers the specification of dorsal fate in the limb mesoderm and its subsequent translation into dorsal morphologies-a process directed by the transcription factor Lmx1b. We also discuss the potential role of dorsoventral patterning in the evolution of paired appendages and delve into the involvement of LMX1B in Nail-Patella syndrome, discussing the molecular and genetic aspects underlying this condition. Finally, the potential role of dorsoventral polarity in digit tip regeneration, a prominent instance of multi-tissue regeneration in mammals is also considered. We anticipate that this review will renew interest in a process that is critical to limb function and evolutionary adaptations but has nonetheless been overlooked.

3.
Synapse ; 78(1): e22285, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38287475

RESUMO

Agents that positively modulate the activity of α7nAChRs are used as cognitive enhancers and for the treatment of hippocampus-dependent functional decline. However, it is not known whether the expression and the effects of α7nAChRs apply to the entire longitudinal axis of the hippocampus equally. Given that cholinergic system-involving hippocampal functions are not equally distributed along the hippocampus, we comparatively examined the expression and the effects of α7nAChRs on excitatory synaptic transmission between the dorsal and the ventral hippocampal slices from adult rats. We found that α7nAChRs are equally expressed in the CA1 field of the two segments of the hippocampus. However, activation of α7nAChRs by their highly selective agonist PNU 282987 induced a gradually developing increase in field excitatory postsynaptic potential only in the dorsal hippocampus. This long-term potentiation was not reversed upon application of nonselective nicotinic receptor antagonist mecamylamine, but the induction of potentiation was prevented by prior blockade of α7nAChRs by their antagonist MG 624. In contrast to the long-term synaptic plasticity, we found that α7nAChRs did not modulate short-term synaptic plasticity in either the dorsal or the ventral hippocampus. These results may have implications for the role that α7nAChRs play in specifically modulating functions that depend on the normal function of the dorsal hippocampus. We propose that hippocampal functions that rely on a direct α7 nAChR-mediated persistent enhancement of glutamatergic synaptic transmission are preferably supported by dorsal but not ventral hippocampal synapses.


Assuntos
Receptores Nicotínicos , Receptor Nicotínico de Acetilcolina alfa7 , Ratos , Animais , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Hipocampo/metabolismo , Região CA1 Hipocampal/metabolismo , Receptores Nicotínicos/metabolismo , Transmissão Sináptica/fisiologia
4.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000085

RESUMO

Fragile X syndrome (FXS) is an intellectual developmental disorder characterized, inter alia, by deficits in the short-term processing of neural information, such as sensory processing and working memory. The primary cause of FXS is the loss of fragile X messenger ribonucleoprotein (FMRP), which is profoundly involved in synaptic function and plasticity. Short-term synaptic plasticity (STSP) may play important roles in functions that are affected by FXS. Recent evidence points to the crucial involvement of the presynaptic calcium sensor synaptotagmin-7 (Syt-7) in STSP. However, how the loss of FMRP affects STSP and Syt-7 have been insufficiently studied. Furthermore, males and females are affected differently by FXS, but the underlying mechanisms remain elusive. The aim of the present study was to investigate possible changes in STSP and the expression of Syt-7 in the dorsal (DH) and ventral (VH) hippocampus of adult males and females in a Fmr1-knockout (KO) rat model of FXS. We found that the paired-pulse ratio (PPR) and frequency facilitation/depression (FF/D), two forms of STSP, as well as the expression of Syt-7, are normal in adult KO males, but the PPR is increased in the ventral hippocampus of KO females (6.4 ± 3.7 vs. 18.3 ± 4.2 at 25 ms in wild type (WT) and KO, respectively). Furthermore, we found no gender-related differences, but did find robust region-dependent difference in the STSP (e.g., the PPR at 50 ms: 50.0 ± 5.5 vs. 17.6 ± 2.9 in DH and VH of WT male rats; 53.1 ± 3.6 vs. 19.3 ± 4.6 in DH and VH of WT female rats; 48.1 ± 2.3 vs. 19.1 ± 3.3 in DH and VH of KO male rats; and 51.2 ± 3.3 vs. 24.7 ± 4.3 in DH and VH of KO female rats). AMPA receptors are similarly expressed in the two hippocampal segments of the two genotypes and in both genders. Also, basal excitatory synaptic transmission is higher in males compared to females. Interestingly, we found more than a twofold higher level of Syt-7, not synaptotagmin-1, in the dorsal compared to the ventral hippocampus in the males of both genotypes (0.43 ± 0.1 vs. 0.16 ± 0.02 in DH and VH of WT male rats, and 0.6 ± 0.13 vs. 0.23 ± 0.04 in DH and VH of KO male rats) and in the WT females (0.97 ± 0.23 vs. 0.31 ± 0.09 in DH and VH). These results point to the susceptibility of the female ventral hippocampus to FMRP loss. Importantly, the different levels of Syt-7, which parallel the higher score of the dorsal vs. ventral hippocampus on synaptic facilitation, suggest that Syt-7 may play a pivotal role in defining the striking differences in STSP along the long axis of the hippocampus.


Assuntos
Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Hipocampo , Plasticidade Neuronal , Sinaptotagminas , Animais , Feminino , Masculino , Ratos , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/fisiopatologia , Hipocampo/metabolismo , Sinaptotagminas/metabolismo , Sinaptotagminas/genética
5.
Dev Dyn ; 252(5): 605-628, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36606464

RESUMO

BACKGROUND: Fibrodysplasia ossificans progressiva (FOP), a rare disease characterized by progressive heterotopic ossification of muscle and connective tissues, is caused by autosomal dominant activating mutations in the type I receptor, ACVR1/ALK2. The classic human FOP variant, ACVR1R206H , shows increased bone morphogenetic protein (BMP) signaling and activation by activins. RESULTS: Here, we performed in vivo functional characterization of human ACVR1R206H and orthologous zebrafish Acvr1lR203H using early embryonic zebrafish dorsoventral patterning as a phenotypic readout for receptor activity. Our results showed that human ACVR1R206H and zebrafish Acvr1lR203H exhibit functional differences in early embryonic zebrafish, and that human ACVR1R206H retained its signaling activity in the absence of a ligand-binding domain (LBD). We also showed, for the first time, that zebrafish Acvr2ba/Acvr2bb receptors are required for human ACVR1R206H signaling in early embryonic zebrafish. CONCLUSIONS: Together, these data provide new insight into ACVR1R206H signaling pathways that may facilitate the design of new and effective therapies for FOP patients.


Assuntos
Receptores de Ativinas Tipo I , Embrião não Mamífero , Miosite Ossificante , Ossificação Heterotópica , Animais , Humanos , Receptores de Ativinas Tipo I/genética , Mutação , Transdução de Sinais , Peixe-Zebra , Embrião não Mamífero/metabolismo
6.
Hippocampus ; 33(1): 47-62, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36514833

RESUMO

We aimed to study how morphine affects synaptic transmission in the dentate gyrus and CA1 regions along the hippocampal long axis. For this, recording and measuring of field excitatory postsynaptic potentials (fEPSPs) were utilized to test the effects of repeated morphine exposure on paired-pulse evoked responses and long-term potentiation (LTP) at Schaffer collateral-CA1 (Sch-CA1), temporoammonic-CA1 (TA-CA1) and perforant pathway-dentate gyrus (PP-DG) synapses in transverse slices from the dorsal (DH), intermediate (IH), and ventral (VH) hippocampus in adult male rats. After repeated morphine exposure, the expression of opioid receptors and the α1 and α5 GABAA subunits were also examined. We found that repeated morphine exposure blunt the difference between the DH and the VH in their basal levels of synaptic transmission at Sch-CA1 synapses that were seen in the control groups. Significant paired-pulse facilitation of excitatory synaptic transmission was observed at Sch-CA1 synapses in slices taken from all three hippocampal segments as well as at PP-DG synapses in slices taken from the VH segment in the morphine-treated groups as compared to the control groups. Interestingly, significant paired-pulse inhibition of excitatory synaptic transmission was observed at TA-CA1 synapses in the DH slices from the morphine-treated group as compared to the control group. While primed-burst stimulation (a protocol reflecting normal neuronal firing) induced a robust LTP in hippocampal subfields in all control groups, resulting in a decaying LTP at TA-CA1 synapses in the VH slices and at PP-DG synapses in both the IH and VH slices taken from the morphine-treated rats. In the DH of morphine-treated rats, we found increased levels of the mRNAs encoding the α1 and α5 GABAA subunits as compared to the control group. Taken together, these findings suggest the potential mechanisms through which repeated morphine exposure causes differential changes in circuit excitability and synaptic plasticity in the dentate gyrus and CA1 regions along the hippocampal long axis.


Assuntos
Morfina , Via Perfurante , Masculino , Ratos , Animais , Morfina/farmacologia , Colaterais de Schaffer , Ratos Wistar , Hipocampo/fisiologia , Plasticidade Neuronal , Potenciação de Longa Duração/fisiologia , Sinapses/fisiologia , Giro Denteado , Ácido gama-Aminobutírico/metabolismo
7.
Development ; 147(6)2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32094115

RESUMO

Segmentation of the vertebrate hindbrain leads to the formation of rhombomeres, each with a distinct anteroposterior identity. Specialised boundary cells form at segment borders that act as a source or regulator of neuronal differentiation. In zebrafish, there is spatial patterning of neurogenesis in which non-neurogenic zones form at boundaries and segment centres, in part mediated by Fgf20 signalling. To further understand the control of neurogenesis, we have carried out single cell RNA sequencing of the zebrafish hindbrain at three different stages of patterning. Analyses of the data reveal known and novel markers of distinct hindbrain segments, of cell types along the dorsoventral axis, and of the transition of progenitors to neuronal differentiation. We find major shifts in the transcriptome of progenitors and of differentiating cells between the different stages analysed. Supervised clustering with markers of boundary cells and segment centres, together with RNA-seq analysis of Fgf-regulated genes, has revealed new candidate regulators of cell differentiation in the hindbrain. These data provide a valuable resource for functional investigations of the patterning of neurogenesis and the transition of progenitors to neuronal differentiation.


Assuntos
Padronização Corporal/genética , Rombencéfalo/embriologia , Rombencéfalo/metabolismo , Transcriptoma/fisiologia , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Atlas como Assunto , Diferenciação Celular/genética , Embrião não Mamífero , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Neurônios/citologia , Neurônios/fisiologia , Análise de Célula Única/métodos , Distribuição Tecidual , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
8.
Development ; 147(10)2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32345743

RESUMO

Sonic hedgehog (Shh), produced in the notochord and floor plate, is necessary for both neural and mesodermal development. To reach the myotome, Shh has to traverse the sclerotome and a reduction of sclerotomal Shh affects myotome differentiation. By investigating loss and gain of Shh function, and floor-plate deletions, we report that sclerotomal Shh is also necessary for neural tube development. Reducing the amount of Shh in the sclerotome using a membrane-tethered hedgehog-interacting protein or Patched1, but not dominant active Patched, decreased the number of Olig2+ motoneuron progenitors and Hb9+ motoneurons without a significant effect on cell survival or proliferation. These effects were a specific and direct consequence of Shh reduction in the mesoderm. In addition, grafting notochords in a basal but not apical location, vis-à-vis the tube, profoundly affected motoneuron development, suggesting that initial ligand presentation occurs at the basal side of epithelia corresponding to the sclerotome-neural tube interface. Collectively, our results reveal that the sclerotome is a potential site of a Shh gradient that coordinates the development of mesodermal and neural progenitors.


Assuntos
Proteínas Hedgehog/metabolismo , Tubo Neural/embriologia , Neurulação/genética , Notocorda/metabolismo , Codorniz/embriologia , Animais , Padronização Corporal/genética , Diferenciação Celular/genética , Embrião de Galinha , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Mesoderma/metabolismo , Neurônios Motores/metabolismo , Placa Neural/metabolismo , Tubo Neural/metabolismo , Neurogênese/genética , Receptor Patched-1/metabolismo , Transdução de Sinais/genética , Transfecção
9.
J Exp Zool B Mol Dev Evol ; 340(2): 131-142, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35451554

RESUMO

Egg size is a fast-evolving trait among Drosophilids expected to change the spatial distribution of morphogens that pattern the embryonic axes. Here we asked whether the patterning of the dorsal region of the embryo by the Decapentaplegic/Bone Morphogenetic Protein-4 (DPP/BMP-4) gradient is scaled among Drosophila species with different egg sizes. This region specifies the extra-embryonic tissue amnioserosa and the ectoderm. We find that the entire dorsal region scales with embryo size, but the gene expression patterns regulated by DPP are not proportional, suggesting that the DPP gradient is differentially scaled during evolution. To further test whether the DPP gradient can scale or not in Drosophila melanogaster, we created embryos with expanded dorsal regions that mimic changes in scale seen in other species and measured the resulting domains of DPP-target genes. We find that the proportions of these domains are not maintained, suggesting that the DPP gradient is unable to scale in the embryo. These and previous findings suggest that the embryonic dorso-ventral patterning lack scaling in the ventral and dorsal sides but is robust in the lateral region where the neuroectoderm is specified and two opposing gradients, Dorsal/NFkappa-B and DPP, intersect. We propose that the lack of scaling of the DPP gradient may contribute to changes in the size of the amnioserosa and the numbers of ectodermal cells with specific cortical tensions, which are expected to generate distinct mechanical forces for gastrulating embryos of different sizes.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , Drosophila/metabolismo , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fenótipo , Padronização Corporal/genética
10.
Proc Natl Acad Sci U S A ; 117(1): 503-512, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31871200

RESUMO

In contrast to the Hox genes in arthropods and vertebrates, those in molluscs show diverse expression patterns with differences reported among lineages. Here, we investigate 2 phylogenetically distant molluscs, a gastropod and a polyplacophoran, and show that the Hox expression in both species can be divided into 2 categories. The Hox expression in the ventral ectoderm generally shows a canonical staggered pattern comparable to the patterns of other bilaterians and likely contributes to ventral patterning, such as neurogenesis. The other category of Hox expression on the dorsal side is strongly correlated with shell formation and exhibits lineage-specific characteristics in each class of mollusc. This generalized model of decoupled dorsoventral Hox expression is compatible with known Hox expression data from other molluscan lineages and may represent a key characteristic of molluscan Hox expression. These results support the concept of widespread staggered Hox expression in Mollusca and reveal aspects that may be related to the evolutionary diversification of molluscs. We propose that dorsoventral decoupling of Hox expression allowed lineage-specific dorsal and ventral patterning, which may have facilitated the evolution of diverse body plans in different molluscan lineages.


Assuntos
Biodiversidade , Gastrópodes/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox/genética , Poliplacóforos/genética , Animais , Evolução Biológica , Gastrópodes/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Larva/genética , Larva/crescimento & desenvolvimento , Filogenia , Poliplacóforos/crescimento & desenvolvimento
11.
Acta Neurochir (Wien) ; 165(4): 897-904, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36820888

RESUMO

PURPOSE: Radiolucent anterior and posterior implants by carbon fiber-reinforced polyetheretherketone (CFR PEEK) aim to improve treatment of primary and secondary tumors of the spine during the last years. The aim of this study was to evaluate clinical and radiological outcomes after dorsoventral instrumentation using a CFR PEEK implant in a cohort of patients representing clinical reality. METHODS: A total of 25 patients with tumor manifestation of the thoracic and lumbar spine underwent vertebral body replacement (VBR) using an expandable CFR PEEK implant between January 2021 and January 2022. Patient outcome, complications, and radiographic follow-up were analyzed. RESULTS: A consecutive series aged 65.8 ± 14.7 (27.6-91.2) years were treated at 37 vertebrae of tumor manifestation, including two cases (8.0%) of primary tumor as well as 23 cases (92.0%) of spinal metastases. Overall, 26 cages covering a median of 1 level (1-4) were implanted. Duration of surgery was 134 ± 104 (65-576) min, with a blood loss of 792 ± 785 (100-4000) ml. No intraoperative cage revision was required. Surgical complications were reported in three (12.0%) cases including hemothorax in two cases (one intraoperative, one postoperative) and atrophic wound healing disorder in one case. In two cases (8.0%), revision surgery was performed (fracture of the adjacent tumorous vertebrae, progressive construct failure regarding cage subsidence). No implant failure was observed. CONCLUSION: VBR using CFR PEEK cages represents a legitimate surgical strategy which opens a variety of improvements-especially in patients in need of postoperative radiotherapy of the spine and MRI-based follow-up examinations.


Assuntos
Neoplasias , Fusão Vertebral , Humanos , Fibra de Carbono , Corpo Vertebral , Resultado do Tratamento , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Polietilenoglicóis , Cetonas , Estudos Retrospectivos
12.
BMC Biol ; 20(1): 179, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35971116

RESUMO

BACKGROUND: Cell size asymmetries are often linked to cell fate decisions, due to cell volumes and cell fate determinants being unequally partitioned during asymmetric cell divisions. A clear example is found in the sea urchin embryo, where a characteristic and obvious unequal 4th cleavage generates micromeres, which are necessary for mesendoderm cell fate specification. Unlike sea urchin development, sea star development is generally thought to have only equal cleavage. However, subtle cell size asymmetries can be observed in sea star embryos; whether those cell size asymmetries are consistently produced during sea star development and if they are involved in cell fate decisions remains unknown. RESULTS: Using confocal live imaging of early embryos we quantified cell size asymmetries in 16-cell stage embryos of two sea star species, Patiria miniata and Patiriella regularis. Using photoconversion to perform lineage tracing, we find that the position of the smallest cells of P. miniata embryos is biased toward anterior ventral tissues. However, both blastomere dissociation and mechanical removal of one small cell do not prevent dorsoventral (DV) axis formation, suggesting that embryos compensate for the loss of those cells and that asymmetrical partitioning of maternal determinants is not strictly necessary for DV patterning. Finally, we show that manipulating cell size to introduce artificial cell size asymmetries is not sufficient to direct the positioning of the future DV axis in P. miniata embryos. CONCLUSIONS: Our results show that although cell size asymmetries are consistently produced during sea star early cleavage and are predictive of the DV axis, they are not necessary to instruct DV axis formation.


Assuntos
Ouriços-do-Mar , Estrelas-do-Mar , Animais , Blastômeros , Padronização Corporal , Diferenciação Celular , Tamanho Celular , Embrião não Mamífero
13.
Dev Dyn ; 251(9): 1509-1523, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35403281

RESUMO

BACKGROUND: Axolotls can regenerate their limbs. In their limb regeneration process, developmental genes are re-expressed and reorganize the developmental axes, in which the position-specific genes are properly re-expressed. However, how such position specificity is reorganized in the regeneration processes has not been clarified. To address this issue, we focused on the reactivation process of Lmx1b, which determines the limb dorsal identity in many animals. RESULTS: Here, we show that Lmx1b expression is maintained in the dorsal skin before amputation and is activated after amputation. Furthermore, we demonstrate that only cells located in the dorsal side prior to limb amputation could reactivate Lmx1b after limb amputation. We also found that Lmx1b activation was achieved by nerve presence. The nerve factors, BMP2+FGF2+FGF8 (B2FF), consistently reactivate Lmx1b when applied to the dorsal skin. CONCLUSIONS: These results imply that the retained Lmx1b expression in the intact skin plays a role in positional memory, which instruct cells about the spatial positioning before amputation. This memory is reactivated by nerves or nerve factors that can trigger the entire limb regeneration process. Our findings highlight the role of nerves in amphibian limb regeneration, including both the initiation of limb regeneration and the reactivation of position-specific gene expression.


Assuntos
Ambystoma mexicanum , Extremidades , Ambystoma mexicanum/fisiologia , Amputação Cirúrgica , Animais , Extremidades/fisiologia , Pele/metabolismo
14.
Development ; 146(15)2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31371378

RESUMO

The spatiotemporal identity of neural progenitors and the regional control of neurogenesis are essential for the development of cerebral cortical architecture. Here, we report that mammalian DM domain factors (Dmrt) determine the identity of cerebral cortical progenitors. Among the Dmrt family genes expressed in the developing dorsal telencephalon, Dmrt3 and Dmrta2 show a medialhigh/laterallow expression gradient. Their simultaneous loss confers a ventral identity to dorsal progenitors, resulting in the ectopic expression of Gsx2 and massive production of GABAergic olfactory bulb interneurons in the dorsal telencephalon. Furthermore, double-mutant progenitors in the medial region exhibit upregulated Pax6 and more lateral characteristics. These ventral and lateral shifts in progenitor identity depend on Dmrt gene dosage. We also found that Dmrt factors bind to Gsx2 and Pax6 enhancers to suppress their expression. Our findings thus reveal that the graded expression of Dmrt factors provide positional information for progenitors by differentially repressing downstream genes in the developing cerebral cortex.


Assuntos
Córtex Cerebral/embriologia , Células-Tronco Neurais/citologia , Neurogênese/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Células Cultivadas , Córtex Cerebral/citologia , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Transcrição PAX6/biossíntese , Fator de Transcrição PAX6/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética
15.
Biol Reprod ; 107(6): 1477-1489, 2022 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-36130202

RESUMO

Morphogenesis of the female reproductive tract is regulated by the mesenchyme. However, the identity of the mesenchymal lineage that directs the morphogenesis of the female reproductive tract has not been determined. Using in vivo genetic cell ablation, we identified Amhr2+ mesenchyme as an essential mesenchymal population in patterning the female reproductive tract. After partial ablation of Amhr2+ mesenchymal cells, the oviduct failed to develop its characteristic coiling due to decreased epithelial proliferation and tubule elongation during development. The uterus displayed a reduction in size and showed decreased cellular proliferation in both epithelial and mesenchymal compartments. More importantly, in the uterus, partial ablation of Amhr2+ mesenchyme caused abnormal lumen shape and altered the direction of its long axis from the dorsal-ventral axis to the left-right axis (i.e., perpendicular to the dorsal-ventral axis). Despite these morphological defects, epithelia underwent normal differentiation into secretory and ciliated cells in the oviduct and glandular epithelial cells in the uterus. These results demonstrated that Amhr2+ mesenchyme can direct female reproductive tract morphogenesis by regulating epithelial proliferation and lumen shape without affecting the differentiation of epithelial cell types.


Assuntos
Mesoderma , Útero , Animais , Feminino , Camundongos , Genitália Feminina , Mesoderma/metabolismo , Morfogênese , Oviductos , Proteínas Serina-Treonina Quinases/metabolismo , Útero/metabolismo
16.
Proc Natl Acad Sci U S A ; 116(26): 12925-12932, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31189599

RESUMO

A defining feature of chordates is the unique presence of a dorsal hollow neural tube that forms by internalization of the ectodermal neural plate specified via inhibition of BMP signaling during gastrulation. While BMP controls dorsoventral (DV) patterning across diverse bilaterians, the BMP-active side is ventral in chordates and dorsal in many other bilaterians. How this phylum-specific DV inversion occurs and whether it is coupled to the emergence of the dorsal neural plate are unknown. Here we explore these questions by investigating an indirect-developing enteropneust from the hemichordate phylum, which together with echinoderms form a sister group of the chordates. We found that in the hemichordate larva, BMP signaling is required for DV patterning and is sufficient to repress neurogenesis. We also found that transient overactivation of BMP signaling during gastrulation concomitantly blocked mouth formation and centralized the nervous system to the ventral ectoderm in both hemichordate and sea urchin larvae. Moreover, this mouthless, neurogenic ventral ectoderm displayed a medial-to-lateral organization similar to that of the chordate neural plate. Thus, indirect-developing deuterostomes use BMP signaling in DV and neural patterning, and an elevated BMP level during gastrulation drives pronounced morphological changes reminiscent of a DV inversion. These findings provide a mechanistic basis to support the hypothesis that an inverse chordate body plan emerged from an indirect-developing ancestor by tinkering with BMP signaling.


Assuntos
Evolução Biológica , Padronização Corporal/fisiologia , Proteínas Morfogenéticas Ósseas/fisiologia , Cordados não Vertebrados/embriologia , Gastrulação/fisiologia , Animais , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Larva/crescimento & desenvolvimento , Sistema Nervoso/embriologia , Filogenia , Ouriços-do-Mar/embriologia
17.
Int J Mol Sci ; 23(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36361543

RESUMO

Bone morphogenetic proteins (BMPs) play an important role in development. Twisted gastrulation BMP signaling modulator 1 (TWSG1) was initially identified as a regulator of the dorsoventral axis formation in Drosophila. The mechanism of BMP signaling modulation by TWSG1 is complex. TWSG1 inhibits BMP signaling by binding to BMP ligands including BMP4, whereas it enhances signaling by interacting with Chordin, a BMP antagonist. Therefore, TWSG1 can act as both a BMP agonist and antagonist. TWSG1 has various functions ranging from embryogenesis to cancer progression. TWSG1 knockout mice showed neural, craniofacial, and mammary defects. TWSG1 also regulated erythropoiesis and thymocyte development. Furthermore, the relationship between TWSG1 and cancer has been elucidated. Allelic loss of TWSG1 was detected in colorectal cancer. TWSG1 expression was upregulated in papillary thyroid carcinoma and glioblastoma but downregulated in gastric and endometrial cancers. TWSG1 suppressed BMP7-enhanced sphere formation and migration in endometrial cancer cells, indicating its tumor-suppressive role. Further studies are required to clarify the TWSG1 function and its association with BMP signaling in cancer development. Finally, TWSG1 is abundantly expressed in human and mouse ovaries and sustains follicular growth in rodent ovaries. Thus, TWSG1 has various functions ranging from fertility to cancer. Therefore, TWSG1 signaling modulation may be beneficial in treating specific diseases such as cancer.


Assuntos
Proteínas Morfogenéticas Ósseas , Neoplasias , Animais , Camundongos , Humanos , Proteínas Morfogenéticas Ósseas/metabolismo , Transdução de Sinais , Camundongos Knockout , Desenvolvimento Embrionário/genética , Neoplasias/genética
18.
Development ; 145(14)2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29866901

RESUMO

Based on functional evidence, we have previously demonstrated that early ventral Notch1 activity restricts dorsoanterior development in Xenopus We found that Notch1 has ventralizing properties and abolishes the dorsalizing activity of ß-catenin by reducing its steady state levels, in a process that does not require ß-catenin phosphorylation by glycogen synthase kinase 3ß. In the present work, we demonstrate that Notch1 mRNA and protein are enriched in the ventral region from the beginning of embryogenesis in Xenopus This is the earliest sign of ventral development, preceding the localized expression of wnt8a, bmp4 and Ventx genes in the ventral center and the dorsal accumulation of nuclear ß-catenin. Knockdown experiments indicate that Notch1 is necessary for the normal expression of genes essential for ventral-posterior development. These results indicate that during early embryogenesis ventrally located Notch1 promotes the development of the ventral center. Together with our previous evidence, these results suggest that ventral enrichment of Notch1 underlies the process by which Notch1 participates in restricting nuclear accumulation of ß-catenin to the dorsal side.


Assuntos
Embrião não Mamífero/embriologia , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Receptor Notch1/metabolismo , Peixe-Zebra/embriologia , Animais , Embrião não Mamífero/citologia , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptor Notch1/genética , Xenopus laevis , Peixe-Zebra/genética , beta Catenina/genética , beta Catenina/metabolismo
19.
Neurobiol Learn Mem ; 183: 107486, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34214666

RESUMO

At the encounter with a novel environment, contextual memory formation is greatly enhanced, accompanied with increased arousal and active exploration. Although this phenomenon has been widely observed in animal and human daily life, how the novelty in the environment is detected and contributes to contextual memory formation has lately started to be unveiled. The hippocampus has been studied for many decades for its largely known roles in encoding spatial memory, and a growing body of evidence indicates a differential involvement of dorsal and ventral hippocampal divisions in novelty detection. In this brief review article, we discuss the recent findings of the role of mossy cells in the ventral hippocampal moiety in novelty detection and put them in perspective with other novelty-related pathways in the hippocampus. We propose a mechanism for novelty-driven memory acquisition in the dentate gyrus by the direct projection of ventral mossy cells to dorsal dentate granule cells. By this projection, the ventral hippocampus sends novelty signals to the dorsal hippocampus, opening a gate for memory encoding in dentate granule cells based on information coming from the entorhinal cortex. We conclude that, contrary to the presently accepted functional independence, the dorsal and ventral hippocampi cooperate to link the novelty and contextual information, and this dorso-ventral interaction is crucial for the novelty-dependent memory formation.


Assuntos
Giro Denteado/fisiologia , Fibras Musgosas Hipocampais/fisiologia , Neurônios/fisiologia , Reconhecimento Psicológico/fisiologia , Animais , Hipocampo/fisiologia , Humanos , Vias Neurais , Teste de Campo Aberto
20.
Dev Genes Evol ; 230(2): 65-73, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32034484

RESUMO

In the spider, determination of the dorsal-ventral body (DV) axis depends on the interplay of the dorsal morphogen encoding gene decapentaplegic (Dpp) and its antagonist, short gastrulation (sog), a gene that is involved in the correct establishment of ventral tissues. Recent work demonstrated that the forkhead domain encoding gene FoxB is involved in dorsal-ventral axis formation in spider limbs. Here, Dpp likely acts as a dorsal morphogen, and FoxB is likely in control of ventral tissues as RNAi-mediated knockdown of FoxB causes dorsalization of the limbs. In this study, we present phenotypes of FoxB knockdown that demonstrate a function in the establishment of the DV body axis. Knockdown of FoxB function leads to embryos with partially duplicated median germ bands (Duplicitas media) that are possibly the result of ectopic activation of Dpp signalling. Another class of phenotypes is characterized by unnaturally slim (dorsal-ventrally compressed) germ bands in which ventral tissue is either not formed, or is specified incorrectly, likely a result of Dpp over-activity. These results suggest that FoxB functions as an antagonist of Dpp signalling during body axis patterning, similarly as it is the case in limb development. FoxB thus represents a general player in the establishment of dorsal-ventral structures during spider ontogeny.


Assuntos
Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Extremidades/embriologia , Fatores de Transcrição Forkhead/metabolismo , Aranhas/embriologia , Aranhas/metabolismo , Animais , Padronização Corporal/fisiologia , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Técnicas de Silenciamento de Genes , Morfogênese/genética , Fenótipo , Filogenia , Interferência de RNA , Transdução de Sinais/genética , Aranhas/genética , Aranhas/crescimento & desenvolvimento , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA