Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Biomed Eng Online ; 23(1): 51, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38835079

RESUMO

BACKGROUND: Functional electrical stimulation (FES) is a rehabilitation technique that enables functional improvements in patients with motor control impairments. This study presents an original design and prototyping method for a smart sleeve for FES applications. The article explains how to integrate a carbon-based dry electrode into a textile structure and ensure an electrical connection between the electrodes and the stimulator for effective delivery of the FES. It also describes the materials and the step-by-step manufacturing processes. RESULTS: The carbon-based dry electrode is integrated into the textile substrate by a thermal compression molding process on an embroidered conductive matrix. This matrix is composed of textile silver-plated conductive yarns and is linked to the stimulator. Besides ensuring the electrical connection, the matrix improves the fixation between the textile substrate and the electrode. The stimulation intensity, the perceived comfort and the muscle torque generated by the smart FES sleeve were compared to hydrogel electrodes. The results show a better average comfort and a higher average stimulation intensity with the smart FES sleeve, while there were no significant differences for the muscle torque generated. CONCLUSIONS: The integration of the proposed dry electrodes into a textile is a viable solution. The wearable FES system does not negatively impact the electrodes' performance, and tends to improve it. Additionally, the proposed prototyping method is applicable to an entire garment in order to target all muscles. Moreover, the process is feasible for industrial production and commercialization since all materials and processes used are already available on the market.


Assuntos
Eletrodos , Têxteis , Humanos , Estimulação Elétrica/instrumentação , Desenho de Equipamento , Masculino , Adulto , Condutividade Elétrica , Carbono/química , Torque
2.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34518214

RESUMO

Robust polymeric nanofilms can be used to construct gas-permeable soft electronics that can directly adhere to soft biological tissue for continuous, long-term biosignal monitoring. However, it is challenging to fabricate gas-permeable dry electrodes that can self-adhere to the human skin and retain their functionality for long-term (>1 d) health monitoring. We have succeeded in developing an extraordinarily robust, self-adhesive, gas-permeable nanofilm with a thickness of only 95 nm. It exhibits an extremely high skin adhesion energy per unit area of 159 µJ/cm2 The nanofilm can self-adhere to the human skin by van der Waals forces alone, for 1 wk, without any adhesive materials or tapes. The nanofilm is ultradurable, and it can support liquids that are 79,000 times heavier than its own weight with a tensile stress of 7.82 MPa. The advantageous features of its thinness, self-adhesiveness, and robustness enable a gas-permeable dry electrode comprising of a nanofilm and an Au layer, resulting in a continuous monitoring of electrocardiogram signals with a high signal-to-noise ratio (34 dB) for 1 wk.

3.
Sensors (Basel) ; 24(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38793990

RESUMO

Background: Traditional gel-based (wet) electrodes for biopotential recordings have several shortcomings that limit their practicality for real-world measurements. Dry electrodes may improve usability, but they often suffer from reduced signal quality. We sought to evaluate the biopotential recording properties of a novel mixed ionic-electronic conductive (MIEC) material for improved performance. Methods: We fabricated four MIEC electrode form factors and compared their signal recording properties to two control electrodes, which are electrodes commonly used for biopotential recordings (Ag-AgCl and stainless steel). We used an agar synthetic skin to characterize the impedance of each electrode form factor. An electrical phantom setup allowed us to compare the recording quality of simulated biopotentials with ground-truth sources. Results: All MIEC electrode form factors yielded impedances in a similar range to the control electrodes (all <80 kΩ at 100 Hz). Three of the four MIEC samples produced similar signal-to-noise ratios and interfacial charge transfers as the control electrodes. Conclusions: The MIEC electrodes demonstrated similar and, in some cases, better signal recording characteristics than current state-of-the-art electrodes. MIEC electrodes can also be fabricated into a myriad of form factors, underscoring the great potential this novel material has across a wide range of biopotential recording applications.

4.
Sensors (Basel) ; 24(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39066010

RESUMO

Non-invasive monitoring of pulmonary health may be useful for tracking several conditions such as COVID-19 recovery and the progression of pulmonary edema. Some proposed methods use impedance-based technologies to non-invasively measure the thorax impedance as a function of respiration but face challenges that limit the feasibility, accuracy, and practicality of tracking daily changes. In our prior work, we demonstrated a novel approach to monitor respiration by measuring changes in impedance from the back of the thigh. We reported the concept of using thigh-thigh bioimpedance measurements for measuring the respiration rate and demonstrated a linear relationship between the thigh-thigh bioimpedance and lung tidal volume. Here, we investigate the variability in thigh-thigh impedance measurements to further understand the feasibility of the technique for detecting a change in the respiratory status due to disease onset or recovery if used for long-term in-home monitoring. Multiple within-session and day-to-day impedance measurements were collected at 80 kHz using dry electrodes (thigh) and wet electrodes (thorax) across the five healthy subjects, along with simultaneous gold standard spirometer measurements for three consecutive days. The peak-peak bioimpedance measurements were found to be highly correlated (0.94 ± 0.03 for dry electrodes across thigh; 0.92 ± 0.07 for wet electrodes across thorax) with the peak-peak spirometer tidal volume. The data across five subjects indicate that the day-to-day variability in the relationship between impedance and volume for thigh-thigh measurements is smaller (average of 14%) than for the thorax (40%). However, it is affected by food and water and might limit the accuracy of the respiratory tidal volume.


Assuntos
COVID-19 , Impedância Elétrica , Humanos , COVID-19/diagnóstico , Masculino , Adulto , Respiração , Monitorização Fisiológica/métodos , Monitorização Fisiológica/instrumentação , Volume de Ventilação Pulmonar/fisiologia , Feminino , SARS-CoV-2 , Eletrodos , Coxa da Perna/fisiologia
5.
Small ; 19(17): e2205058, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36703524

RESUMO

Lip-reading provides an effective speech communication interface for people with voice disorders and for intuitive human-machine interactions. Existing systems are generally challenged by bulkiness, obtrusiveness, and poor robustness against environmental interferences. The lack of a truly natural and unobtrusive system for converting lip movements to speech precludes the continuous use and wide-scale deployment of such devices. Here, the design of a hardware-software architecture to capture, analyze, and interpret lip movements associated with either normal or silent speech is presented. The system can recognize different and similar visemes. It is robust in a noisy or dark environment. Self-adhesive, skin-conformable, and semi-transparent dry electrodes are developed to track high-fidelity speech-relevant electromyogram signals without impeding daily activities. The resulting skin-like sensors can form seamless contact with the curvilinear and dynamic surfaces of the skin, which is crucial for a high signal-to-noise ratio and minimal interference. Machine learning algorithms are employed to decode electromyogram signals and convert them to spoken words. Finally, the applications of the developed lip-reading system in augmented reality and medical service are demonstrated, which illustrate the great potential in immersive interaction and healthcare applications.


Assuntos
Movimento , Pele , Humanos , Eletromiografia/métodos , Eletrodos , Aprendizado de Máquina
6.
Sensors (Basel) ; 23(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36772507

RESUMO

When long-term biosignal monitoring is required via surface electrodes, the use of conventional silver/silver chloride (Ag/AgCl) gelled electrodes may not be the best solution, as the gel in the electrodes tends to dry out over time. In this work, the electrical behaviour and performance of dry electrodes for biopotential monitoring was assessed. Three materials were investigated and compared against the gold-standard Ag/AgCl gelled electrodes. To characterize their electrical behaviour, the impedance response over the frequency was evaluated, as well as its signal to noise ratio. The electrodes' performance was evaluated by integrating them in a proven electrocardiogram (ECG) acquisition setup where an ECG signal was acquired simultaneously with a set of dry electrodes and a set of standard Ag/AgCl gelled electrodes as reference. The obtained results were morphologically compared using the Normalised Root Mean Squared Error (nRMSE) and the Cosine Similarity (CS). The findings of this work suggest that the use of dry electrodes for biopotential monitoring is a suitable replacement for the conventional Ag/AgCl gelled electrodes. The signal obtained with dry electrodes is comparable to the one obtained with the gold standard, with the advantage that these do not require the use of gel and can be easily integrated into fabric to facilitate their use in long-term monitoring scenarios.


Assuntos
Têxteis , Dispositivos Eletrônicos Vestíveis , Eletrocardiografia/métodos , Impedância Elétrica , Eletrodos
7.
Sensors (Basel) ; 23(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37299902

RESUMO

Electroencephalography (EEG) is used to detect brain activity by recording electrical signals across various points on the scalp. Recent technological advancement has allowed brain signals to be monitored continuously through the long-term usage of EEG wearables. However, current EEG electrodes are not able to cater to different anatomical features, lifestyles, and personal preferences, suggesting the need for customisable electrodes. Despite previous efforts to create customisable EEG electrodes through 3D printing, additional processing after printing is often needed to achieve the required electrical properties. Although fabricating EEG electrodes entirely through 3D printing with a conductive material would eliminate the need for further processing, fully 3D-printed EEG electrodes have not been seen in previous studies. In this study, we investigate the feasibility of using a low-cost setup and a conductive filament, Multi3D Electrifi, to 3D print EEG electrodes. Our results show that the contact impedance between the printed electrodes and an artificial phantom scalp is under 550 Ω, with phase change of smaller than -30∘, for all design configurations for frequencies ranging from 20 Hz to 10 kHz. In addition, the difference in contact impedance between electrodes with different numbers of pins is under 200 Ω for all test frequencies. Through a preliminary functional test that monitored the alpha signals (7-13 Hz) of a participant in eye-open and eye-closed states, we show that alpha activity can be identified using the printed electrodes. This work demonstrates that fully 3D-printed electrodes have the capability of acquiring relatively high-quality EEG signals.


Assuntos
Eletroencefalografia , Couro Cabeludo , Humanos , Eletroencefalografia/métodos , Eletrodos , Encéfalo , Impressão Tridimensional
8.
Sensors (Basel) ; 23(5)2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36905030

RESUMO

Activity in the gamma range is related to many sensory and cognitive processes that are impaired in neuropsychiatric conditions. Therefore, individualized measures of gamma-band activity are considered to be potential markers that reflect the state of networks within the brain. Relatively little has been studied in respect of the individual gamma frequency (IGF) parameter. The methodology for determining the IGF is not well established. In the present work, we tested the extraction of IGFs from electroencephalogram (EEG) data in two datasets where subjects received auditory stimulation consisting of clicks with varying inter-click periods, covering a 30-60 Hz range: in 80 young subjects EEG was recorded with 64 gel-based electrodes; in 33 young subjects, EEG was recorded using three active dry electrodes. IGFs were extracted from either fifteen or three electrodes in frontocentral regions by estimating the individual-specific frequency that most consistently exhibited high phase locking during the stimulation. The method showed overall high reliability of extracted IGFs for all extraction approaches; however, averaging over channels resulted in somewhat higher reliability scores. This work demonstrates that the estimation of individual gamma frequency is possible using a limited number of both the gel and dry electrodes from responses to click-based chirp-modulated sounds.


Assuntos
Eletroencefalografia , Potenciais Evocados Auditivos , Humanos , Potenciais Evocados Auditivos/fisiologia , Reprodutibilidade dos Testes , Estimulação Acústica/métodos , Eletroencefalografia/métodos , Som
9.
Sensors (Basel) ; 23(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36850728

RESUMO

Cardiovascular diseases (CVD) represent a serious health problem worldwide, of which atrial fibrillation (AF) is one of the most common conditions. Early and timely diagnosis of CVD is essential for successful treatment. When implemented in the healthcare system this can ease the existing socio-economic burden on health institutions and government. Therefore, developing technologies and tools to diagnose CVD in a timely way and detect AF is an important research topic. ECG monitoring patches allowing ambulatory patient monitoring over several days represent a novel technology, while we witness a significant proliferation of ECG monitoring patches on the market and in the research labs, their performance over a long period of time is not fully characterized. This paper analyzes the signal quality of ECG signals obtained using a single-lead ECG patch featuring self-adhesive dry electrode technology collected from six cardiac patients for 5 days. In particular, we provide insights into signal quality degradation over time, while changes in the average ECG quality per day were present, these changes were not statistically significant. It was observed that the quality was higher during the nights, confirming the link with motion artifacts. These results can improve CVD diagnosis and AF detection in real-world scenarios.


Assuntos
Fibrilação Atrial , Humanos , Fibrilação Atrial/diagnóstico , Artefatos , Eletrocardiografia , Eletrodos , Monitorização Ambulatorial
10.
Sensors (Basel) ; 23(19)2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37837150

RESUMO

This study aims to evaluate the lifespan of Ti-Ag dry electrodes prepared using flexible polytetrafluoroethylene (PTFE) substrates. Following previous studies, the electrodes were designed to be integrated into wearables for remote electromyography (EMG) monitoring and electrical stimulation (FES) therapy. Four types of Ti-Ag electrodes were prepared by DC magnetron sputtering, using a pure-Ti target doped with a growing number of Ag pellets. After extensive characterization of their chemical composition and (micro)structural evolution, the Ti-Ag electrodes were immersed in an artificial sweat solution (standard ISO-3160-2) at 37 °C with constant stirring. Results revealed that all the Ti-Ag electrodes maintained their integrity and functionality for 24 h. Although there was a notable increase in electrical resistivity beyond this timeframe, the acquisition and transmission of (bio)signals remained viable for electrodes with Ag/Ti ratios below 0.23. However, electrodes with higher Ag content (Ag/Ti = 0.31) became insulators after 7 days of immersion due to excessive Ag release into the sweat solution. This study concludes that higher Ag/Ti atomic ratios result in heightened corrosion processes on the electrode's surface, consequently diminishing their lifespan despite the advantages of incorporating Ag into their composition. This research highlights the critical importance of evaluating electrode longevity, especially in remote biomedical applications like smart wearables, where electrode performance over time is crucial for reliable and sustained monitoring and stimulation.


Assuntos
Longevidade , Titânio , Titânio/química , Eletrodos
11.
Sensors (Basel) ; 23(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38139591

RESUMO

Evaluations of new dry, high-density EEG caps have only been performed so far with serial measurements and not with simultaneous (parallel) measurements. For a first comparison of gel-based and dry electrode performance in simultaneous high-density EEG measurements, we developed a new EEG cap comprising 64 gel-based and 64 dry electrodes and performed simultaneous measurements on ten volunteers. We analyzed electrode-skin impedances, resting state EEG, triggered eye blinks, and visual evoked potentials (VEPs). To overcome the issue of different electrode positions in the comparison of simultaneous measurements, we performed spatial frequency analysis of the simultaneously measured EEGs using spatial harmonic analysis (SPHARA). The impedances were 516 ± 429 kOhm (mean ± std) for the dry electrodes and 14 ± 8 kOhm for the gel-based electrodes. For the dry EEG electrodes, we obtained a channel reliability of 77%. We observed no differences between dry and gel-based recordings for the alpha peak frequency and the alpha power amplitude, as well as for the VEP peak amplitudes and latencies. For the VEP, the RMSD and the correlation coefficient between the gel-based and dry recordings were 1.7 ± 0.7 µV and 0.97 ± 0.03, respectively. We observed no differences in the cumulative power distributions of the spatial frequency components for the N75 and P100 VEP peaks. The differences for the N145 VEP peak were attributed to the different noise characteristics of gel-based and dry recordings. In conclusion, we provide evidence for the equivalence of simultaneous dry and gel-based high-density EEG measurements.


Assuntos
Eletroencefalografia , Potenciais Evocados Visuais , Humanos , Reprodutibilidade dos Testes , Eletrodos , Impedância Elétrica
12.
Sensors (Basel) ; 22(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36366209

RESUMO

Dry electrodes offer an accessible continuous acquisition of biopotential signals as part of current in-home monitoring systems but often face challenges of high-contact impedance that results in poor signal quality. The performance of dry electrodes could be affected by electrode material and skin hydration. Herein, we investigate these dependencies using a circuit skin-electrode interface model, varying material and hydration in controlled benchtop experiments on a biomimetic skin phantom simulating dry and hydrated skin. Results of the model demonstrate the contribution of the individual components in the circuit to total impedance and assist in understanding the role of electrode material in the mechanistic principle of dry electrodes. Validation was performed by conducting in vivo skin-electrode contact impedance measurements across ten normative human subjects. Further, the impact of the electrode on biopotential signal quality was evaluated by demonstrating an ability to capture clinically relevant electrocardiogram signals by using dry electrodes integrated into a toilet seat cardiovascular monitoring system. Titanium electrodes resulted in better signal quality than stainless steel electrodes. Results suggest that relative permittivity of native oxide of electrode material come into contact with the skin contributes to the interface impedance, and can lead to enhancement in the capacitive coupling of biopotential signals, especially in dry skin individuals.


Assuntos
Eletrocardiografia , Pele , Humanos , Impedância Elétrica , Eletrodos , Monitorização Fisiológica/métodos
13.
Sensors (Basel) ; 22(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36298430

RESUMO

Dry electrodes for electroencephalography (EEG) allow new fields of application, including telemedicine, mobile EEG, emergency EEG, and long-term repetitive measurements for research, neurofeedback, or brain-computer interfaces. Different dry electrode technologies have been proposed and validated in comparison to conventional gel-based electrodes. Most previous studies have been performed at a single center and by single operators. We conducted a multi-center and multi-operator study validating multipin dry electrodes to study the reproducibility and generalizability of their performance in different environments and for different operators. Moreover, we aimed to study the interrelation of operator experience, preparation time, and wearing comfort on the EEG signal quality. EEG acquisitions using dry and gel-based EEG caps were carried out in 6 different countries with 115 volunteers, recording electrode-skin impedances, resting state EEG and evoked activity. The dry cap showed average channel reliability of 81% but higher average impedances than the gel-based cap. However, the dry EEG caps required 62% less preparation time. No statistical differences were observed between the gel-based and dry EEG signal characteristics in all signal metrics. We conclude that the performance of the dry multipin electrodes is highly reproducible, whereas the primary influences on channel reliability and signal quality are operator skill and experience.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Humanos , Reprodutibilidade dos Testes , Eletrodos , Impedância Elétrica
14.
Sensors (Basel) ; 21(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34696039

RESUMO

Current developments towards multipin, dry electrodes in electroencephalography (EEG) are promising for applications in non-laboratory environments. Dry electrodes do not require the application of conductive gel, which mostly confines the use of gel EEG systems to the laboratory environment. The aim of this study is to validate soft, multipin, dry EEG electrodes by comparing their performance to conventional gel EEG electrodes. Fifteen healthy volunteers performed three tasks, with a 32-channel gel EEG system and a 32-channel dry EEG system: the 40 Hz Auditory Steady-State Response (ASSR), the checkerboard paradigm, and an eyes open/closed task. Within-subject analyses were performed to compare the signal quality in the time, frequency, and spatial domains. The results showed strong similarities between the two systems in the time and frequency domains, with strong correlations of the visual (ρ = 0.89) and auditory evoked potential (ρ = 0.81), and moderate to strong correlations for the alpha band during eye closure (ρ = 0.81-0.86) and the 40 Hz-ASSR power (ρ = 0.66-0.72), respectively. However, delta and theta band power was significantly increased, and the signal-to-noise ratio was significantly decreased for the dry EEG system. Topographical distributions were comparable for both systems. Moreover, the application time of the dry EEG system was significantly shorter (8 min). It can be concluded that the soft, multipin dry EEG system can be used in brain activity research with similar accuracy as conventional gel electrodes.


Assuntos
Eletroencefalografia , Potenciais Evocados Auditivos , Encéfalo , Eletrodos , Humanos , Razão Sinal-Ruído
15.
Sensors (Basel) ; 21(23)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34884159

RESUMO

In a new era for digital health, dry electrodes for biopotential measurement enable the monitoring of essential vital functions outside of specialized healthcare centers. In this paper, a new type of nanostructured titanium-based thin film is proposed, revealing improved biopotential sensing performance and overcoming several of the limitations of conventional gel-based electrodes such as reusability, durability, biocompatibility, and comfort. The thin films were deposited on stainless steel (SS) discs and polyurethane (PU) substrates to be used as dry electrodes, for non-invasive monitoring of body surface biopotentials. Four different Ti-Me (Me = Al, Cu, Ag, or Au) metallic binary systems were prepared by magnetron sputtering. The morphology of the resulting Ti-Me systems was found to be dependent on the chemical composition of the films, specifically on the type and amount of Me. The existence of crystalline intermetallic phases or glassy amorphous structures also revealed a strong influence on the morphological features developed by the different systems. The electrodes were tested in an in-vivo study on 20 volunteers during sports activity, allowing study of the application-specific characteristics of the dry electrodes, based on Ti-Me intermetallic thin films, and evaluation of the impact of the electrode-skin impedance on biopotential sensing. The electrode-skin impedance results support the reusability and the high degree of reliability of the Ti-Me dry electrodes. The Ti-Al films revealed the least performance as biopotential electrodes, while the Ti-Au system provided excellent results very close to the Ag/AgCl reference electrodes.


Assuntos
Nanoestruturas , Titânio , Impedância Elétrica , Eletrodos , Humanos , Reprodutibilidade dos Testes
16.
Sensors (Basel) ; 21(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201834

RESUMO

Multi-channel measurements from the maternal abdomen acquired by means of dry electrodes can be employed to promote long-term monitoring of fetal heart rate (fHR). The signals acquired with this type of electrode have a lower signal-to-noise ratio and different artifacts compared to signals acquired with conventional wet electrodes. Therefore, starting from the benchmark algorithm with the best performance for fHR estimation proposed by Varanini et al., we propose a new method specifically designed to remove artifacts typical of dry-electrode recordings. To test the algorithm, experimental textile electrodes were employed that produce artifacts typical of dry and capacitive electrodes. The proposed solution is based on a hybrid (hardware and software) pre-processing step designed specifically to remove the disturbing component typical of signals acquired with these electrodes (triboelectricity artifacts and amplitude modulations). The following main processing steps consist of the removal of the maternal ECG by blind source separation, the enhancement of the fetal ECG and identification of the fetal QRS complexes. Main processing is designed to be robust to the high-amplitude motion artifacts that corrupt the acquisition. The obtained denoising system was compared with the benchmark algorithm both on semi-simulated and on real data. The performance, quantified by means of sensitivity, F1-score and root-mean-square error metrics, outperforms the performance obtained with the original method available in the literature. This result proves that the design of a dedicated processing system based on the signal characteristics is necessary for reliable and accurate estimation of the fHR using dry, textile electrodes.


Assuntos
Frequência Cardíaca Fetal , Processamento de Sinais Assistido por Computador , Algoritmos , Artefatos , Eletrocardiografia , Eletrodos , Feminino , Humanos , Gravidez
17.
Sensors (Basel) ; 21(8)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33920787

RESUMO

The use of wearable sensors for health monitoring is rapidly growing. Over the past decade, wearable technology has gained much attention from the tech industry for commercial reasons and the interest of researchers and clinicians for reasons related to its potential benefit on patients' health. Wearable devices use advanced and specialized sensors able to monitor not only activity parameters, such as heart rate or step count, but also physiological parameters, such as heart electrical activity or blood pressure. Electrocardiogram (ECG) monitoring is becoming one of the most attractive health-related features of modern smartwatches, and, because cardiovascular disease (CVD) is one of the leading causes of death globally, the use of a smartwatch to monitor patients could greatly impact the disease outcomes on health care systems. Commercial wearable devices are able to record just single-lead ECG using a couple of metallic contact dry electrodes. This kind of measurement can be used only for arrhythmia diagnosis. For the diagnosis of other cardiac disorders, additional ECG leads are required. In this study, we characterized an electronic interface to be used with multiple contactless capacitive electrodes in order to develop a wearable ECG device able to perform several lead measurements. We verified the ability of the electronic interface to amplify differential biopotentials and to reject common-mode signals produced by electromagnetic interference (EMI). We developed a portable device based on the studied electronic interface that represents a prototype system for further developments. We evaluated the performances of the developed device. The signal-to-noise ratio of the output signal is favorable, and all the features needed for a clinical evaluation (P waves, QRS complexes and T waves) are clearly readable.


Assuntos
Perna (Membro) , Dispositivos Eletrônicos Vestíveis , Arritmias Cardíacas , Eletrocardiografia , Eletrodos , Humanos
18.
Sensors (Basel) ; 20(23)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260624

RESUMO

Assessing the human affective state using electroencephalography (EEG) have shown good potential but failed to demonstrate reliable performance in real-life applications. Especially if one applies a setup that might impact affective processing and relies on generalized models of affect. Additionally, using subjective assessment of ones affect as ground truth has often been disputed. To shed the light on the former challenge we explored the use of a convenient EEG system with 20 participants to capture their reaction to affective movie clips in a naturalistic setting. Employing state-of-the-art machine learning approach demonstrated that the highest performance is reached when combining linear features, namely symmetry features and single-channel features, with nonlinear ones derived by a multiscale entropy approach. Nevertheless, the best performance, reflected in the highest F1-score achieved in a binary classification task for valence was 0.71 and for arousal 0.62. The performance was 10-20% better compared to using ratings provided by 13 independent raters. We argue that affective self-assessment might be underrated and it is crucial to account for personal differences in both perception and physiological response to affective cues.


Assuntos
Eletroencefalografia , Emoções , Nível de Alerta , Eletrodos , Entropia , Humanos
19.
Sensors (Basel) ; 20(24)2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371409

RESUMO

Wearable devices play an increasing role in the rehabilitation of patients with movement disorders. Although information about muscular activation is highly interesting, no approach exists that allows reliable collection of this information when the sensor is applied autonomously by the patient. This paper aims to demonstrate the proof-of-principle of an innovative sEMG sensor system, which can be used intuitively by patients while detecting their muscular activation with sufficient accuracy. The sEMG sensor system utilizes a multichannel approach based on 16 sEMG leads arranged circularly around the limb. Its design enables a stable contact between the skin surface and the system's dry electrodes, fulfills the SENIAM recommendations regarding the electrode size and inter-electrode distance and facilitates a high temporal resolution. The proof-of-principle was demonstrated by elbow flexion/extension movements of 10 subjects, proving that it has root mean square values and a signal-to-noise ratio comparable to commercial systems based on pre-gelled electrodes. Furthermore, it can be easily placed and removed by patients with reduced arm function and without detailed knowledge about the exact positioning of the sEMG electrodes. With its features, the demonstration of the sEMG sensor system's proof-of-principle positions it as a wearable device that has the potential to monitor muscular activation in home and community settings.


Assuntos
Eletromiografia , Músculo Esquelético/fisiologia , Dispositivos Eletrônicos Vestíveis , Cotovelo , Eletrodos , Humanos , Movimento
20.
Neuroimage ; 184: 119-129, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30218769

RESUMO

Recent advances in dry electrodes technology have facilitated the recording of EEG in situations not previously possible, thanks to the relatively swift electrode preparation and avoidance of applying gel to subject's hair. However, to become a true alternative, these systems should be compared to state-of-the-art wet EEG systems commonly used in clinical or research applications. In our study, we conducted a systematic comparison of electrodes application speed, subject comfort, and most critically electrophysiological signal quality between the conventional and wired Biosemi EEG system using wet active electrodes and the compact and wireless F1 EEG system consisting of dry passive electrodes. All subjects (n = 27) participated in two recording sessions on separate days, one with the wet EEG system and one with the dry EEG system, in which the session order was counterbalanced across subjects. In each session, we recorded their EEG during separate rest periods with eyes open and closed followed by two versions of a serial visual presentation target detection task. Each task component allows for a neural measure reflecting different characteristics of the data, including spectral power in canonical low frequency bands, event-related potential components (specifically, the P3b), and single trial classification based on machine learning. The performance across the two systems was similar in most measures, including the P3b amplitude and topography, as well as low frequency (theta, alpha, and beta) spectral power at rest. Both EEG systems performed well above chance in the classification analysis, with a marginal advantage of the wet system over the dry. Critically, all aforementioned electrophysiological metrics showed significant positive correlations (r = 0.54-0.89) between the two EEG systems. This multitude of measures provides a comprehensive comparison that captures different aspects of EEG data, including temporal precision, frequency domain as well as multivariate patterns of activity. Taken together, our results indicate that the dry EEG system used in this experiment can effectively record electrophysiological measures commonly used across the research and clinical contexts with comparable quality to the conventional wet EEG system.


Assuntos
Encéfalo/fisiologia , Eletroencefalografia/instrumentação , Adulto , Artefatos , Ondas Encefálicas , Eletrodos , Feminino , Humanos , Masculino , Curva ROC , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador , Tecnologia sem Fio/instrumentação , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA