Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Biofouling ; : 1-11, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115404

RESUMO

Both Candida albicans and Issatchenkia orientalis have been isolated from different types of infections over the years. They have the ability to form communities of microorganisms known as biofilms. It has been demonstrated that the medium employed in studies may affect the biofilm development. The aim of this study was to investigate the arrangement of dual-species biofilms of C. albicans and I. orientalis cultivated on either RPMI-1640 or Sabouraud Dextrose Broth (SDB), as well as the inhibitory effect of Voriconazole (VRC). For the experiments performed, ATCC strains were used, and yeast-mixed suspensions were inoculated in 96-well plates with either RPMI-1640 or SDB, in the presence or absence of VRC. The results were observed by counting the number of CFU obtained from scraping off the biofilms produced and plating the content on CHROMagar Candida medium. It was observed that for all conditions tested the medium chosen affected the arrangement of dual-species biofilms: when RPMI-1640 was used, there was a prevalence of C. albicans, while the opposite was noted when SDB was used. It could be suggested that the medium and environment could regulate interactions between both yeast species, including the response to different antifungal drugs.

2.
Microbiology (Reading) ; 169(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36748572

RESUMO

Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen frequently isolated from chronic infections of the cystic fibrosis lung and burn wounds, and is a major cause of antimicrobial-resistant nosocomial infections. P. aeruginosa is frequently co-isolated with the opportunistic fungal pathogen Candida albicans, with the presence of C. albicans in dual-species biofilms promoting tolerance to meropenem. Here, transcription profiling of mature P. aeruginosa single- or dual-species biofilms was carried out to understand the molecular mechanism(s) by which C. albicans enhances meropenem tolerance. C. albicans appeared to have a mild impact on the transcriptome of P. aeruginosa mature biofilms, with most differentially regulated genes being involved in interkingdom interactions (i.e. quorum sensing and phenazine biosynthesis). The addition of meropenem to mature single- or dual-species biofilms resulted in a significant bacterial transcriptional response, including the induction of the beta-lactamase, ampC, genes involved in biofilm formation. P. aeruginosa elicited a similar transcriptional response to meropenem in the presence of C. albicans, but C. albicans promoted the expression of additional efflux pumps, which could play roles in increasing the tolerance of P. aeruginosa to meropenem.


Assuntos
Biofilmes , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Meropeném/farmacologia , Candida albicans/fisiologia , Percepção de Quorum/genética
3.
Biofouling ; 39(5): 565-578, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37455476

RESUMO

Atopic dermatitis (AD) is a chronic inflammatory skin disease where patients are more susceptible to infection and inflammation. The most salient symptoms of atopic dermatitis (AD) are skin dysbiosis and ceramide deficiency. Here, the effect of AD conditions on S. aureus resilience was investigated. S. aureus and S. epidermidis biofilms were co-inoculated at healthy and AD bacterial ratios and exposed to various sphingosine dosing regimens. In both healthy (S. epidermidis dominant) and AD (S. aureus dominant) conditions the viability of the non-dominant bacterial species was affected. Quorum sensing (QS)-impaired S. aureus was overall more susceptible to sphingosine. Despite the general resilience of QS-intact S. aureus against sphingosine, modulation of S. epidermidis (healthy ratio) and sphingosine (healthy Sph) led to a lack of recovery from its initial killing. Overall, it was found that when in biofilms, S. epidermidis increases S. aureus resilience to sphingosine, possibly enhancing the pathogen's recalcitrance in AD skin.

4.
Food Microbiol ; 109: 104122, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36309434

RESUMO

Pseudomonas fragi and Escherichia coli are considered as common colonizers of fresh and spoilage meat, where they tend to live in the proximity. In this study, we primarily tested interplay patterns between different isolates of these two species in two-by-two combinations grown on stainless steel surfaces as dual-species biofilms. Results showed that these two species presented competition as major observed interplay patterns as biofilms progressed independent of bacterial strains and growth temperatures (15 °C and 25 °C). One dual-species combination was proposed as a representative to further explore dynamic patterns of interaction strength between these two species, with species colonization order taken into consideration as a biological effector. We firstly reported that prior colonization of one species significantly decreased the initiatively colonized cell counts of counterpart species by one to three orders of magnitude when competing for limited adhesion surface, under which E. coli was observed to be more aggressive in surface colonization as compared to P. fragi. However, the spatial structure and microbial composition of mature dual-species biofilms were not observed to be significantly affected. Our findings also shed new light on the evidence that E. coli and P. fragi, respectively, enhanced their biofilm formation capabilities by upregulating expression level of genes that encoded Type 1 fimbriae and phosphate response regulator as dual-species consortia progressed, which could serve as a crucial factor that improved the difficulty of food biocontrol.


Assuntos
Pseudomonas fragi , Pseudomonas fragi/metabolismo , Escherichia coli/genética , Microbiologia de Alimentos , Carne/microbiologia , Biofilmes
5.
Int J Mol Sci ; 24(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37239822

RESUMO

In the last decades, it has been shown that biofilm-associated infections in most cases are caused by rather two or even more pathogens than by single microorganisms. Due to intermicrobial interactions in mixed communities, bacteria change their gene expression profile, in turn leading to alterations in the biofilm structure and properties, as well as susceptibility to antimicrobials. Here, we report the alterations of antimicrobials efficiency in mixed biofilms of Staphylococcus aureus-Klebsiella pneumoniae in comparison with mono-species biofilms of each counterpart and discuss possible mechanisms of these alterations. In cell clumps detached from dual-species biofilms, S. aureus became insensitive to vancomycin, ampicillin, and ceftazidime compared to solely S. aureus cell clumps. In turn, the increased efficiency of amikacin and ciprofloxacin against both bacteria could be observed, compared to mono-species biofilms of each counterpart. Scanning electron microscopy and confocal microscopy indicate the porous structure of the dual-species biofilm, and differential fluorescent staining revealed an increased number of polysaccharides in the matrix, in turn leading to more loose structure and thus apparently providing increased permeability of the dual-species biofilm to antimicrobials. The qRT-PCR showed that ica operon in S. aureus became repressed in mixed communities, and polysaccharides are produced mainly by K. pneumoniae. While the molecular trigger of these changes remains undiscovered, detailed knowledge of the alterations in antibiotic susceptibility to given drugs opens doors for treatment correction options for S. aureus-K. pneumoniae biofilm-associated infections.


Assuntos
Anti-Infecciosos , Infecções Estafilocócicas , Humanos , Staphylococcus aureus/genética , Klebsiella pneumoniae/genética , Infecções Estafilocócicas/microbiologia , Biofilmes , Anti-Infecciosos/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana
6.
Arch Microbiol ; 204(10): 597, 2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36056994

RESUMO

Salmonella and Escherichia coli are important foodborne pathogens, forming bacterial biofilms that contribute to their virulence, antimicrobial resistance, and survival on surfaces. Broad lytic phages are promising alternatives to conventional technologies for pathogen biocontrol and reducing biofilms. Herein, we isolated and characterized a novel polyvalent phage STP55 that not only lyse some serotypes of Salmonella, but also some E. coli strains. It had a wide range of pH (4-12) and thermal (30-60 °C) tolerances. The latent time was determined to be 10 min in the one-step growth experiment. Morphological observations by transmission electron microscopy and phylogenetic analysis using terminase gene classified STP55 to family Ackermannviridae in the order Caudovirales, with a complex tail structure. The genome was found to comprise 157,708 bp double-stranded DNA, with 44.57% GC content, 207 predicted ORFs and with no genes associated with antibiotic resistance, toxins, lysogeny, and virulence factors. Particularly, phage STP55 was able to inhibit single- and dual-species biofilms formation by S. Typhimurium ATCC 14028 and E. coli O157: H7, with a reduction percentage of 51.0%, 47.8% and 52.8%, respectively. Moreover, more than 65.0%, 72.9% and 46.2% of an established, single- and dual-species biofilms by S. Typhimurium ATCC 14028 and E. coli O157: H7 were removed after 8 h exposure to the phage STP55, respectively. The elimination effect of STP55 on dual-species biofilm formed on lettuce was further observed by SEM. Overall, our results demonstrated that STP55 is a promising antimicrobial against Salmonella and E. coli.


Assuntos
Bacteriófagos , Escherichia coli O157 , Bacteriófagos/genética , Biofilmes , Escherichia coli O157/genética , Microbiologia de Alimentos , Genômica , Filogenia , Salmonella typhimurium/genética
7.
Food Microbiol ; 106: 104034, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35690453

RESUMO

Escherichia coli O157:H7 and Pseudomonas were considered as common colonizers of fresh and spoilage meat, where they tended to live in the proximity. In this study, we tested the interplay between different isolates of E. coli O157:H7 and Pseudomonas in random two-by-two combinations grown as dual-species consortia. Results showed that the growth fitness of E. coli was not facilitated by the presence of all tested Pseudomonas strains, and vice versa. Representative combinations were further selected to investigate the property changes following the time course of biofilms formation as compared to single species. Cell counting confirmed that the growth of E. coli O157:H7 was challenged by the presence of Pseudomonas strains as previously described. Our findings shed new light on the evidence that the pathogenicity of E. coli O157:H7 was negatively affected by the presence of Pseudomonas according to the evaluation of spatial organization and genetic expression of virulence factors, which might be a naturally existing biological phenomenon constraining the safety risk of former strains in meat processing and preservation. Intriguingly, we observed that E. coli managed to stably co-exist at low cellular abundance in the progress of dual-species consortia, indicating successful adaptive mechanisms that need further investigations to uncover.


Assuntos
Escherichia coli O157 , Microbiota , Biofilmes , Microbiologia de Alimentos , Carne , Pseudomonas/genética
8.
J Appl Microbiol ; 130(4): 1154-1172, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32996236

RESUMO

AIMS: Multi-species biofilms formed by fungi and bacteria are clinically common and confer the commensal micro-organisms with protection against antimicrobial therapies. Previously, the plant alkaloid berberine was reported to show antimicrobial efficacy to eliminate bacterial and fungal biofilms. In this study, the combination of berberine and amphotericin B, an antifungal agent, was evaluated against dual-species Candida albicans/Staphylococcus aureus biofilms. METHODS AND RESULTS: Combinatorial treatment by berberine and amphotericin B significantly reduced the biomass and viability of residing species in biofilms. Moreover, morphological examination revealed hyphal filamentation of C. albicans and coadhesion between C. albicans/S. aureus were considerably impaired by the treatment. These effects coincided with the reduced expression of cell surface components and quorum-sensing-related genes in both C. albicans and S. aureus. Additionally, in C. albicans, the core transcription factors for controlling biofilm formation together with a crucial component of dual-species biofilms were also downregulated. CONCLUSIONS: These results demonstrated synergistic effects of berberine and amphotericin B against C. albicans/S. aureus dual-species biofilms. SIGNIFICANCE AND IMPACT OF THE STUDY: This study confirms the potential of berberine and amphotericin B for treating the C. albicans/S. aureus biofilms related infections and reveals molecular basis for the efficacy of combinatorial treatment.


Assuntos
Anfotericina B/farmacologia , Anti-Infecciosos/farmacologia , Berberina/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Candida albicans/fisiologia , Sinergismo Farmacológico , Hifas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Percepção de Quorum/efeitos dos fármacos , Percepção de Quorum/genética , Staphylococcus aureus/fisiologia
9.
Food Microbiol ; 94: 103616, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33279059

RESUMO

The objective of this study was to characterize the biofilms formed by Salmonella enterica serotype Agona, Listeria monocytogenes, methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE) after 12, 48, 72, 120 and 240 h of incubation at 10 °C. Biofilms containing a single species, together with dual-species biofilms in which S. enterica and a Gram-positive bacterium existed in combination, were formed on polystyrene and evaluated by using confocal laser scanning microscopy (CLSM). All strains were able to form biofilm. The greatest biovolume in the observation field of 14,161 µm2 was observed for mono-species biofilms after 72 h, where biovolumes of 94,409.0 µm3 ± 2131.0 µm3 (S. enterica), 58,418.3 µm3 ± 5944.9 µm3 (L. monocytogenes), 68,020.8 µm3 ± 5812.3 µm3 (MRSA) and 59,280.0 µm3 ± 4032.9 µm3 (VRE) were obtained. In comparison with single-species biofilms, the biovolume of S. enterica was higher in the presence of MRSA or VRE after 48, 72 and 120 h. In dual-species biofilms, the bacteria showed a double-layer distribution pattern, with S. enterica in the top layer and Gram-positive bacteria in the bottom layer. This spatial disposition should be taken into account when effective strategies to eliminate biofilms are being developed.


Assuntos
Biofilmes , Enterococcus faecium/química , Listeria monocytogenes/química , Staphylococcus aureus Resistente à Meticilina/química , Salmonella enterica/química , Enterococcus faecium/fisiologia , Listeria monocytogenes/fisiologia , Staphylococcus aureus Resistente à Meticilina/fisiologia , Microscopia Confocal , Salmonella enterica/fisiologia
10.
Molecules ; 26(16)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34443542

RESUMO

Biofilm infections are a global public health threat, necessitating new treatment strategies. Biofilm formation also contributes to the development and spread of multidrug-resistant (MDR) bacterial strains. Biofilm-associated chronic infections typically involve colonization by more than one bacterial species. The co-existence of multiple species of bacteria in biofilms exacerbates therapeutic challenges and can render traditional antibiotics ineffective. Polymeric nanoparticles offer alternative antimicrobial approaches to antibiotics, owing to their tunable physico-chemical properties. Here, we report the efficacy of poly(oxanorborneneimide) (PONI)-based antimicrobial polymeric nanoparticles (PNPs) against multi-species bacterial biofilms. PNPs showed good dual-species biofilm penetration profiles as confirmed by confocal laser scanning microscopy. Broad-spectrum antimicrobial activity was observed, with reduction in both bacterial viability and overall biofilm mass. Further, PNPs displayed minimal fibroblast toxicity and high antimicrobial activity in an in vitro co-culture model comprising fibroblast cells and dual-species biofilms of Escherichia coli and Pseudomonas aeruginosa. This study highlights a potential clinical application of the presented polymeric platform.


Assuntos
Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Nanopartículas/química , Polímeros/farmacologia , Células 3T3 , Animais , Biomassa , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Polímeros/síntese química , Polímeros/química
11.
Molecules ; 26(14)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34299652

RESUMO

Implantable medical devices (IMDs) are susceptible to microbial adhesion and biofilm formation, which lead to several clinical complications, including the occurrence of implant-associated infections. Polylactic acid (PLA) and its composites are currently used for the construction of IMDs. In addition, chitosan (CS) is a natural polymer that has been widely used in the medical field due to its antimicrobial and antibiofilm properties, which can be dependent on molecular weight (Mw). The present study aims to evaluate the performance of CS-based surfaces of different Mw to inhibit bacterial biofilm formation. For this purpose, CS-based surfaces were produced by dip-coating and the presence of CS and its derivatives onto PLA films, as well surface homogeneity were confirmed by contact angle measurements, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The antimicrobial activity of the functionalized surfaces was evaluated against single- and dual-species biofilms of Staphylococcus aureus and Pseudomonas aeruginosa. Chitosan-based surfaces were able to inhibit the development of single- and dual-species biofilms by reducing the number of total, viable, culturable, and viable but nonculturable cells up to 79%, 90%, 81%, and 96%, respectively, being their activity dependent on chitosan Mw. The effect of CS-based surfaces on the inhibition of biofilm formation was corroborated by biofilm structure analysis using confocal laser scanning microscopy (CLSM), which revealed a decrease in the biovolume and thickness of the biofilm formed on CS-based surfaces compared to PLA. Overall, these results support the potential of low Mw CS for coating polymeric devices such as IMDs where the two bacteria tested are common colonizers and reduce their biofilm formation.


Assuntos
Biofilmes/efeitos dos fármacos , Quitosana , Implantes Experimentais/microbiologia , Pseudomonas aeruginosa/fisiologia , Staphylococcus aureus/fisiologia , Biofilmes/crescimento & desenvolvimento , Quitosana/química , Quitosana/farmacologia , Propriedades de Superfície
12.
Food Microbiol ; 82: 142-150, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31027768

RESUMO

This study evaluated how the colonization sequence of Listeria monocytogenes and Pseudomonas fluorescens affects biofilm formation and biofilm cell response to food-related stress (desiccation or disinfection) as well as the transferability of L. monocytogenes to salmon products. The results showed that the colonization sequence did not affect the population of dual species biofilms. Furthermore, survival number of L. monocytogenes was 0.8 log CFU/cm2 higher when P. fluorescens was the first colonizer during desiccation or disinfectant treatment in comparison with dual-species biofilms with other colonization sequences. A lower transfer rate of L. monocytogenes biofilm cells from dual-species biofilms was observed as compared to single species biofilms. In particular, L. monocytogenes cells detached at a slower rate during transfer to 10 slices of salmon from dual-species biofilms first established by P. fluorescens. Confocal images revealed more exopolysaccharide production in dual-speciesbiofilms first established by P. fluorescens than in biofilms generated via other sequences. These results indicate that preexisting P. fluorescens biofilms on stainless steel can enhance resistance of L. monocytogenes to desiccation and disinfection, although this setup decreased the transfer rate of L. monocytogenes to salmon slices. Thus, this study highlights the risk of L. monocytogenes contamination in pre-formed Pseudomonas biofilms at salmon processing facilities.


Assuntos
Biofilmes , Microbiologia de Alimentos , Listeria monocytogenes/fisiologia , Pseudomonas fluorescens/fisiologia , Salmão/microbiologia , Alimentos Marinhos/microbiologia , Animais , Aderência Bacteriana , Contagem de Colônia Microbiana , Dessecação , Desinfetantes/farmacologia , Desinfecção , Indústria de Processamento de Alimentos , Listeria monocytogenes/efeitos dos fármacos , Polissacarídeos Bacterianos/biossíntese , Pseudomonas fluorescens/efeitos dos fármacos
13.
Biofouling ; 32(9): 1067-77, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27642801

RESUMO

Most catheter-associated urinary tract infections are polymicrobial. Here, uropathogen interactions in dual-species biofilms were studied. The dual-species associations selected based on their prevalence in clinical settings were Klebsiella pneumoniae-Escherichia coli, E. coli-Enterococcus faecalis, K. pneumoniae-E. faecalis, and K. pneumoniae-Proteus mirabilis. All species developed single-species biofilms in artificial urine. The ability of K. pneumoniae to form biofilms was not affected by E. coli or E. faecalis co-inoculation, but was impaired by P. mirabilis. Conversely, P. mirabilis established a biofilm when co-inoculated with K. pneumoniae. Additionally, E. coli persistence in biofilms was hampered by K. pneumoniae but not by E. faecalis. Interestingly, E. coli, but not K. pneumoniae, partially inhibited E. faecalis attachment to the surface and retarded biofilm development. The findings reveal bacterial interactions between uropathogens in dual-species biofilms ranged from affecting initial adhesion to outcompeting one bacterial species, depending on the identity of the partners involved.


Assuntos
Antibiose , Bacteriúria/microbiologia , Biofilmes/crescimento & desenvolvimento , Cateteres Urinários/microbiologia , Enterococcus faecalis/crescimento & desenvolvimento , Escherichia coli/crescimento & desenvolvimento , Humanos , Klebsiella pneumoniae/crescimento & desenvolvimento
14.
Biofouling ; 32(9): 1079-87, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27643392

RESUMO

Despite the widespread use of fluoride for the prevention of dental caries, few studies have demonstrated the effects of fluoride on the bacterial composition of dental biofilms. This study investigated whether fluoride affects the proportion of Streptococcus mutans and S. oralis in mono- and dual-species biofilm models, via microbiological, biochemical, and confocal fluorescence microscope studies. Fluoride did not affect the bacterial count and bio-volume of S. mutans and S. oralis in mono-species biofilms, except for the 24-h-old S. mutans biofilms. However, fluoride reduced the proportion and bio-volume of S. mutans but did not decrease those of S. oralis during both S. oralis and S. mutans dual-species biofilm formation, which may be related to the decrease in extracellular polysaccharide formation by fluoride. These results suggest that fluoride may prevent the shift in the microbial proportion to cariogenic bacteria in dental biofilms, subsequently inhibiting the cariogenic bacteria dominant biofilm formation.


Assuntos
Antibiose/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Fluoretos/farmacologia , Streptococcus mutans/efeitos dos fármacos , Streptococcus oralis/efeitos dos fármacos , Carga Bacteriana/efeitos dos fármacos , Cárie Dentária/microbiologia , Relação Dose-Resposta a Droga , Humanos , Modelos Biológicos , Streptococcus mutans/crescimento & desenvolvimento , Streptococcus mutans/fisiologia , Streptococcus oralis/crescimento & desenvolvimento , Streptococcus oralis/fisiologia
15.
Microorganisms ; 12(1)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38258017

RESUMO

Dermatophytes associated with bacteria can lead to severe, difficult-to-treat infections and contribute to chronic infections. Trichophyton rubrum, Staphylococcus aureus, and Staphylococcus epidermidis can form biofilms influenced by nutrient availability. This study investigated biofilm formation by these species by utilizing diverse culture media and different time points. These biofilms were studied through scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), biomass, metabolic activity, and colony-forming units (CFUs). The results revealed that mixed biofilms exhibited high biomass and metabolic activity when cultivated in the brain heart infusion (BHI) medium. Both bacterial species formed mature biofilms with T. rubrum within 72 h, irrespective of media. The timing of bacterial inoculation was pivotal in influencing biomass and metabolic activity. T. rubrum's development within mixed biofilms depended on bacterial addition timing, while pre-adhesion influenced fungal growth. Bacterial communities prevailed initially, while fungi dominated later in the mixed biofilms. CLSM revealed 363 µm thick T. rubrum biofilms with septate, well-developed hyphae; S. aureus (177 µm) and S. epidermidis (178 µm) biofilms showed primarily cocci. Mixed biofilms matched T. rubrum's thickness when associated with S. epidermidis (369 µm), with few hyphae initially. Understanding T. rubrum and Staphylococcal interactions in biofilms advances antimicrobial resistance and disease progression knowledge.

16.
Sci Rep ; 14(1): 9354, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653744

RESUMO

Phage-antibiotic combinations to treat bacterial infections are gaining increased attention due to the synergistic effects often observed when applying both components together. Most studies however focus on a single pathogen, although in many clinical cases multiple species are present at the site of infection. The aim of this study was to investigate the anti-biofilm activity of phage-antibiotic/antifungal combinations on single- and dual-species biofilms formed by P. aeruginosa and the fungal pathogen Candida albicans. The Pseudomonas phage Motto in combination with ciprofloxacin had significant anti-biofilm activity. We then compared biofilms formed by P. aeruginosa alone with the dual-species biofilms formed by bacteria and C. albicans. Here, we found that the phage together with the antifungal fluconazole was active against 6-h-old dual-species biofilms but showed only negligible activity against 24-h-old biofilms. This study lays the first foundation for potential therapeutic approaches to treat co-infections caused by bacteria and fungi using phage-antibiotic combinations.


Assuntos
Antibacterianos , Antifúngicos , Biofilmes , Candida albicans , Ciprofloxacina , Fagos de Pseudomonas , Pseudomonas aeruginosa , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Pseudomonas aeruginosa/virologia , Antifúngicos/farmacologia , Antibacterianos/farmacologia , Fagos de Pseudomonas/fisiologia , Candida albicans/efeitos dos fármacos , Candida albicans/fisiologia , Ciprofloxacina/farmacologia , Fluconazol/farmacologia , Testes de Sensibilidade Microbiana
17.
Photodiagnosis Photodyn Ther ; 49: 104296, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39079661

RESUMO

OBJECTIVE: Evaluation of the effect of phycocyanin (PC) and toluidine blue (TBO) along with sodium fluoride varnish (FV) or titanium tetrafluoride (TiF4) under the conditions of antimicrobial photodynamic therapy (PDT) on a dual-species cariogenic biofilm and on remineralization process. DESIGN: After the development of Streptococcus mutansStreptococcus mutans and Lactobacillus acidophilus dual-species biofilms on the human enamel disks, they were divided into 11 groups (n = 9): Control (0.9 % saline), PC, TBO, FV, and TiF4 alone, PC and TBO in combination with a 635 nm diode laser (PDT treatment), PC-PDT+ (PC + FV or TiF4 + 635 nm diode laser), and TBO-PDT+ (TBO + FV or TiF4 + 635 nm diode laser). After the treatment, crystal violet assay was performed to determine the reduction of cariogenic biofilms. Enamel remineralization changes were analyzed using energy dispersive X-ray spectroscopy (EDX) and field emission scanning electron microscopy (FESEM) for the calcium and phosphorus (Ca/P) ratio. RESULTS: Only TBO-PDT+ showed superior antibiofilm activity when TiF4 was applied. Furthermore, the highest Ca/P ratio was found after treatment of enamel surfaces with TiF4-TBO-PDT+. The FESEM images showed that the enamel disks treated with TiF4 plus TBO-mediated PDT exhibited surface coating. However, TiF4 plus PC-mediated PDT cannot repair demineralized enamel. CONCLUSIONS: These data suggest that TBO-PDT along with TiF4 can effectively reduce cariogenic biofilms and significantly remineralize enamel disks, opening new avenues in caries prevention.

18.
J Hazard Mater ; 476: 134883, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38897118

RESUMO

Parabens are emerging contaminants that have been detected in drinking water. Their presence in DW distribution systems (DWDS) can alter bacterial behaviour, characteristics, and structure, which may compromise DW disinfection. This work provides insights into the impact of methylparaben (MP) on the tolerance to chlorine disinfection and antibiotics from dual-species biofilms formed by Acinetobacter calcoaceticus and Stenotrophomonas maltophilia isolated from DW and grown on high-density polyethylene (HDPE) and polypropylene (PPL). Results showed that dual-species biofilms grown on PPL were more tolerant to chlorine disinfection, expressing a decrease of over 50 % in logarithmic reduction values of culturable cells in relation to non-exposed biofilms. However, bacterial tolerance to antibiotics was not affected by MP presence. Although MP-exposed dual-species biofilms grown on HDPE and PPL were metabolically more active than non-exposed counterparts, HDPE seems to be the material with lower impact on DW risk management and disinfection, if MP is present. Overall, results suggest that MP presence in DW may compromise chlorine disinfection, and consequently affect DW quality and stability, raising potential public health issues.


Assuntos
Biofilmes , Cloro , Desinfetantes , Desinfecção , Parabenos , Biofilmes/efeitos dos fármacos , Parabenos/toxicidade , Cloro/farmacologia , Desinfecção/métodos , Desinfetantes/farmacologia , Desinfetantes/toxicidade , Acinetobacter calcoaceticus/efeitos dos fármacos , Stenotrophomonas maltophilia/efeitos dos fármacos , Polipropilenos , Polietileno , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Purificação da Água/métodos , Poluentes Químicos da Água/toxicidade
19.
Microorganisms ; 11(9)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37764089

RESUMO

Pathogenic bacteria form biofilms during infection, and polymicrobial biofilms are the most frequent manifestation. Biofilm attachment, maturation, and/or antibiotic sensitivity are mainly evaluated with microtiter plate assays, in which bacteria are stained to enable the quantification of the biomass by optical absorbance or fluorescence emission. However, using these methods to distinguish different species in dual-species or polymicrobial biofilms is currently impossible. Colony-forming unit counts from homogenized dual-species biofilms on selective agar medium allow species differentiation but are time-consuming for a high-throughput screening. Thus, reliable, feasible, and fast methods are urgently needed to study the behavior of polymicrobial and dual-species communities. This study shows that Pseudomonas aeruginosa and Burkholderia cenocepacia strains expressing specific fluorescent or bioluminescent proteins permit the more efficient study of dual-species biofilms compared to other methods that rely on measuring the total biomass. Combining fluorescence and bioluminescence measurements allows an independent analysis of the different microbial species within the biofilm, indicating the degree of presence of each one over time during a dual-species biofilm growth. The quantitative strategies developed in this work are reproducible and recommended for dual-species biofilm studies with high-throughput microtiter plate approaches using strains that can constitutively express fluorescent or bioluminescent proteins.

20.
Antibiotics (Basel) ; 12(8)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37627716

RESUMO

Metallodrugs have a potent application in various medical fields. In the current study, we used a novel Palladium(II) thiazolinyl picolinamide complex that was directly fabricated over the titanium implant to examine its potency in inhibiting dual-species biofilms and exopolysaccharides. Additionally, inhibition of mono- and dual-species biofilms by coated titanium plates in an in vitro joint microcosm was performed. The study was carried out for 7 days by cultivating mono- and dual-species biofilms on titanium plates placed in both growth media and artificial synovial fluid (ASF). By qPCR analysis, the interaction of co-cultured biofilms in ASF and the alteration in gene expression of co-cultured biofilms were studied. Remarkable alleviation of biofilm accumulation and EPS secretion was observed on the coated titanium plates. The effective impairment of biofilms and EPS matrix of biofilms on Pd(II)-E-coated titanium plates were visualized by Scanning Electron Microscopy. Moreover, coated titanium plates improved the adhesion of osteoblast cells, which is crucial for a bone biomaterial. The potential bioactivity of coated plates was also confirmed at the molecular level using qPCR analysis. The stability of coated plates in ASF for 7 days was examined with FESEM-EDAX analysis. Collectively, the present study provided an excellent anti-infective effect on Pd(II)-E-coated titanium plates without affecting their biocompatibility with bone cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA