Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Plant J ; 118(3): 626-644, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38241088

RESUMO

Drought is one of the major and growing threats to agriculture productivity and food security. Metabolites are involved in the regulation of plant responses to various environmental stresses, including drought stress. The complex drought tolerance can be ascribed to several simple metabolic traits. These traits could then be used for detecting the genetic architecture of drought tolerance. Plant metabolomes show dynamic differences when drought occurs during different developmental stages or upon different levels of drought stress. Here, we reviewed the major and most recent findings regarding the metabolite-mediated plant drought response. Recent progress in the development of drought-tolerant agents is also discussed. We provide an updated schematic overview of metabolome-driven solutions for increasing crop drought tolerance and thereby addressing an impending agricultural challenge.


Assuntos
Adaptação Fisiológica , Produtos Agrícolas , Secas , Metaboloma , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Produtos Agrícolas/fisiologia , Estresse Fisiológico
2.
Int J Mol Sci ; 25(10)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38791604

RESUMO

Peanut (Arachis hypogaea L.) is an important crop that provides essential proteins and oils for human and animal consumption. 9-cis-epoxycarotenoid dioxygenase (NCED) have been found can play a vital role in abscisic acid (ABA) biosynthesis and may be a response to drought stress. Until now, in Arachis hypogaea, no information about the NCED gene family has been reported and the importance of NCED-related drought tolerance is unclear. In this study, eight NCED genes in Arachis hypogaea, referred to as AhNCEDs, are distributed across eight chromosomes, with duplication events in AhNCED1 and AhNCED2, AhNCED3 and AhNCED4, and AhNCED6 and AhNCED7. Comparative analysis revealed that NCED genes are highly conserved among plant species, including Pisum sativum, Phaseolus vulgaris, Glycine max, Arabidopsis thaliana, Gossypium hirsutum, and Oryza sativa. Further promoter analysis showed AhNCEDs have ABA-related and drought-inducible elements. The phenotyping of Arachis hypogaea cultivars NH5 and FH18 demonstrated that NH5 is drought-tolerant and FH18 is drought-sensitive. Transcriptome expression analysis revealed the differential regulation of AhNCEDs expression in both NH5 and FH18 cultivars under drought stress. Furthermore, compared to the Arachis hypogaea cultivar FH18, the NH5 exhibited a significant upregulation of AhNCED1/2 expression under drought. To sum up, this study provides an insight into the drought-related AhNCED genes, screened out the potential candidates to regulate drought tolerance and ABA biosynthesis in Arachis hypogaea.


Assuntos
Arachis , Dioxigenases , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Estresse Fisiológico , Arachis/genética , Arachis/metabolismo , Estresse Fisiológico/genética , Dioxigenases/genética , Dioxigenases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo , Filogenia , Perfilação da Expressão Gênica , Regiões Promotoras Genéticas/genética
3.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473979

RESUMO

Many Dendrobium species, which hold a high status and value in traditional Chinese medicine, grow on barks and rocks in the wild, often encountering harsh environments and facing droughts. However, the molecular mechanisms underlying the shift in the photosynthetic pathway induced by drought remain unclear. To address this issue, three Dendrobium species with different photosynthetic pathways were selected for sequencing and transcriptome data analysis after drought treatment. The findings included 134.43 GB of sequencing data, with numerous Differentially Expressed Genes (DEGs) exhibiting different response mechanisms under drought stress. Gene Ontology (GO)-KEGG-based enrichment analysis of DEGs revealed that metabolic pathways contributed to drought tolerance and alterations in photosynthetic pathways. Phosphoenolpyruvate Carboxylase (PEPC) was subjected to phylogenetic tree construction, sequence alignment, and domain analysis. Under drought stress, variations were observed in the PEPC gene structure and expression among different Dendrobium species; the upregulation of Dc_gene2609 expression may be caused by dof-miR-384, which resulted in the shift from C3 photosynthesis to CAM, thereby improving drought tolerance in Dendrobium. This study revealed the expression patterns and roles of PEPC genes in enhancing plant drought tolerance and will provide an important basis for in-depth research on Dendrobium's adaptation mechanisms in arid environments.


Assuntos
Dendrobium , Secas , Dendrobium/genética , Filogenia , Transcriptoma , Perfilação da Expressão Gênica , Fotossíntese , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
4.
World J Microbiol Biotechnol ; 40(9): 283, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39060806

RESUMO

This study was designed to recover representative culturable actinomycetes from the Atacama Desert, and to detect their ability to promote plant growth under drought conditions. Environmental samples were taken from three Atacama Desert habitats, namely, from the Aguas Calientes, Lomas Bayas and Yungay core regions. With one exception higher actinomycete counts were obtained when isolation media were inoculated with mineral particles than with corresponding aliquots of serial dilution. Comparative 16S rRNA gene sequencing showed that representative isolates belonged to thirteen genera including putative novel Blastococcus, Kocuria, Micromonospora, Pseudonocardia, Rhodococcus and Streptomyces species. Representative isolates produced indole-3-acetic acid, siderophore and solubilized phosphate as well as displaying an ability to grow under drought conditions. In conclusion, the current findings open up exciting prospects for the promising potential of actinomycetes from the Atacama Desert to be used as bioinoculants to promote plant growth in arid and semi-arid biomes.


Assuntos
Actinobacteria , Clima Desértico , Secas , Ácidos Indolacéticos , Filogenia , Desenvolvimento Vegetal , RNA Ribossômico 16S , Sideróforos , Microbiologia do Solo , Actinobacteria/genética , Actinobacteria/classificação , Actinobacteria/isolamento & purificação , RNA Ribossômico 16S/genética , Ácidos Indolacéticos/metabolismo , Sideróforos/metabolismo , DNA Bacteriano/genética , Fosfatos/metabolismo , Análise de Sequência de DNA , Reguladores de Crescimento de Plantas/metabolismo , Resistência à Seca
5.
Genome ; 64(1): 15-27, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33002373

RESUMO

Water stress associated with drought-like conditions is a major factor limiting plant growth and impacts productivity of natural plant communities and agricultural crops. Molecular responses of plants to water stress have been studied most extensively in model species and crops, few of which have evolved natural drought tolerance. In the current study, we examined physiological and transcriptomic responses at multiple timepoints during increasing water stress and following initial recovery from stress in a drought-tolerant C3 species, Festuca ovina. Results demonstrated non-linear transcriptomic changes during increasing stress, but largely linear declines in physiological measurements during this same period. Transcription factors represented approximately 12.7% of all differentially expressed genes. In total, 117 F. ovina homologs of previously identified and molecularly characterized drought-responsive plant genes were identified. This information will be valuable for further investigations of the molecular mechanisms involved in drought tolerance in C3 plants.


Assuntos
Desidratação/genética , Secas , Festuca/genética , Festuca/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Folhas de Planta/genética , Análise de Sequência de RNA , Estresse Fisiológico , Fatores de Transcrição/genética , Transcriptoma
6.
Plant Mol Biol ; 102(1-2): 109-122, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31820285

RESUMO

KEY MESSAGE: Drought tolerance level of 136 soybean genotypes, the correlations among traits were evaluated, and several important drought-tolerant genotypes, traits, SNPs and genes were possibly useful for soybean genetic breeding. Drought is an adverse environmental factor affecting crops growth, development, and yield. Promising genotypes and genes with improved tolerance to drought are probably effective ways to alleviate the situation. In this study, our main task was to determine drought tolerance level of 136 soybean genotypes, the correlations among physiological and agronomic traits under drought, and drought-tolerant single nucleotide polymorphism (SNPs) and genes. In this study, twenty-six varieties were identified as excellent tolerant genotypes to stress among which S14, S93 and S135 with high drought-tolerant index (DTI > 1.3) and yield (Y > 300 kg). Fourteen varieties were identified as drought-sensitive genotypes, such as S25, S45 and S58, with low drought-tolerant index (DTI < 0.5). 422 SNPs and 302 genes correlated with seed number per plant (SNPP), maturity (M), number of seeds per pod (NSPP), node number of main stem (NNMS), Stem diameter (SD) and pull stem (PS) were detected under well-watered and drought conditions by genome-wide association study (GWAS). Among them, we found SNPs (Chr 3:1758920-1958934) between drought-tolerant and sensitive genotypes. 13 genes (Glyma.03G017800, Glyma.03G018000, Glyma.03G018200, Glyma.03G018400, Glyma.03G018500, Glyma.03G018600, Glyma.03G018700, Glyma.03G018800, Glyma.03G018900, Glyma.03G019000, Glyma.03G019100, Glyma.03G019200, Glyma.03G019300) correlated with NNMS were detected. By qRT-PCR, the expression level of Glyma.03G018000 and Glyma.03G018900 in drought-tolerant varieties was significantly increased, but low or no expression in sensitive varieties under drought stress. This study provides important drought-tolerant genotypes, traits, SNPs and potential genes, possibly useful for soybean genetic breeding.


Assuntos
Secas , Genótipo , Glycine max/fisiologia , Fenótipo , Melhoramento Vegetal , Adaptação Fisiológica/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Genoma de Planta/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Sementes , Alinhamento de Sequência , Glycine max/genética
7.
BMC Plant Biol ; 20(1): 321, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32640999

RESUMO

BACKGROUND: Drought is a major limiting factor seriously influencing worldwide soybean production and its impact on yield, morphological and physiological traits depend on the timing it occurs and the intensity of water shortage. Only limited research has however been conducted on identifying the drought-tolerant genotypes at different growth stages (vegetative growth phase, reproductive growth phase and the whole growth phase) as well as evaluate the effectiveness and reliability of multiple phenotypic and yield-related characteristics in soybean. RESULTS: Two pot experiments and a 2-year field experiment were conducted to evaluate soybean drought tolerance at different growth stages. The membership function value of drought tolerance (MFVD) was used to identify drought-resistant cultivars during vegetative growth phase and reproductive growth stage; the relative drought index (RDI) of yield was used to assess drought-resistant cultivars during the whole growing period. In this study, regression models built based on MFVD indicated that the variation of drought tolerant coefficient (DC) of R/S, TRL, LAI and RSR could explain 73.70% of the total variation at vegetative growth phase. However, higher heritability only found in LAI and RSR, indicating the two traits could serve as reliable criteria for drought evaluation. Similarly, the DC of SPP, YPP, PH, PB, MSNN and STB could explain 94.30% of the total variation in MFVD according to stepwise multiple linear regression analyses at reproductive growth phase. Thus, these six traits were identified as indicators for screening drought resistance genotypes in soybean. In addition, correlation analysis revealed that the MFVD was significantly positively correlated with the DCRB, DCR/S, DCRSA, DCRSR and DCRBR at vegetative growth phase and DCYPP, DCSPP, DCRB, and DCPB at reproductive growth phase. This indicated that these traits were closely related to the drought resistance of plants. CONCLUSIONS: LD24, JD36 and TF31 of vegetative growth phase, and TD37 and LD26 of reproductive growth phase were identified with drought tolerant and highly drought tolerant, respectively. Moreover, 30 accessions with drought tolerance were screened in the field trial and could be applied for the drought resistance of other genotypes by cross-breeding.


Assuntos
Glycine max/genética , Estresse Fisiológico , Secas , Genótipo , Fenótipo , Melhoramento Vegetal , Pesquisa , Glycine max/crescimento & desenvolvimento , Glycine max/fisiologia , Água/fisiologia
8.
BMC Plant Biol ; 20(1): 315, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620139

RESUMO

BACKGROUND: Frequently occurring drought stress negatively affects the production of maize worldwide. Numerous efforts have been made to develop drought-tolerant maize lines and to explore drought tolerant mechanisms in maize. However, there is a lack of comparative studies on transcriptomic changes between drought-tolerant and control maize lines. RESULTS: In the present study, we have developed a drought-tolerant maize mutant (C7-2t) by irradiating the seeds of maize inbred line ChangC7-2 (C7-2) with 60Co-γ. Compared to its wild type C7-2, C7-2t exhibited a significantly delayed wilting and higher drought tolerance under both the controlled and field conditions, indicating its high water-holding ability. Transcriptomic profiling was performed to identify differentially expressed genes (DEGs) between C7-2 and C7-2t during drought. As a result, a total of 4552 DEGs were implied in drought tolerance of C7-2 and C7-2t. In particular, the expression of photosynthesis-related genes in C7-2 was inhibited, whereas these genes in C7-2t were almost unaffected under drought. Moreover, a specific set of the DEGs were involved in phenylpropanoid biosynthesis and taurine (hypotaurine) metabolism in C7-2t; these DEGs were enriched in cell components associated with membrane systems and cell wall biosynthesis. CONCLUSIONS: The drought tolerance of C7-2t was largely due to its high water-holding ability, stable photosynthesis (for supporting osmoregulation) and strengthened biosynthesis of cell walls under drought conditions.


Assuntos
Secas , Zea mays/fisiologia , Adaptação Fisiológica , Parede Celular/metabolismo , Perfilação da Expressão Gênica , Mutação , RNA-Seq , Reação em Cadeia da Polimerase em Tempo Real , Estresse Fisiológico , Açúcares/metabolismo , Zea mays/genética
9.
BMC Plant Biol ; 20(1): 564, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33317465

RESUMO

BACKGROUND: Vegetable amaranth is a source of natural phytopigments and functional components of the commercial food industry for sustainable health benefits across the globe. It is guessed that recently identified amaranth (drought-tolerant) genotypes may contain ample phytopigments and phytochemicals suitable to extract juice as drinks. Hence, phytopigments and phytochemicals content of amaranth were assessed in detail for suitability as drinks to feed the phytochemicals deficient community across the globe. RESULTS: The selected amaranth contained adequate carbohydrates, protein, moisture, and dietary fiber, phytopigments, minerals, phytochemicals including the ability to scavenge radicals. Nine flavonoids compounds were estimated in amaranth genotypes including six flavonols, one flavanol, one flavone, and one flavanone. It is the first effort in which we identified one flavonol such as myricetin, one flavanol, such as catechin, one flavone i. e., apigenin, and one flavanone, like naringenin in drought-tolerant vegetable amaranth. Across six flavonols, quercetin and rutin were the most noteworthy compounds followed by myricetin and isoquercetin. Across the accessions, AT7 and AT15 had abundant phytochemicals, and radical quenching ability including considerable proximate, nutraceuticals, and phytopigments in comparison to the accessions AT3 and AT11. AT15 demonstrated the maximum total flavonols including the highest rutin and hyperoside. AT7 showed high total flavonols including the highest quercetin, isoquercetin, myricetin, and kaempferol. The association of values revealed that studied phytopigments and phytochemicals of vegetable amaranth accessions demonstrated good radical quenching ability of 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) and 2,2- Diphenyl-1-picrylhydrazyl equivalent to Trolox. CONCLUSIONS: These advance lines AT7 and AT15 had abundant nutraceuticals, phytopigments, and phytochemicals including radical quenching ability. These lines might significantly contribute to the promotion of health benefits and feeding the community across the globe deficit in nutraceuticals and antioxidants. Identified flavonoid compounds open the new route for pharmacological study.


Assuntos
Amaranthus/química , Antioxidantes/análise , Bebidas/análise , Suplementos Nutricionais/análise , Compostos Fitoquímicos/análise , Amaranthus/fisiologia , Secas
10.
Planta ; 249(6): 1851-1861, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30848355

RESUMO

MAIN CONCLUSION: Morphological, physiological, and gene expression analyses showed that Os4BGlu10, Os6BGlu24, and Os9BGlu33 played specific roles in seed germination, root elongation, and drought tolerance of rice, with various relations with indole-3-acetic acid (IAA) and abscisic acid (ABA) signaling. ß-Glucosidases (BGlus) belong to glycoside hydrolase family 1 and have many functions in plants. In this study, we investigated the function of three BGlus in seed germination, drought tolerance, and root elongation using the loss-of-function mutants bglu10, bglu24, and bglu33. These mutants germinated slightly later under normal conditions and had significantly longer roots than the wild type. In the presence of ABA, bglu10 and bglu24 exhibited a higher germination inhibition percentage, whereas bglu33 had a lower germination inhibition percentage, compared to the wild type. All of the mutants exhibited less drought tolerance, with the survival rates significantly lower than that of the wild type, which was also confirmed by a decrease in relative leaf water content and Fv/Fm ratio after drought treatment. The root length of bglu10 did not respond to IAA, whereas that of bglu24 responded to a high (0.25 µM) concentration of IAA, and that of bglu33 to a low (0.05 µM) concentration of IAA. The root length of bglu10 and bglu24 did not respond to ABA, whereas that of bglu33 increased significantly in response to a high (0.05 µM) concentration of ABA. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis showed that expression of Os4BGlu10 was up-regulated by polyethylene glycol (PEG), whereas that of Os6BGlu24 was up-regulated by 0.25 µM IAA, and Os9BGlu33 was up-regulated by PEG, IAA, and ABA. Taken together, we demonstrate that Os4BGlu10, Os6BGlu24, and Os9BGlu33 play specific roles in seed germination, root elongation, and drought tolerance with various relation with IAA and ABA signaling.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais , Ácido Abscísico/metabolismo , Secas , Germinação , Ácidos Indolacéticos/metabolismo , Família Multigênica , Mutação , Oryza/crescimento & desenvolvimento , Oryza/fisiologia , Fenótipo , Filogenia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , beta-Glucosidase/genética , beta-Glucosidase/metabolismo
11.
Ecotoxicol Environ Saf ; 162: 129-138, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29990724

RESUMO

There are fewer reports on plant growth promoting (PGP) bacteria living in nodules as helper to tolerance to abiotic stress such as salinity and drought. The study was conducted to isolate rhizobial and non-rhizobial drought and salinity tolerant bacteria from the surface sterilized root nodules of alfalfa, grown in saline soils, and evaluate the effects of effective isolates on plant growth under salt stress. Based on drought and salinity tolerance of bacterial isolates and having multiple PGP traits, two non-rhizobial endophytic isolates and one rhizobial endophytic isolate were selected for further identification and characterization. Based on partial sequences of 16 S rRNA genes, non-rhizobial isolates and rhizobial isolate were closely related to Klebsiella sp., Kosakonia cowanii, and Sinorhizobium meliloti, respectively. None of the two non-rhizobial strains were able to form nodules on alfalfa roots under greenhouse and in vitro conditions. Co-inoculation of alfalfa plant with Klebsiella sp. A36, K. cowanii A37, and rhizobial strain S. meliloti ARh29 had a positive effect on plant growth indices under salinity stress. In addition, the single inoculation of non-rhizobial strains without rhizobial strain resulted in an increase in alfalfa growth indices compared to the plants non-inoculated and the ones inoculated with S. meliloti ARh29 alone under salinity stress, indicating that nodule non-rhizobial strains have PGP potentials and may be a promising way for improving effectiveness of Rhizobium bio-fertilizers in salt-affected soils.


Assuntos
Medicago sativa/crescimento & desenvolvimento , Medicago sativa/microbiologia , Rhizobium/isolamento & purificação , Nódulos Radiculares de Plantas/microbiologia , Salinidade , Klebsiella/isolamento & purificação , Tolerância ao Sal , Sinorhizobium meliloti/isolamento & purificação , Solo/química , Microbiologia do Solo , Estresse Fisiológico , Simbiose
12.
World Dev ; 107: 163-175, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29970954

RESUMO

Droughts have historically had large impacts on agricultural production in rainfed agricultural systems. Scientists and policymakers have proposed various strategies for managing risks, with limited success. In this study we consider two such strategies, specifically drought tolerant rice and weather index insurance. While neither drought tolerant cultivars nor weather index insurance products are perfect solutions for adequately managing drought risk in and of themselves, there is scope to exploit the benefits of each and bundle them into a complementary risk management product, specifically through proper index calibration and an optimized insurance design. In this study, we explore preferences for such a complementary risk management product using discrete choice experiments in Odisha, India. We are able to estimate the added value that farmers perceive in the bundled product above and beyond the value associated with each of the independent products. We also show that valuations are very sensitive to the basis risk implied by the insurance product, with farmers less enthusiastic about risk management products that leave significant risks uninsured.

13.
Biochim Biophys Acta Proteins Proteom ; 1865(11 Pt A): 1433-1444, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28887228

RESUMO

Fennel is attracted attention as a useful resource as researching medicinal plant for drought tolerance. To elucidate the response mechanism in drought-sensitive and -tolerant genotypes of fennel leaf, a gel-free/label-free proteomic technique was used. Fifty-day-old plants were subjected to drought stress for 60days. The relative water and proline contents were decreased and increased in sensitive genotypes, respectively; however, they were not a big change in tolerant genotypes. Photosynthesis was decreased in the sensitive genotypes under drought; however, it was increased in the tolerant genotype. In both drought-sensitive and -tolerant genotypes, proteins related to protein metabolism and cell organization were predominately affected under drought stress. The abundance of phosphoribulokinase and phosphoglycerate kinase enzymes were decreased and increased in drought-sensitive and -tolerant genotypes, respectively; however, the abundance of RuBisCO and glyceraldehyde-3-phosphate dehydrogenase enzymes were increased and decreased in drought-sensitive and -tolerant genotypes, respectively. Under drought stress, the abundance of glycolysis-related proteins was decreased in sensitive genotypes; however, they were increased in tolerance genotypes. Commonly changed proteins with polyethylene glycol fractionation such as cobalamin-independent methionine synthase were decreased and increased in drought-sensitive and -tolerant genotypes, respectively. These results suggest that cobalamin-independent methionine synthetase is involved in the tolerance of drought-tolerant fennel leaf under drought stress.


Assuntos
Foeniculum/genética , Regulação da Expressão Gênica de Plantas , Genótipo , Metiltransferases/genética , Folhas de Planta/genética , Proteínas de Plantas/genética , Adaptação Fisiológica/genética , Secas , Foeniculum/metabolismo , Perfilação da Expressão Gênica , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Metiltransferases/metabolismo , Anotação de Sequência Molecular , Fosfoglicerato Quinase/genética , Fosfoglicerato Quinase/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fotossíntese/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Prolina/metabolismo , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Estresse Fisiológico/genética , Água/metabolismo
14.
Plant Cell Environ ; 40(12): 3122-3134, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28982212

RESUMO

Species are often classified along a continuum from isohydric to anisohydric, with isohydric species exhibiting tighter regulation of leaf water potential through stomatal closure in response to drought. We investigated plasticity in stomatal regulation in an isohydric (Eucalyptus camaldulensis) and an anisohydric (Acacia aptaneura) angiosperm species subject to repeated drying cycles. We also assessed foliar abscisic acid (ABA) content dynamics, aboveground/belowground biomass allocation and nonstructural carbohydrates. The anisohydric species exhibited large plasticity in the turgor loss point (ΨTLP ), with plants subject to repeated drying exhibiting lower ΨTLP and correspondingly larger stomatal conductance at low water potential, compared to plants not previously exposed to drought. The anisohydric species exhibited a switch from ABA to water potential-driven stomatal closure during drought, a response previously only reported for anisohydric gymnosperms. The isohydric species showed little osmotic adjustment, with no evidence of switching to water potential-driven stomatal closure, but did exhibit increased root:shoot ratios. There were no differences in carbohydrate depletion between species. We conclude that a large range in ΨTLP and biphasic ABA dynamics are indicative of anisohydric species, and these traits are associated with exposure to low minimum foliar water potential, dense sapwood and large resistance to xylem embolism.


Assuntos
Ácido Abscísico/metabolismo , Magnoliopsida/fisiologia , Transpiração Vegetal/fisiologia , Acacia/fisiologia , Biomassa , Dessecação , Secas , Meio Ambiente , Eucalyptus/fisiologia , Magnoliopsida/crescimento & desenvolvimento , Osmose , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Água/fisiologia
15.
World Dev ; 94: 465-477, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28579670

RESUMO

Maize plays a leading role in the food security of millions in southern Africa, yet it is highly vulnerable to the moisture stress brought about by the erratic rainfall patterns that characterize weather systems in the area. Developing and making drought-tolerant maize varieties available to farmers in the region has thus long been a key goal on the regional development agenda. Farm-level adoption of these varieties, however, depends on local perceptions of the value they add, along with willingness to pay (WTP) for it. Focusing on Zimbabwe, this research aimed at estimating the implicit prices farmers are willing to pay for drought tolerance in maize compared to other preferred traits. Using a choice experiment framework, we generated 12,600 observations from a random sample of 1,400 households in communal areas within 14 districts of Zimbabwe. Taste parameters and heterogeneities were estimated using the generalized multinomial logit model (G-MNL). The results reveal drought tolerance, grain yield, covered cob tip, cob size, and semi-flint texture to be the most preferred traits by farm households in Zimbabwe. The WTP estimates show that farmers are willing to pay a premium for drought tolerance equal to 2.56, 7, 3.2, and 5 times higher than for an additional ton of yield per acre, bigger cob size, larger grain size, and covered cob tip, respectively. We suggest designing and implementing innovative ways of promoting DT maize along with awareness-raising activities to enhance contextual understandings of drought and drought risk to speed adoption of new DT maize varieties by risk-prone farming communities. Given the high level of rural literacy and the high rate of adoption of improved maize, trait-based promotion and marketing of varieties constitutes the right strategy.

16.
J Environ Manage ; 203(Pt 1): 106-113, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28779600

RESUMO

This study measured the impacts of drought tolerant maize varieties (DTMVs) on productivity, welfare, and risk exposure using household and plot-level data from rural Nigeria. The study employed an endogenous switching regression approach to control for both observed and unobserved sources of heterogeneity between adopters and non-adopters. Our results showed that adoption of DTMVs increased maize yields by 13.3% and reduced the level of variance by 53% and downside risk exposure by 81% among adopters. This suggests that adoption had a "win-win" outcome by increasing maize yields and reducing exposure to drought risk. The gains in productivity and risk reduction due to adoption led to a reduction of 12.9% in the incidence of poverty and of 83.8% in the probability of food scarcity among adopters. The paper concluded that adoption of DTMVs was not just a simple coping strategy against drought but also a productivity enhancing and welfare improving strategy. The results point to the need for policies and programs aimed at enhancing adoption as an adaptation strategy to drought stress in Nigeria and beyond.


Assuntos
Adaptação Fisiológica , Secas , Zea mays , Nigéria
18.
Indian J Microbiol ; 54(1): 118-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24426178

RESUMO

Enterobacter sp. MR1 an endophytic plant growth promoting bacterium was isolated from the roots of Butea monosperma, a drought tolerant plant. Genome sequencing of Enterobacter spp. MR1 was carried out in Ion Torrent (PGM), Next Generation Sequencer. The data obtained revealed 640 contigs with genome size of 4.58 Mb and G+C content of 52.8 %. This bacterium may contain genes responsible for inducing drought tolerance in plant, including genes for phosphate solubilization, growth hormones and other useful genes for plant growth.

19.
Plants (Basel) ; 13(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38592877

RESUMO

Wild soybean (Glycine soja L.), drought-tolerant cultivar Tiefeng 31 (Glycine max L.), and drought-sensitive cultivar Fendou 93 (Glycine max L.) were used as materials to investigate the drought tolerance mechanism after 72 h 2.5 M PEG 8000 (osmotic potential -0.54 MPa)-simulated drought stress at the seedling stage. The results indicated that the leaves of the G. soja did not wilt under drought stress. However, both the drought-tolerant and drought-sensitive cultivated soybean cultivars experienced varying degrees of leaf wilt. Notably, the drought-sensitive cultivated soybean cultivars exhibited severe leaf wilt after the drought stress. Drought stress was determined to have a significant impact on the dry matter of the above-ground part of the drought-sensitive cultivar Fendou 93, followed by the drought-tolerant cultivar Tiefeng 31, with the lowest reduction observed in G. soja. Furthermore, the presence of drought stress resulted in the closure of leaf stomata. G. soja exhibited the highest proportion of stomatal opening per unit area, followed by the drought-tolerant cultivar Tiefeng 31, while the drought-sensitive cultivar Fendou 93 displayed the lowest percentage. Photosynthesis-related indexes, including photosynthetic rate, intercellular CO2, transpiration rate, and stomatal conductance, decreased in Fendou 93 and Tiefeng 31 after drought stress, but increased in G. soja. In terms of the antioxidant scavenging system, lower accumulation of malondialdehyde (MDA) was observed in G. soja and Tiefeng 31, along with higher activities of superoxide dismutase (SOD, EC 1.15.1.1) and catalase (CAT, EC 1.11.1.6) to counteract excess reactive oxygen species and maintain cell membrane integrity. In contrast, the drought-sensitive cultivar Fendou 93 had higher MDA content and higher activities of ascorbate peroxidase (APX, EC 1.11.1.11) and peroxidase (POD, 1.11.1.7). G. soja and Tiefeng 31 also exhibited less accumulation of osmolytes, including soluble sugar, soluble protein, and free proline content. The activities of δ-OAT, ProDH, and P5CS, key enzymes in proline anabolism, showed an initial increase under drought stress, followed by a decrease, and then an increase again at the end of drought stress in G. soja. Before drought stress, Tiefeng 31 had higher activities of ProDH and P5CS, which decreased with prolonged drought stress. Fendou 93 experienced an increase in the activities of δ-OAT, ProDH, and P5CS under drought stress. The δ-OAT gene expression levels were up-regulated in all three germplasms. The expression levels of the P5CS gene in Fendou 93 and Tiefeng 31 were down-regulated, while G. soja showed no significant change. The expression of the P5CR gene and ProDH gene was down-regulated in Fendou 93 and Tiefeng 31, but up-regulated in G. soja. This indicates that proline content is regulated at both the transcription and translation levels.

20.
BMC Genom Data ; 25(1): 29, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481144

RESUMO

BACKGROUND: Gleditsia sinensis is a significant tree species from both ecological and economic perspectives. However, its growth is hampered by temporary droughts during the seedling stage, thereby impeding the development of the G. sinensis industry. Drought stress and rehydration of semi-annual potted seedlings using an artificial simulated water control method. RNA sequencing (RNA-seq) analyses were conducted on leaves collected from highly resistant (HR) and highly susceptible (HS) seedling families at five different stages during the process of drought stress and rehydration to investigate their gene expression patterns. RESULTS: The differentially expressed genes (DEGs) were predominantly enriched in pathways related to "chloroplast" (GO:0009507), "photosynthesis" (GO:0015979), "plant hormone signal transduction" (map04075), "flavonoid biosynthesis" (map00941), "stress response", "response to reactive oxygen species (ROS)" (GO:0000302), "signal transduction" (GO:0007165) in G. sinensis HR and HS families exposed to mild and severe drought stress. Additionally, the pathways related to "plant hormone signal transduction" (map04075), and osmoregulation were also enriched. The difference in drought tolerance between the two families of G. sinensis may be associated with "transmembrane transporter activity" (GO:0022857), "stress response", "hormones and signal transduction" (GO:0007165), "cutin, suberine and wax biosynthesis" (map00073), "ribosome" (map03010), "photosynthesis" (map00195), "sugar metabolism", and others. An enrichment analysis of DEGs under severe drought stress suggests that the drought tolerance of both families may be related to "water-soluble vitamin metabolic process" (GO:0006767), "photosynthesis" (map00195), "plant hormone signal transduction" (map04075), "starch and sucrose metabolism" (map00500), and "galactose metabolism" (map00052). Osmoregulation-related genes such as delta-1-pyrroline-5-carboxylate synthase (P5CS), Amino acid permease (AAP), Amino acid permease 2 (AAP2) and Trehalose-phosphate synthase (TPS), as well as the antioxidant enzyme L-ascorbate peroxidase 6 (APX6), may be significant genes involved in drought tolerance in G. sinensis. Five genes were selected randomly to validate the RNA-seq results using quantitative real-time PCR (RT-qPCR) and they indicated that the transcriptome data were reliable. CONCLUSIONS: The study presents information on the molecular regulation of the drought tolerance mechanism in G. sinensis and provides a reference for further research on the molecular mechanisms involved in drought tolerance breeding of G. sinensis.


Assuntos
Gleditsia , Plântula , Plântula/genética , Plântula/metabolismo , Secas , Gleditsia/genética , Gleditsia/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Melhoramento Vegetal , Perfilação da Expressão Gênica/métodos , Água/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA