Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 253
Filtrar
1.
Cell ; 176(1-2): 98-112.e14, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30633912

RESUMO

The ability of circulating tumor cells (CTCs) to form clusters has been linked to increased metastatic potential. Yet biological features and vulnerabilities of CTC clusters remain largely unknown. Here, we profile the DNA methylation landscape of single CTCs and CTC clusters from breast cancer patients and mouse models on a genome-wide scale. We find that binding sites for stemness- and proliferation-associated transcription factors are specifically hypomethylated in CTC clusters, including binding sites for OCT4, NANOG, SOX2, and SIN3A, paralleling embryonic stem cell biology. Among 2,486 FDA-approved compounds, we identify Na+/K+ ATPase inhibitors that enable the dissociation of CTC clusters into single cells, leading to DNA methylation remodeling at critical sites and metastasis suppression. Thus, our results link CTC clustering to specific changes in DNA methylation that promote stemness and metastasis and point to cluster-targeting compounds to suppress the spread of cancer.


Assuntos
Neoplasias da Mama/genética , Metástase Neoplásica/genética , Células Neoplásicas Circulantes/patologia , Animais , Neoplasias da Mama/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Metilação de DNA/fisiologia , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Proteína Homeobox Nanog/metabolismo , Metástase Neoplásica/fisiopatologia , Células Neoplásicas Circulantes/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Complexo Correpressor Histona Desacetilase e Sin3
2.
Proc Natl Acad Sci U S A ; 119(18): e2115960119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35482924

RESUMO

Nephronophthisis (NPH) is an autosomal recessive tubulointerstitial nephropathy belonging to the ciliopathy disorders and known as the most common cause of hereditary end-stage renal disease in children. Yet, no curative treatment is available. The major gene, NPHP1, encodes a protein playing key functions at the primary cilium and cellular junctions. Using a medium-throughput drug-screen in NPHP1 knockdown cells, we identified 51 Food and Drug Administration-approved compounds by their ability to alleviate the cellular phenotypes associated with the loss of NPHP1; 11 compounds were further selected for their physicochemical properties. Among those compounds, prostaglandin E1 (PGE1) rescued ciliogenesis defects in immortalized patient NPHP1 urine-derived renal tubular cells, and improved ciliary and kidney phenotypes in our NPH zebrafish and Nphp1 knockout mouse models. Furthermore, Taprenepag, a nonprostanoid prostaglandin E2 receptor agonist, alleviated the severe retinopathy observed in Nphp1−/− mice. Finally, comparative transcriptomics allowed identification of key signaling pathways downstream PGE1, including cell cycle progression, extracellular matrix, adhesion, or actin cytoskeleton organization. In conclusion, using in vitro and in vivo models, we showed that prostaglandin E2 receptor agonists can ameliorate several of the pleotropic phenotypes caused by the absence of NPHP1; this opens their potential as a first therapeutic option for juvenile NPH-associated ciliopathies.


Assuntos
Ciliopatias , Doenças Renais Policísticas , Animais , Cílios/metabolismo , Ciliopatias/tratamento farmacológico , Ciliopatias/genética , Ciliopatias/metabolismo , Feminino , Humanos , Doenças Renais Císticas/congênito , Masculino , Camundongos , Doenças Renais Policísticas/metabolismo , Prostaglandinas/metabolismo , Receptores de Prostaglandina E/metabolismo , Peixe-Zebra
3.
J Cell Mol Med ; 28(13): e18524, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39011666

RESUMO

Clear cell renal cell carcinoma (ccRCC), a prevalent kidney cancer form characterised by its invasiveness and heterogeneity, presents challenges in late-stage prognosis and treatment outcomes. Programmed cell death mechanisms, crucial in eliminating cancer cells, offer substantial insights into malignant tumour diagnosis, treatment and prognosis. This study aims to provide a model based on 15 types of Programmed Cell Death-Related Genes (PCDRGs) for evaluating immune microenvironment and prognosis in ccRCC patients. ccRCC patients from the TCGA and arrayexpress cohorts were grouped based on PCDRGs. A combination model using Lasso and SuperPC was constructed to identify prognostic gene features. The arrayexpress cohort validated the model, confirming its robustness. Immune microenvironment analysis, facilitated by PCDRGs, employed various methods, including CIBERSORT. Drug sensitivity analysis guided clinical treatment decisions. Single-cell data enabled Programmed Cell Death-Related scoring, subsequent pseudo-temporal and cell-cell communication analyses. A PCDRGs signature was established using TCGA-KIRC data. External validation in the arrayexpress cohort underscored the model's superiority over traditional clinical features. Furthermore, our single-cell analysis unveiled the roles of PCDRG-based single-cell subgroups in ccRCC, both in pseudo-temporal progression and intercellular communication. Finally, we performed CCK-8 assay and other experiments to investigate csf2. In conclusion, these findings reveal that csf2 inhibit the growth, infiltration and movement of cells associated with renal clear cell carcinoma. This study introduces a PCDRGs prognostic model benefiting ccRCC patients while shedding light on the pivotal role of programmed cell death genes in shaping the immune microenvironment of ccRCC patients.


Assuntos
Carcinoma de Células Renais , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais , Aprendizado de Máquina , Microambiente Tumoral , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Microambiente Tumoral/genética , Prognóstico , Neoplasias Renais/genética , Neoplasias Renais/patologia , Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , Apoptose/genética , Análise de Célula Única/métodos
4.
Mol Cancer ; 23(1): 12, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200517

RESUMO

BACKGROUND: Malignant peritoneal mesothelioma (MPM) is an extremely rare and highly invasive tumor. Due to the lack of accurate models that reflect the biological characteristics of primary tumors, studying MPM remains challenging and is associated with an exceedingly unfavorable prognosis. This study was aimed to establish a new potential preclinical model for MPM using patient-derived MPM organoids (MPMOs) and to comprehensively evaluate the practicality of this model in medical research and its feasibility in guiding individualized patient treatment. METHODS: MPMOs were constructed using tumor tissue from MPM patients. Histopathological analysis and whole genome sequencing (WGS) were employed to determine the ability of MPMOs to replicate the original tumor's genetic and histological characteristics. The subcutaneous and orthotopic xenograft models were employed to assess the feasibility of establishing an in vivo model of MPM. MPMOs were also used to conduct drug screening and compare the results with retrospective analysis of patients after treatment, in order to evaluate the potential of MPMOs in predicting the effectiveness of drugs in MPM patients. RESULTS: We successfully established a culture method for human MPM organoids using tumor tissue from MPM patients and provided a comprehensive description of the necessary medium components for MPMOs. Pathological examination and WGS revealed that MPMOs accurately represented the histological characteristics and genomic heterogeneity of the original tumors. In terms of application, the success rate of creating subcutaneous and orthotopic xenograft models using MPMOs was 88% and 100% respectively. Drug sensitivity assays demonstrated that MPMOs have different medication responses, and these differences were compatible with the real situation of the patients. CONCLUSION: This study presents a method for generating human MPM organoids, which can serve as a valuable research tool and contribute to the advancement of MPM research. Additionally, these organoids can be utilized as a means to evaluate the effectiveness of drug treatments for MPM patients, offering a model for personalized treatment approaches.


Assuntos
Mesotelioma Maligno , Mesilatos , Neoplasias Peritoneais , Piperidinas , Humanos , Animais , Estudos Retrospectivos , Neoplasias Peritoneais/tratamento farmacológico , Neoplasias Peritoneais/genética , Modelos Animais de Doenças , Organoides
5.
J Neurooncol ; 166(1): 99-112, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38184819

RESUMO

PURPOSE: Patients with MYC-amplified Group 3 medulloblastoma (MB) (subtype II) show poor progression-free survival rates. Class I histone deacetylase inhibitors (HDACi) are highly effective for the treatment of MYC-amplified MB in vitro and in vivo. Drug combination regimens including class I HDACi may represent an urgently needed novel treatment approach for this high risk disease. METHODS: A medium-throughput in vitro combination drug screen was performed in three MYC-amplified and one non-MYC-amplified MB cell line testing 75 clinically relevant drugs alone and in combination with entinostat. The drug sensitivity score (DSS) was calculated based on metabolic inhibition quantified by CellTiter-Glo. The six top synergistic combination hits were evaluated in a 5 × 5 combination matrix and a seven-ray design. Synergy was validated and characterized by cell counts, caspase-3-like-activity and poly-(ADP-ribose)-polymerase-(PARP)-cleavage. On-target activity of drugs was validated by immunoprecipitation and western blot. BCL-XL dependency of the observed effect was explored with siRNA mediated knockdown of BCL2L1, and selective inhibition with targeted compounds (A-1331852, A-1155463). RESULTS: 20/75 drugs effectively reduced metabolic activity in combination with entinostat in all three MYC-amplified cell lines (DSS ≥ 10). The combination entinostat and navitoclax showed the strongest synergistic interaction across all MYC-amplified cell lines. siRNA mediated knockdown of BCL2L1, as well as targeted inhibition with selective inhibitors showed BCL-XL dependency of the observed effect. Increased cell death was associated with increased caspase-3-like-activity. CONCLUSION: Our study identifies the combination of class I HDACi and BCL-XL inhibitors as a potential new approach for the treatment of MYC-amplified MB cells.


Assuntos
Benzamidas , Neoplasias Cerebelares , Meduloblastoma , Piridinas , Humanos , Apoptose , Caspase 3/metabolismo , Linhagem Celular Tumoral , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/genética , Combinação de Medicamentos , Interações Medicamentosas , Inibidores de Histona Desacetilases/farmacologia , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Meduloblastoma/metabolismo , RNA Interferente Pequeno
6.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33836565

RESUMO

Upon treatment removal, spontaneous reactivation of latently infected T cells remains a major barrier toward curing HIV. Therapies that reactivate and clear the latent reservoir are only partially effective, while latency-promoting agents (LPAs) used to suppress reactivation and stabilize latency are understudied and lack diversity in their mechanisms of action. Here, we identify additional LPAs using a screen for gene-expression fluctuations (or "noise") that drive cell-fate specification and control HIV reactivation from latency. Single-cell protein dynamics of a minimal HIV gene circuit were monitored with time-lapse fluorescence microscopy. We screened 1,806 drugs, out of which 279 modulate noise magnitude or half autocorrelation time. Next, we tested the strongest noise modulators in a Jurkat T cell latency model and discovered three LPAs that would be overlooked by quantifying their mean expression levels alone. The LPAs reduced reactivation of latency in both Jurkat and primary cell models when challenged by synergistic and potent combinations of HIV activators. The two strongest LPAs, NSC 401005 and NSC 400938, are structurally and functionally related to inhibitors of thioredoxin reductase, a protein involved in maintaining redox balance in host cells. Experiments with multiple functional analogs revealed two additional LPAs, PX12 and tiopronin, and suggest a potential LPA family, within which some are commercially available and Food and Drug Administration-approved. The LPAs presented here may provide new strategies to complement antiretroviral treatments. Screening for gene expression noise holds the potential for drug discovery in other diseases.


Assuntos
HIV-1/genética , Latência Viral/efeitos dos fármacos , Fármacos Anti-HIV/farmacologia , Regulação Viral da Expressão Gênica/efeitos dos fármacos , HIV-1/fisiologia , Humanos , Células Jurkat
7.
J Biol Chem ; 298(11): 102505, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36126773

RESUMO

MutS homologs (MSHs) are highly conserved core components of DNA mismatch repair. Mismatch recognition provokes ATP-binding by MSH proteins that drives a conformational transition from a short-lived lesion-searching clamp to an extremely stable sliding clamp on the DNA. Here, we have expanded on previous bulk biochemical studies to examine the stability, lifetime, and kinetics of bacterial and human MSH sliding clamps on mismatched DNA using surface plasmon resonance and single-molecule analysis of fluorescently labeled proteins. We found that ATP-bound MSH complexes bound to blocked-end or very long mismatched DNAs were extremely stable over a range of ionic conditions. These observations underpinned the development of a high-throughput Förster resonance energy transfer system that specifically detects the formation of MSH sliding clamps on mismatched DNA. The Förster resonance energy transfer system is capable of distinguishing between HsMSH2-HsMSH3 and HsMSH2-HsMSH6 and appears suitable for chemical inhibitor screens. Taken together, our results provide additional insight into MSH sliding clamps as well as methods to distinguish their functions in mismatch repair.


Assuntos
Proteínas de Escherichia coli , Proteína MutS de Ligação de DNA com Erro de Pareamento , Humanos , Trifosfato de Adenosina/metabolismo , Pareamento Incorreto de Bases , DNA/metabolismo , Reparo de Erro de Pareamento de DNA , Proteínas de Escherichia coli/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Proteínas MutS/genética , Ligação Proteica
8.
J Cell Biochem ; 124(10): 1646-1663, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37733630

RESUMO

Inorganic pyrophosphatase 1 (PPA1) is pivotal to cellular metabolism as it facilitates the hydrolysis of PPi-a by-product of various metabolic processes that influence cell growth and differentiation. Overexpression of PPA1 enzyme has been linked to diminished patient survival and was shown to influence tumor cell dynamics, thereby positioning it as a potential therapy target for a variety of cancers including colorectal cancer, diffuse large B-cell lymphoma, and lung adenocarcinoma. Despite this therapeutic promise, there are no known inhibitors of PPA1 as of today. In this study, we searched for potential PPA1 inhibitors using a molecular docking screen of 30 470 compounds with a history of clinical trials and/or US Food and Drug Administration approval. We specifically targeted the active pocket that coincides with the established catalytic domain. Our screen identified promising hits, which we further subjected to ADMET (absorption, distribution, metabolism, excretion, and toxicity) filtering. Subsequent molecular dynamics (MD) analyses were conducted on devazepide, quinotolast, and tarazepide-the three substances that successfully navigated all filters. MD analyses reinforced the stability of the protein-ligand complexes and confirmed ligand binding, as substantiated by our root mean square deviation, radius of gyration and secondary structures of proteins analyses. Furthermore, Molecular Mechanics Poisson-Boltzmann Surface Area calculations post-MD identified devazepide and quinotolast as showing higher binding affinities; being supported by principal component analysis, free energy landscape, and dynamic cross-correlation matrix results. Overall, our study reveals devazepide and quinotolast as potential candidates for PPA1 inhibition which could be considered for repurposing studies that need further experimental validation. These results not only reveal a potential for clinical repurposing for PPA1 inhibition but they also offer valuable insights into the development of future compounds for targeting the crucial PPA1 enzyme.

9.
J Cell Sci ; 134(19)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34643242

RESUMO

In the skin fragility disorder epidermolysis bullosa simplex (EBS), mutations in keratin 14 (K14, also known as KRT14) or keratin 5 (K5, also known as KRT5) lead to keratinocyte rupture and skin blistering. Severe forms of EBS are associated with cytoplasmic protein aggregates, with elevated kinase activation of ERK1 and ERK2 (ERK1/2; also known as MAPK3 and MAPK1, respectively), suggesting intrinsic stress caused by misfolded keratin protein. Human keratinocyte EBS reporter cells stably expressing GFP-tagged EBS-mimetic mutant K14 were used to optimize a semi-automated system to quantify the effects of test compounds on keratin aggregates. Screening of a protein kinase inhibitor library identified several candidates that reduced aggregates and impacted on epidermal growth factor receptor (EGFR) signalling. EGF ligand exposure induced keratin aggregates in EBS reporter keratinocytes, which was reversible by EGFR inhibition. EBS keratinocytes treated with a known EGFR inhibitor, afatinib, were driven out of activation and towards quiescence with minimal cell death. Aggregate reduction was accompanied by denser keratin filament networks with enhanced intercellular cohesion and resilience, which when extrapolated to a whole tissue context would predict reduced epidermal fragility in EBS patients. This assay system provides a powerful tool for discovery and development of new pathway intervention therapeutic avenues for EBS.


Assuntos
Epidermólise Bolhosa Simples , Citoesqueleto , Descoberta de Drogas , Epidermólise Bolhosa Simples/tratamento farmacológico , Epidermólise Bolhosa Simples/genética , Humanos , Filamentos Intermediários , Queratinócitos , Queratinas/genética , Mutação/genética
10.
J Virol ; 96(6): e0221621, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35080424

RESUMO

The development of antivirals against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been hampered by the lack of efficient cell-based replication systems that are amenable to high-throughput screens in biosafety level 2 laboratories. Here we report that stable cell clones harboring autonomously replicating SARS-CoV-2 RNAs without spike (S), membrane (M), and envelope (E) genes can be efficiently derived from the baby hamster kidney (BHK-21) cell line when a pair of mutations were introduced into the non-structural protein 1 (Nsp1) of SARS-CoV-2 to ameliorate cellular toxicity associated with virus replication. In a proof-of-concept experiment we screened a 273-compound library using replicon cells and identified three compounds as novel inhibitors of SARS-CoV-2 replication. Altogether, this work establishes a robust, cell-based system for genetic and functional analyses of SARS-CoV-2 replication and for the development of antiviral drugs. IMPORTANCE SARS-CoV-2 replicon systems that have been reported up to date were unsuccessful in deriving stable cell lines harboring non-cytopathic replicons. The transient expression of viral sgmRNA or a reporter gene makes it impractical for industry-scale screening of large compound libraries using these systems. Here, for the first time, we derived stable cell clones harboring the SARS-CoV-2 replicon. These clones may now be conveniently cultured in a standard BSL-2 laboratory for high throughput screen of compound libraries. Additionally, our stable replicon cells represent a new model system to study SARS-CoV-2 replication.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Avaliação Pré-Clínica de Medicamentos , SARS-CoV-2 , Animais , Antivirais/farmacologia , Linhagem Celular , Células Clonais , Cricetinae , Avaliação Pré-Clínica de Medicamentos/métodos , RNA Viral , Replicon , SARS-CoV-2/efeitos dos fármacos , Replicação Viral
11.
Artigo em Inglês | MEDLINE | ID: mdl-38087422

RESUMO

A defining feature of sea urchins is their extreme fecundity. Urchins produce millions of transparent, synchronously developing embryos, ideal for spatial and temporal analysis of development. This biological feature has been effectively utilized for ensemble measurement of biochemical changes. However, it has been underutilized in imaging studies, where single embryo measurements are used. Here we present an example of how stable genetics and high content imaging, along with machine learning-based image analysis, can be used to exploit the fecundity and synchrony of sea urchins in imaging-based drug screens. Building upon our recently created sea urchin ABCB1 knockout line, we developed a high-throughput assay to probe the role of this drug transporter in embryos. We used high content imaging to compare accumulation and toxicity of canonical substrates and inhibitors of the transporter, including fluorescent molecules and antimitotic cancer drugs, in homozygous knockout and wildtype embryos. To measure responses from the resulting image data, we used a nested convolutional neural network, which rapidly classified embryos according to fluorescence or cell division. This approach identified sea urchin embryos with 99.8% accuracy and determined two-cell and aberrant embryos with 96.3% and 89.1% accuracy, respectively. The results revealed that ABCB1 knockout embryos accumulated the transporter substrate calcein 3.09 times faster than wildtypes. Similarly, knockouts were 4.71 and 3.07 times more sensitive to the mitotic poisons vinblastine and taxol. This study paves the way for large scale pharmacological screens in the sea urchin embryo.

12.
Harm Reduct J ; 20(1): 144, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798673

RESUMO

BACKGROUND: Over 109,000 people in the USA died from a drug overdose in 2022. More alarming is the amount of drug overdose deaths involving synthetic opioids other than methadone (SOOM), primarily fentanyl. From 2015 to 2020, the number of drug overdose deaths from SOOM increased 5.9-fold. SOOM are commonly being found in many other drugs without the user's knowledge. Given the alarming number of overdose deaths from illicit drugs with SOOM, naloxone should be prescribed for all persons using illicit drugs regardless of if they knowingly use opioids. How often providers prescribe naloxone for these patients remains unknown. The aim of this study is to determine the rate of naloxone prescriptions given to patients with any substance use disorder, including when the patient has a urine drug screen positive for fentanyl. Secondary aims include determining what patient factors are associated with receiving a naloxone prescription. METHODS: The design was a single-center retrospective cohort study on patients that presented to the Augusta University Medical Center emergency department between 2019 through 2021 and had an ICD-10 diagnosis of a substance use disorder. Analyses were conducted by logistic regression and t-test or Welch's t-test. RESULTS: A total of 10,510 emergency department visits were by 6787 patients. Naloxone was prescribed in 16.3% of visits with an opioid-related discharge diagnosis and 8.4% of visits with a non-opioid substance use-related discharge diagnosis and a urine drug screen positive for fentanyl. Patients with a fentanyl positive urine drug screen had higher odds of receiving a naloxone prescription (aOR 5.80, 95% CI 2.76-12.20, p < 0.001). Patients with a psychiatric diagnosis had lower odds of being prescribed naloxone (aOR 0.51, p = 0.03). Patients who received naloxone had a lower number of visits (mean 1.23 vs. 1.55, p < 0.001). Patients with a urine drug screen positive for cocaine had higher odds of frequent visits (aOR 3.07, p = 0.01). CONCLUSIONS: Findings should remind providers to prescribe naloxone to all patients with a substance use disorder, especially those with a positive fentanyl urine drug screen or a co-occurring psychiatric condition. Results also show that cocaine use continues to increase healthcare utilization.


Assuntos
Cocaína , Overdose de Drogas , Drogas Ilícitas , Transtornos Relacionados ao Uso de Opioides , Humanos , Naloxona/uso terapêutico , Fentanila , Estudos Retrospectivos , Analgésicos Opioides/uso terapêutico , Metadona , Overdose de Drogas/tratamento farmacológico , Serviço Hospitalar de Emergência , Prescrições , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico
13.
Int J Mol Sci ; 24(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37834238

RESUMO

Infection with Ebola virus (EBOV) is responsible for hemorrhagic fever in humans with a high mortality rate. Combined efforts of prevention and therapeutic intervention are required to tackle highly variable RNA viruses, whose infections often lead to outbreaks. Here, we have screened the 2P2I3D chemical library using a nanoluciferase-based protein complementation assay (NPCA) and isolated two compounds that disrupt the interaction of the EBOV protein fragment VP35IID with the N-terminus of the dsRNA-binding proteins PKR and PACT, involved in IFN response and/or intrinsic immunity, respectively. The two compounds inhibited EBOV infection in cell culture as well as infection by measles virus (MV) independently of IFN induction. Consequently, we propose that the compounds are antiviral by restoring intrinsic immunity driven by PACT. Given that PACT is highly conserved across mammals, our data support further testing of the compounds in other species, as well as against other negative-sense RNA viruses.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Humanos , Animais , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/metabolismo , Ebolavirus/fisiologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Mamíferos
14.
Antimicrob Agents Chemother ; 66(12): e0103222, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36346232

RESUMO

Human respiratory syncytial virus (hRSV) infection is a leading cause of severe respiratory tract infections. Effective, directly acting antivirals against hRSV are not available. We aimed to discover new and chemically diverse candidates to enrich the hRSV drug development pipeline. We used a two-step screen that interrogates compound efficacy after primary infection and a consecutive virus passaging. We resynthesized selected hit molecules and profiled their activities with hRSV lentiviral pseudotype cell entry, replicon, and time-of-addition assays. The breadth of antiviral activity was tested against recent RSV clinical strains and human coronavirus (hCoV-229E), and in pseudotype-based entry assays with non-RSV viruses. Screening 6,048 molecules, we identified 23 primary candidates, of which 13 preferentially scored in the first and 10 in the second rounds of infection, respectively. Two of these molecules inhibited hRSV cell entry and selected for F protein resistance within the fusion peptide. One molecule inhibited transcription/replication in hRSV replicon assays, did not select for phenotypic hRSV resistance and was active against non-hRSV viruses, including hCoV-229E. One compound, identified in the second round of infection, did not measurably inhibit hRSV cell entry or replication/transcription. It selected for two coding mutations in the G protein and was highly active in differentiated BCi-NS1.1 lung cells. In conclusion, we identified four new hRSV inhibitor candidates with different modes of action. Our findings build an interesting platform for medicinal chemistry-guided derivatization approaches followed by deeper phenotypical characterization in vitro and in vivo with the aim of developing highly potent hRSV drugs.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Humanos , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Vírus Sincicial Respiratório Humano/genética , Antivirais/uso terapêutico , Pulmão
15.
J Virol ; 95(3)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33148797

RESUMO

Given the projected increase in multidrug-resistant HIV-1, there is an urgent need for development of antiretrovirals that act on virus life cycle stages not targeted by drugs currently in use. Host-targeting compounds are of particular interest because they can offer a high barrier to resistance. Here, we report identification of two related small molecules that inhibit HIV-1 late events, a part of the HIV-1 life cycle for which potent and specific inhibitors are lacking. This chemotype was discovered using cell-free protein synthesis and assembly systems that recapitulate intracellular host-catalyzed viral capsid assembly pathways. These compounds inhibit replication of HIV-1 in human T cell lines and peripheral blood mononuclear cells, and are effective against a primary isolate. They reduce virus production, likely by inhibiting a posttranslational step in HIV-1 Gag assembly. Notably, the compound colocalizes with HIV-1 Gag in situ; however, unexpectedly, selection experiments failed to identify compound-specific resistance mutations in gag or pol, even though known resistance mutations developed upon parallel nelfinavir selection. Thus, we hypothesized that instead of binding to Gag directly, these compounds localize to assembly intermediates, the intracellular multiprotein complexes containing Gag and host factors that form during immature HIV-1 capsid assembly. Indeed, imaging of infected cells shows compound colocalized with two host enzymes found in assembly intermediates, ABCE1 and DDX6, but not two host proteins found in other complexes. While the exact target and mechanism of action of this chemotype remain to be determined, our findings suggest that these compounds represent first-in-class, host-targeting inhibitors of intracellular events in HIV-1 assembly.IMPORTANCE The success of antiretroviral treatment for HIV-1 is at risk of being undermined by the growing problem of drug resistance. Thus, there is a need to identify antiretrovirals that act on viral life cycle stages not targeted by drugs in use, such as the events of HIV-1 Gag assembly. To address this gap, we developed a compound screen that recapitulates the intracellular events of HIV-1 assembly, including virus-host interactions that promote assembly. This effort led to the identification of a new chemotype that inhibits HIV-1 replication at nanomolar concentrations, likely by acting on assembly. This compound colocalized with Gag and two host enzymes that facilitate capsid assembly. However, resistance selection did not result in compound-specific mutations in gag, suggesting that the chemotype does not directly target Gag. We hypothesize that this chemotype represents a first-in-class inhibitor of virus production that acts by targeting a virus-host complex important for HIV-1 Gag assembly.


Assuntos
Antirretrovirais/farmacologia , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Leucócitos Mononucleares/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Montagem de Vírus/efeitos dos fármacos , Transportadores de Cassetes de Ligação de ATP/metabolismo , RNA Helicases DEAD-box/metabolismo , Infecções por HIV/patologia , Infecções por HIV/virologia , Humanos , Leucócitos Mononucleares/virologia , Proteínas Proto-Oncogênicas/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
16.
IUBMB Life ; 74(8): 812-825, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35102668

RESUMO

Recent advances in induced pluripotent stem cell (iPSC) technology have allowed researchers to generate neurodegenerative disease-specific iPSCs and use the cells to derive a variety of relevant cell populations for laboratory modeling and drug testing. Nevertheless, these efforts have faced challenges related to immaturity and lack of complex developmental niches in the derived cell populations, limiting the utility of these in vitro models of neurodegenerative disease. Such limitations may be overcome by using human iPSC technology to generate three-dimensional (3D) brain organoids, which better recapitulate in vivo tissue architecture than traditional neuronal cultures to provide more complex and representative disease models and drug testing systems. In this review, we focus on the application of pluripotent stem cell-derived central nervous system (CNS) organoids to model neurodegenerative diseases. We first summarize recent progress in generating and characterizing various CNS organoids from pluripotent stem cells. We then review the application of CNS organoids for modeling several different human neurodegenerative diseases. We also describe several novel pathological mechanisms and drugs that were studied using patient iPSC-derived CNS organoids. Finally, we discuss remaining challenges and emerging opportunities for the use of 3D brain organoids for in vitro modeling of CNS development and neurodegeneration.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças Neurodegenerativas , Sistema Nervoso Central , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Doenças Neurodegenerativas/patologia , Neurônios/patologia , Organoides/patologia , Organoides/fisiologia
17.
FASEB J ; 35(9): e21834, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34403553

RESUMO

Two distinct genetic mutational pathways characterized by either chromosomal instability or high-frequency microsatellite instability (MSI-H) are recognized in the pathogenesis of colorectal cancer (CRC). Recently, it has been shown that patients with primary CRC that displays MSI-H have a significant, stage-independent, multivariate survival advantage. Biological properties of CMS1 (MSI-H type) can affect therapeutic efficiencies of agents used in the treatment of CRC, and therefore become a new predictive factor of the treatment. But, the predictive impact of MSI-H status for adjuvant chemotherapy remains controversial. This study will assess whether there is any unnecessary or inappropriate use of treatment agents recommended for adjuvant therapy of stage 2 and 3 of disease and for palliative or curative treatment of liver metastatic disease in microsatellite instability high group, a molecular subtype of colon cancer. Within this scope, the efficiencies of fluorouracil- and oxaliplatin-based chemotherapeutic agents will be shown on stage 3 microsatellite instability high colon tumor cell lines first, and then a microfluidic model will be created, imitating the metastasis of colon cancer to the liver. In the microfluidic chip model, we will create in liver tissue, where the metastasis of microsatellite instability high colon cancer will be simulated; the effectiveness of chemotherapeutic agents, immunotherapy agents, and targeted agents on tumor cells as well as drug response will be assessed according to cell viability through released biomarkers from the cells. The proposed hypothesis study includes the modeling and treatment of patient-derived post-metastatic liver cancer in microfluidics which has priority at the global and our region and consequently develop personal medication.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Dispositivos Lab-On-A-Chip , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Instabilidade de Microssatélites , Metástase Neoplásica/tratamento farmacológico , Metástase Neoplásica/genética , Antineoplásicos/uso terapêutico , Quimioterapia Adjuvante , Neoplasias do Colo/patologia , Ensaios de Seleção de Medicamentos Antitumorais , Fluoruracila/uso terapêutico , Humanos , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/patologia , Neoplasias Hepáticas/secundário , Modelos Biológicos , Metástase Neoplásica/patologia , Especificidade de Órgãos , Oxaliplatina/uso terapêutico
18.
Pharmacol Res ; 175: 105996, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34848323

RESUMO

High throughput screening methods, measuring the sensitivity and resistance of tumor cells to drug treatments have been rapidly evolving. Not only do these screens allow correlating response profiles to tumor genomic features for developing novel predictors of treatment response, but they can also add evidence for therapy decision making in precision oncology. Recent analysis methods developed for either assessing single agents or combination drug efficacies enable quantification of dose-response curves with restricted symmetric fit settings. Here, we introduce iTReX, a user-friendly and interactive Shiny/R application, for both the analysis of mono- and combination therapy responses. The application features an extended version of the drug sensitivity score (DSS) based on the integral of an advanced five-parameter dose-response curve model and a differential DSS for combination therapy profiling. Additionally, iTReX includes modules that visualize drug target interaction networks and support the detection of matches between top therapy hits and the sample omics features to enable the identification of druggable targets and biomarkers. iTReX enables the analysis of various quantitative drug or therapy response readouts (e.g. luminescence, fluorescence microscopy) and multiple treatment strategies (drug treatments, radiation). Using iTReX we validate a cost-effective drug combination screening approach and reveal the application's ability to identify potential sample-specific biomarkers based on drug target interaction networks. The iTReX web application is accessible at https://itrex.kitz-heidelberg.de.


Assuntos
Antineoplásicos/administração & dosagem , Software , Protocolos de Quimioterapia Combinada Antineoplásica , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Quimioterapia Combinada , Ensaios de Triagem em Larga Escala , Humanos
19.
Cancer Cell Int ; 21(1): 398, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315500

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) one of the deadliest malignant tumor. Despite considerable progress in pancreatic cancer treatment in the past 10 years, PDAC mortality has shown no appreciable change, and systemic therapies for PDAC generally lack efficacy. Thus, developing biomarkers for treatment guidance is urgently required. This review focuses on pancreatic tumor organoids (PTOs), which can mimic the characteristics of the original tumor in vitro. As a powerful tool with several applications, PTOs represent a new strategy for targeted therapy in pancreatic cancer and contribute to the advancement of the field of personalized medicine.

20.
AIDS Care ; 33(12): 1560-1568, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33764814

RESUMO

The United States and Canada are experiencing an opioid overdose crisis driven largely by exposure to fentanyl (a potent synthetic opioid), with little known about fentanyl exposure among HIV-positive people who use unregulated drugs (PWUD). We sought to estimate the prevalence and correlates of fentanyl exposure among a community-recruited sample derived from a prospective cohort study of HIV-positive PWUD in Vancouver, Canada. Generalized linear mixed-effects analyses were used to identify longitudinal factors associated with a fentanyl-positive urine drug screen test. Between June 2016-November 2017, 456 participants were recruited and contributed 1007 observations. At baseline, 96% of participants were ART-exposed, 72% had an HIV viral load (VL) <50 copies/mL and 21% had a fentanyl-positive test. Longitudinally, fentanyl-positive tests were characterized by: younger participant age (Adjusted Odds Ratio [AOR] = 0.45), recent non-fatal overdose (AOR = 2.30), engagement in opioid agonist therapy (AOR = 1.91), and at least daily heroin injection (AOR = 11.27). CD4+ cell count was negatively associated with fentanyl urine positivity (AOR = 0.92) (all p < 0.05). We identified several risk factors for overdose linked to fentanyl exposure among this sample, although no link with HIV treatment engagement or detectable HIV VL. Innovative strategies are needed to reduce the harmful effects of the contaminated unregulated drug supply experienced by PWUD.


Assuntos
Overdose de Drogas , Infecções por HIV , Preparações Farmacêuticas , Analgésicos Opioides , Overdose de Drogas/epidemiologia , Fentanila , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia , Humanos , Prevalência , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA