Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Pharm Ther ; 47(12): 2245-2254, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36345158

RESUMO

WHAT IS KNOWN AND OBJECTIVES: Voriconazole has a complex pharmacokinetic profile and exhibits different pharmacokinetic characteristics in adults and children. Nevertheless, few studies have been conducted on the population pharmacokinetics (PPK) of voriconazole in children with haematological malignancies. This study aims to build a PPK model and propose a suitable voriconazole treatment scheme for children with haematological malignancies. METHODS: We retrospectively collected 146 samples from 67 children aged from 1.08 to 17.92 years. The PPK model was established using nonlinear mixed effects modelling (NONMEM). Dosage simulations were conducted on the basis of the final model's covariates. RESULTS AND DISCUSSION: Data were fully characterized by a one-compartment model with first-order absorption and elimination. The weight (WT), CYP2C19 phenotype, and Albumin (ALB) were notable covariates for clearance (CL). The typical values of CL, the volume of distribution (V), and oral bioavailability (F) were 2.29 L/h, 76 L, and 0.902, respectively. The proposed doses for different CYP2C19 genotypes were presented in this ranking: EM (extensive metabolizer) > IM (intermediate metabolizer) > PM (poor metabolizer). Furthermore, higher dosages for light WT patients were recommended while lower ALB levels required lower doses. The probability of achieving the target (PTA) for the recommended doses ranged from 72.2% to 99%. WHAT IS NEW AND CONCLUSION: We successfully built a voriconazole PPK model for children with hematologic malignancies. Dosing regimens were developed for different patients based on the final model, which could enhance the rational use of voriconazole in children with haematological malignancies.


Assuntos
Antifúngicos , Neoplasias Hematológicas , Criança , Humanos , Voriconazol/uso terapêutico , Citocromo P-450 CYP2C19/genética , Estudos Retrospectivos , Neoplasias Hematológicas/tratamento farmacológico
2.
Expert Opin Pharmacother ; 24(3): 389-399, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36542800

RESUMO

INTRODUCTION: The process of drug approval involves extensive and expensive preclinical and clinical examination. Most drugs entering late-stage clinical trials get terminated for a variety of reasons including inability to achieve the primary endpoints or intolerable adverse effects. Only one-tenth of the drugs that enter clinical trials progress to Food and Drug Administration (FDA) regulatory submission. AREAS COVERED: This review offers insight into some of the attributes that may be responsible for a drug's failure in late-stage trials. Information from multiple open sources including PubMed articles published between 1989 and 2019, recent articles from authentic websites like www.ClinicalTrials.gov, www.fda.gov, and pharmaceutical news articles for the years between 2017 and 2021 were accumulated and summarized. Further, a few drug candidates that reached the phase III clinical trials but were discontinued at later stages have been presented as case studies. EXPERT OPINION: Ineluctable failures were observed due to insufficient knowledge about the mechanism of action where the disease progression stages are unclear. Other reasons were choice of patient population, late-stage treatment, and dosage. Adhering to the guidelines and recommendations provided by the regulatory authorities and learning from past failures, considerably reduce failure rates.


Assuntos
Aprovação de Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos
3.
Antibiotics (Basel) ; 10(12)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34943754

RESUMO

Voriconazole is a triazole antifungal agent commonly used for the treatment and prevention of invasive aspergillosis (IA). However, the study of voriconazole's use in children is limited. The present study was performed to explore maintenance dose to optimize voriconazole dosage in children and the factors affecting voriconazole trough concentration. This is a non-interventional retrospective clinical study conducted from 1 January 2016 to 31 December 2020. The study finally included 94 children with 145 voriconazole trough concentrations. The probability of achieving a targeted concentration of 1.0-5.5 µg/mL with empiric dosing increased from 43 (45.3%) to 78 (53.8%) after the TDM-guided adjustment. To achieve targeted concentration, the overall target maintenance dose for the age group of less than 2, 2 to 6, 6 to 12, and 12 to 18 years old was approximately 5.71, 6.67, 5.08 and 3.31 mg·kg-1/12 h, respectively (p < 0.001). Final multivariate analysis found that weight (p = 0.019), dose before sampling (p < 0.001), direct bilirubin (p < 0.001), urea nitrogen (p = 0.038) and phenotypes of CYP2C19 were influencing factors of voriconazole trough concentration. These factors can explain 36.2% of the variability in voriconazole trough concentration. Conclusion: In pediatric patients, voriconazole maintenance doses under the target concentration tend to be lower than the drug label recommended, but this still needs to be further studied. Age, body weight, dose, direct bilirubin, urea nitrogen and phenotypes of CYP2C19 were found to be influencing factors of voriconazole concentration in Chinese children. The influence of these factors should be taken into consideration during voriconazole use.

4.
Ther Adv Neurol Disord ; 10(1): 51-66, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28450895

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease that is caused by an autoimmune response against central nervous system (CNS) structures. Traditionally considered a T-cell-mediated disorder, the contribution of B cells to the pathogenesis of MS has long been debated. Based on recent promising clinical results from CD20-depleting strategies by three therapeutic monoclonal antibodies in clinical phase II and III trials (rituximab, ocrelizumab and ofatumumab), targeting B cells in MS is currently attracting growing interest among basic researchers and clinicians. Many questions about the role of B and plasma cells in MS remain still unanswered, ranging from the role of specific B-cell subsets and functions to the optimal treatment regimen of B-cell depletion and monitoring thereafter. Here, we will assess our current knowledge of the mechanisms implicating B cells in multiple steps of disease pathology and examine current and future therapeutic approaches for the treatment of MS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA