Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(40): 24885-24892, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32958662

RESUMO

Drought alters carbon (C) allocation within trees, thereby impairing tree growth. Recovery of root and leaf functioning and prioritized C supply to sink tissues after drought may compensate for drought-induced reduction of assimilation and growth. It remains unclear if C allocation to sink tissues during and following drought is controlled by altered sink metabolic activities or by the availability of new assimilates. Understanding such mechanisms is required to predict forests' resilience to a changing climate. We investigated the impact of drought and drought release on C allocation in a 100-y-old Scots pine forest. We applied 13CO2 pulse labeling to naturally dry control and long-term irrigated trees and tracked the fate of the label in above- and belowground C pools and fluxes. Allocation of new assimilates belowground was ca. 53% lower under nonirrigated conditions. A short rainfall event, which led to a temporary increase in the soil water content (SWC) in the topsoil, strongly increased the amounts of C transported belowground in the nonirrigated plots to values comparable to those in the irrigated plots. This switch in allocation patterns was congruent with a tipping point at around 15% SWC in the response of the respiratory activity of soil microbes. These results indicate that the metabolic sink activity in the rhizosphere and its modulation by soil moisture can drive C allocation within adult trees and ecosystems. Even a subtle increase in soil moisture can lead to a rapid recovery of belowground functions that in turn affects the direction of C transport in trees.


Assuntos
Carbono/metabolismo , Pinus sylvestris/metabolismo , Solo/química , Árvores/metabolismo , Carbono/análise , Mudança Climática , Secas , Ecossistema , Florestas , Pinus sylvestris/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Rizosfera , Árvores/crescimento & desenvolvimento , Água/análise , Água/metabolismo
2.
New Phytol ; 233(1): 194-206, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34610146

RESUMO

The intensity and frequency of droughts events are projected to increase in future with expected adverse effects for forests. Thus, information on the dynamics of tree water uptake from different soil layers during and after drought is crucial. We applied an in situ water isotopologue monitoring system to determine the oxygen isotope composition in soil and xylem water of European beech with a 2-h resolution together with measurements of soil water content, transpiration and tree water deficit. Using a Bayesian isotope mixing model, we inferred the relative and absolute contribution of water from four different soil layers to tree water use. Beech took up more than 50% of its water from the uppermost 5 cm soil layer at the beginning of the 2018 drought, but then reduced absolute water uptake from the drying topsoil by 84%. The trees were not able to quantitatively compensate for restricted topsoil water availability by additional uptake from deeper soil layers, which is related to the fine root depth distribution. Absolute water uptake from the topsoil was restored to pre-drought levels within 3 wk after rewetting. These uptake patterns help to explain both the drought sensitivity of beech and its high recovery potential after drought release.


Assuntos
Fagus , Teorema de Bayes , Secas , Solo , Água
3.
Tree Physiol ; 43(6): 979-994, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-36851855

RESUMO

The importance of drought as a constraint to agriculture and forestry is increasing with climate change. Genetic improvement of plants' resilience is one of the mitigation strategies to curb this threat. Although recovery from drought stress is important to long-term drought adaptation and has been considered as an indicator of dehydration tolerance in annual crops, this has not been well explored in forest trees. Thus, we aimed to investigate the physiological and transcriptional changes during drought stress and rewatering in Eucalyptus grandis W. Hill ex Maiden. We set up a greenhouse experiment where we imposed drought stress on 2-year-old seedlings and rewatered the recovery group after 17 days of drought. Our measurement of leaf stomatal conductance (gs) showed that, while gs was reduced by drought stress, it fully recovered after 5 days of rewatering. The RNA-seq analysis from stem samples revealed that genes related to known stress responses such as phytohormone and reactive oxygen species signaling were upregulated, while genes involved in metabolism and growth were downregulated due to drought stress. We observed reprogramming of signal transduction pathways and metabolic processes at 1 day of rewatering, indicating a quick response to rewatering. Our results suggest that recovery from drought stress may entail alterations in the jasmonic acid, salicylic acid, ethylene and brassinosteroid signaling pathways. Using co-expression network analysis, we identified hub genes, including the putative orthologs of ABI1, ABF2, ABF3, HAI2, BAM1, GolS2 and SIP1 during drought and CAT2, G6PD1, ADG1 and FD-1 during recovery. Taken together, by highlighting the molecular processes and identifying key genes, this study gives an overview of the mechanisms underlying the response of E. grandis to drought stress and recovery that trees may face repeatedly throughout their long life cycle. This provides a useful reference to the identification and further investigation of signaling pathways and target genes for future tree improvement.


Assuntos
Secas , Eucalyptus , Eucalyptus/fisiologia , Folhas de Planta/fisiologia , Reguladores de Crescimento de Plantas , Plântula/metabolismo , Água/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA