RESUMO
Genetic defects in the TSH receptor (TSHR) can cause poor thyroid differentiation (thyroid dysgenesis) and/or thyroid malfunction (thyroid dyshormonogenesis). The phenotype spectrum is wide: from severe congenital hypothyroidism to mild hyperthyrotropinemia. Over 250 TSHR variants have been published, many uncharacterized in vitro. We aimed to genetically characterize patients with thyroid dyshormonogenesis with TSHR defects and to study in vitro the effect of the genetic variants to establish the genotype-phenotype relationship. Pediatric patients with thyroid dyshormonogenesis (160 patients, Catalan CH neonatal screening program, confirmation TSH range: 18.4-100 mIU/L), were analyzed by a high-throughput gene panel. In vitro studies measuring the TSH-dependent cAMP-response-element activation were performed. Five patients with mild or severe thyroid dyshormonogenesis presented six TSHR variants, two unpublished. Each variant showed a different in vitro functional profile that was totally or partially deleterious. Depending on the genotype, some of the variants showed partial deficiency in both genotypes, whereas others presented a different effect. In conclusion, the percentage of patients with thyroid dyshormonogenesis and candidate variants in TSHR is 3.13%. Our in vitro studies contributed to the confirmation of the pathogenicity of the variants and highlighted the importance of studying the effect of the patient's genotype for a correct diagnostic confirmation.
Assuntos
Receptores da Tireotropina , Disgenesia da Tireoide , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Hipotireoidismo Congênito/genética , Estudos de Associação Genética , Genótipo , Mutação , Fenótipo , Receptores da Tireotropina/genética , Receptores da Tireotropina/metabolismo , Disgenesia da Tireoide/genética , Tireotropina/metabolismo , Tireotropina/sangueRESUMO
Thyroid dyshormonogenesis (THD) is a heterogeneous group of genetic diseases caused by the total or partial defect in the synthesis or secretion of thyroid hormones. Genetic variants in DUOX2 can cause partial to total iodination organification defects and clinical heterogeneity, from transient to permanent congenital hypothyroidism. The aim of this study was to undertake a molecular characterization and genotype-phenotype correlation in patients with THD and candidate variants in DUOX2. A total of 31 (19.38%) patients from the Catalan Neonatal Screening Program presented with variants in DUOX2 that could explain their phenotype. Fifteen (48.39%) patients were compound heterozygous, 10 (32.26%) heterozygous, and 4 (12.90%) homozygous. In addition, 8 (26.67%) of these patients presented variants in other genes. A total of 35 variants were described, 10 (28.57%) of these variants have not been previously reported in literature. The most frequent variant in our cohort was c.2895_2898del/p.(Phe966SerfsTer29), classified as pathogenic according to reported functional studies. The final diagnosis of this cohort was permanent THD in 21 patients and transient THD in 10, according to reevaluation and/or need for treatment with levothyroxine. A clear genotype-phenotype correlation could not be identified; therefore, functional studies are necessary to confirm the pathogenicity of the variants.
Assuntos
Oxidases Duais , Estudos de Associação Genética , Humanos , Oxidases Duais/genética , Oxidases Duais/metabolismo , Feminino , Masculino , Recém-Nascido , Disgenesia da Tireoide/genética , Disgenesia da Tireoide/patologia , Fenótipo , Mutação , Genótipo , Hipotireoidismo Congênito/genética , Triagem Neonatal , TiroxinaRESUMO
Background and Objectives: Congenital thyroid dyshormonogenesis is caused by alterations in the synthesis of thyroid hormones in a newborn. Additionally, 10 to 20% of these cases are hereditary, caused by defects in proteins involved in hormonal synthesis. One of the most common causes is mutations in the thyroid peroxidase (TPO) enzyme gene, an autosomal recessive disease. We aimed to detect mutations of the TPO gene in 12 Chilean patients with congenital hypothyroidism due to dyshormonogenesis (CHD) and to characterize these patients clinically and molecularly. Materials and Methods: Twelve patients under 20 years of age with CHD, controlled at San Juan de Dios Hospital in Santiago, Chile, were selected according to the inclusion criteria: elevated neonatal TSH, persistent hypothyroidism, and thyroid normotopic by imaging study. Those with deafness, Down syndrome, and central or transient congenital hypothyroidism were excluded. Blood samples were taken for DNA extraction, and the 17 exons and exon-intron junctions of the TPO gene were amplified by PCR. The PCR products were sequenced by Sanger. Results: Two possibly pathogenic mutations of the TPO gene were detected: c.2242G>A (p.Val748Met) and c.1103C>T (p.Pro368Leu). These mutations were detected in 2 of 12 patients (16.6%): 1 was compound heterozygous c.1103C>T/c.2242G>A, and the other was heterozygous for c.2242G>A. In the diagnostic confirmation test, both patients presented diffuse hyper-uptake goiter on thyroid scintigraphy and high TSH in venous blood (>190 uIU/mL). Conclusions: The frequency of patients with possibly pathogenic mutations in TPO with CHD was 16.6%. Its study would allow for genetic counseling to be offered to the families of affected patients.
Assuntos
Hipotireoidismo Congênito , Iodeto Peroxidase , Proteínas de Ligação ao Ferro , Mutação , Humanos , Hipotireoidismo Congênito/genética , Hipotireoidismo Congênito/sangue , Chile , Iodeto Peroxidase/genética , Feminino , Masculino , Proteínas de Ligação ao Ferro/genética , Autoantígenos/genética , Lactente , Criança , Adolescente , Pré-Escolar , Recém-Nascido , Disgenesia da Tireoide/genética , Disgenesia da Tireoide/complicações , Disgenesia da Tireoide/sangueRESUMO
BACKGROUND: Newborn screening (NBS) has largely eliminated the physical and neurodevelopmental effects of untreated congenital hypothyroidism (CH). Many countries, including Australia, have progressively lowered NBS bloodspot thyroid-stimulating hormone (b-TSH) thresholds. The impact of these changes is still unclear. OBJECTIVES: To evaluate the performance of CH NBS following the reduction of b-TSH thresholds in New South Wales (NSW) and the Australian Capital Territory (ACT), Australia, from 15 to 8 mIU/L, and to determine the clinical outcomes of cases detected by these thresholds. METHODS: NBS data of 346 849 infants born in NSW/ACT, Australia from 1 November, 2016-1 March, 2020 inclusive were analysed. A clinical audit was conducted on infants with a preliminary diagnosis of CH born between 1 January, 2016-1 December, 2020 inclusive. RESULTS: The lowered b-TSH threshold (≥8 mIU/L, ~99.5th centile) detected 1668 infants (0.48%), representing an eight-fold increase in recall rate, of whom 212 of 1668 (12.7%) commenced thyroxine treatment. Of these 212 infants, 62 (29.2%) (including eight cases with a preliminary diagnosis of thyroid dysgenesis) had an initial b-TSH 8-14.9 mIU/L. The positive predictive value for a preliminary diagnosis of CH decreased from 74.3% to 12.8% with the lowered threshold. Proportionally, more pre-term infants received a preliminary CH diagnosis on screening with the lower threshold (16.1% of 62) than with the higher threshold (8.0% of 150). CONCLUSION: Clinically relevant CH was detected using the lowered threshold, albeit at the cost of an eight-fold increase in recall rate. Further clinical and economic studies are required to determine whether benefits of lowered screening thresholds outweigh potential harms from false-positive results on infants, their families and NBS programs.
RESUMO
PURPOSE: To date, many genes have been associated with congenital hypothyroidism (CH). Our aim was to identify the mutational spectrum of 23 causative genes in Turkish patients with permanent CH, including thyroid dysgenesis (TD) and dyshormonogenesis (TDH) cases. METHODS: A total of 134 patients with permanent CH (130 primary, 4 central) were included. To identify the genetic etiology, we screened 23 candidate genes associated with CH by next-generation sequencing. For confirmation and to detect the status of the specific familial variant in relatives, Sanger sequencing was also performed. RESULTS: Possible pathogenic variants were found in 5.2% of patients with TD and in 64.0% of the patients with normal-sized thyroid or goiter. In all patients, variants were most frequently found in TSHR, followed by TPO and TG. The same homozygous TSHB variant (c.162 + 5G > A) was identified in four patients with central CH. In addition, we detected novel variants in the TSHR, TG, SLC26A7, FOXE1, and DUOX2. CONCLUSION: Genetic causes were determined in the majority of CH patients with TDH, however, despite advances in genetics, we were unable to identify the genetic etiology of most CH patients with TD, suggesting the effect of unknown genes or environmental factors. The previous studies and our findings suggest that TSHR and TPO mutations is the main genetic defect of CH in the Turkish population.
Assuntos
Hipotireoidismo Congênito/genética , Variação Genética/genética , Antiporters/análise , Antiporters/sangue , Antiporters/genética , Criança , Pré-Escolar , Oxidases Duais/análise , Oxidases Duais/sangue , Oxidases Duais/genética , Feminino , Fatores de Transcrição Forkhead/análise , Fatores de Transcrição Forkhead/sangue , Fatores de Transcrição Forkhead/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/estatística & dados numéricos , Humanos , Lactente , Recém-Nascido , Masculino , Receptores da Tireotropina/análise , Receptores da Tireotropina/sangue , Receptores da Tireotropina/genética , Transportadores de Sulfato/análise , Transportadores de Sulfato/sangue , Transportadores de Sulfato/genética , Tireoglobulina/análise , Tireoglobulina/sangue , Tireoglobulina/genéticaRESUMO
Congenital iodide transport defect is an uncommon autosomal recessive disorder caused by loss-of-function variants in the sodium iodide symporter (NIS)-coding SLC5A5 gene and leading to dyshormonogenic congenital hypothyroidism. Here, we conducted a targeted next-generation sequencing assessment of congenital hypothyroidism-causative genes in a cohort of nine unrelated pediatric patients suspected of having a congenital iodide transport defect based on the absence of 99mTc-pertechnetate accumulation in a eutopic thyroid gland. Although, unexpectedly, we could not detect pathogenic SLC5A5 gene variants, we identified two novel compound heterozygous TG gene variants (p.Q29* and c.177-2A>C), three novel heterozygous TG gene variants (p.F1542Vfs*20, p.Y2563C, and p.S523P), and a novel heterozygous DUOX2 gene variant (p.E1496Dfs*51). Splicing minigene reporter-based in vitro assays revealed that the variant c.177-2A>C affected normal TG pre-mRNA splicing, leading to the frameshift variant p.T59Sfs*17. The frameshift TG variants p.T59Sfs*17 and p.F1542Vfs*20, but not the DUOX2 variant p.E1496Dfs*51, were predicted to undergo nonsense-mediated decay. Moreover, functional in vitro expression assays revealed that the variant p.Y2563C reduced the secretion of the TG protein. Our investigation revealed unexpected findings regarding the genetics of congenital iodide transport defects, supporting the existence of yet to be discovered mechanisms involved in thyroid hormonogenesis.
Assuntos
Hipotireoidismo Congênito , Tireoglobulina , Criança , Hipotireoidismo Congênito/genética , Oxidases Duais/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Iodetos/metabolismo , Mutação , Tireoglobulina/genéticaRESUMO
Congenital hypothyroidism (CH) occurs due to thyroid dysgenesis, thyroid ectopy, and dyshormonogenesis. A proportion of CH is transient which might be due to iodine deficiency/excess or maternal antibody-mediated. Certain forms of dyshormonogenetic defects may cause transient hypothyroidism. Here is a report of a neonate with overt clinical and biochemical hypothyroidism, who on evaluation was found to have dyshormonogenesis with a homozygous mutation in dual oxidase 2 (DUOX2) gene. During infancy, she became euthyroid. Severe in utero deficiency of thyroid hormone, very short duration of hypothyroidism and first-reported mutation of the DUOX2 gene in the Indian subcontinent were interesting features in this infant.
Assuntos
Hipotireoidismo Congênito , Disgenesia da Tireoide , Hipotireoidismo Congênito/diagnóstico , Hipotireoidismo Congênito/genética , Oxidases Duais/genética , Feminino , Humanos , Lactente , Recém-Nascido , MutaçãoRESUMO
Congenital hypothyroidism (CH) is one of the most common preventable forms of mental retardation and since the implementation of neonatal screening programs in the mid-1970s, early detection and treatment have proven to be very successful in preventing brain damage. CH may be of thyroidal (= primary) or of hypothalamic-pituitary (= central) origin. Primary CH may be due to abnormal thyroid gland formation (dysgenesis) or defective thyroid hormone syntheses by a structurally normal gland (dyshormonogenesis). While thyroid dysgenesis is the most common form of CH, accounting for approximately 85% of cases, genetic defects are only found in a very low proportion of patients. On the other hand, thyroid dyshormonogenesis is less common, but is usually a genetic condition with autosomal recessive inheritance. In this review we provide an overview of all known monogenetic causes of primary CH, including promising new candidate genes. In addition, alternative genetic mechanisms are discussed.
Assuntos
Hipotireoidismo Congênito , Humanos , Recém-Nascido , Triagem Neonatal , Hormônios TireóideosRESUMO
BACKGROUND: Pendred syndrome is a rare autosomal recessive condition, characterized by functional impairment of thyroid gland and sensorineural hearing loss. The syndrome presents in patients with homozygous or compound heterozygous mutation. The presentation in the form of neck mass in a newborn is rare. CASE CHARACTERISTICS: A 1 month old baby presented to us with neck mass, which was found to be an enlarged thyroid gland. Thyroid function tests were consistent with hypothyroidism. Further evaluation revealed moderate sensorineural hearing loss; genetic analysis showed that baby was homozygous for the known mutations causing the disease. INTERVENTION: Thyroid hormone replacement and hearing habilitation were done. Follow up showed regression of the neck mass and normalization of thyroid function tests. Genetic counseling of the family was done. MESSAGE: Identification of the exact cause of congenital hypothyroidism can prevent grave consequences later on for the patient as well as for the family.
Assuntos
Hipotireoidismo Congênito/diagnóstico , Bócio Nodular/diagnóstico , Bócio/diagnóstico , Perda Auditiva Neurossensorial/diagnóstico , Hipotireoidismo Congênito/genética , Bócio/congênito , Bócio/genética , Bócio Nodular/congênito , Bócio Nodular/genética , Perda Auditiva Neurossensorial/congênito , Perda Auditiva Neurossensorial/genética , Humanos , Recém-Nascido , Mutação , Testes de Função TireóideaRESUMO
UNLABELLED: We aimed to identify causal mutation(s) in 13 patients with thyroid dyshormonogenesis (TD) from three consanguineous Tunisian families. A 12-year clinical follow-up showed phenotypic variability ranging from the presence to the absence of goiter, sensorineural deafness, and mental retardation. Genetic analysis using microsatellite markers within two candidate genes (TPO and PDS) gave evidence of linkage with the TPO gene. Sequencing of its 17 exons and their flanking intron-exon junctions revealed the previously described c.875C>T (p.S292F) mutation in homozygous state. No additional mutations were found in either a 900 bp of the TPO gene promoter or PDS gene. In silico analysis showed that p.S292F mutation might reduce the catalytic cavity of the TPO which would restrict access of a potential substrate to the catalytic pocket. Using 4SNPs and one microsatellite marker in the TPO gene, an associated haplotype: G-C-G-G-214 was found, giving evidence of a founder mutation. CONCLUSION: This is the first description of a TD causing mutation in Tunisia and thus may help to develop a genetic screening protocol for congenital hypothyroidism in the studied region. Although structural modeling suggested a pathogenic effect of this mutation, functional studies are needed. Additional causing and/or modifier genes, together with late diagnosis could explain the clinical variability observed in our patients.
Assuntos
Autoantígenos/genética , Hipotireoidismo Congênito/genética , Efeito Fundador , Iodeto Peroxidase/genética , Proteínas de Ligação ao Ferro/genética , Mutação , Adolescente , Adulto , Criança , Consanguinidade , Feminino , Genótipo , Humanos , Masculino , Proteínas de Membrana Transportadoras/genética , Pessoa de Meia-Idade , Linhagem , Transportadores de Sulfato , Glândula Tireoide/anormalidades , Tunísia , Adulto JovemRESUMO
UNLABELLED: Absract Purpose: Mutations in the TPO gene have been reported to cause congenital hypothyroidism (CH), and our aim in this study was to determine the genetic basis of congenital hypothyroidism in two affected children coming from a consanguineous family. METHODS: Since CH is usually inherited in autosomal recessive manner in consanguineous/multi case-families, we adopted a two-stage strategy of genetic linkage studies and targeted sequencing of the candidate genes. First we investigated the potential genetic linkage of the family to any known CH locus using microsatellite markers and then screened for mutations in linked-gene by Sanger sequencing. RESULTS: The family showed potential linkage to the TPO gene and we detected a non-sense mutation (Y55X) in both cases that had total iodode organification defect (TIOD). The mutation segregated with disease status in the family. Y55X is the only truncating mutation in the exon 2 of the TPO gene reported in the literature and results in the earliest stop codon known in the gene to date. CONCLUSIONS: This study confirms the pathogenicity of Y55X mutation and demonstrates that a nonsense mutation in the amino-terminal coding region of the TPO gene could totally abolish the function of the TPO enzyme leading to TIOD. Thus it helps to establish a strong genotype/phenotype correlation associated with this mutation. It also highlights the importance of molecular genetic studies in the definitive diagnosis and accurate classification of CH.
Assuntos
Autoantígenos/genética , Hipotireoidismo Congênito/genética , Iodeto Peroxidase/genética , Proteínas de Ligação ao Ferro/genética , Mutação , Adolescente , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Humanos , Lactente , Masculino , IrmãosRESUMO
Biallelic loss-of-function variants in the IYD gene cause hypothyroidism resulting from iodine wasting. We describe 8 patients (from 4 families in which the parents are first cousins) who are homozygous for a variant in IYD (including a novel missense deleterious variant, c.791C>T [P264L], in 1 family). Seven patients presented between 5 and 16 years of age with a large goiter, overt hypothyroidism, and a high serum thyroglobulin. The goiter subsided with levothyroxine therapy in most. Upon stopping levothyroxine in 5 patients, goiter and hypothyroidism reappeared in 3. In these 3 patients, a rising serum thyroglobulin concentration preceded hypothyroidism and goiter and urinary iodine excretion was low. In patients who remained euthyroid, urinary iodine was normal. In conclusion, these patients bearing biallelic pathogenic variants in IYD developed a large goiter, a high serum thyroglobulin, and overt hypothyroidism when their iodine intake was low.
Assuntos
Bócio , Hipotireoidismo , Linhagem , Tiroxina , Humanos , Feminino , Masculino , Adolescente , Hipotireoidismo/genética , Criança , Pré-Escolar , Tiroxina/uso terapêutico , Bócio/genética , Tireoglobulina/genética , Iodo/deficiência , Alelos , Mutação de Sentido Incorreto , SimportadoresRESUMO
INTRODUCTION: Thyroid dyshormonogenesis (TDH) is a subgroup of congenital hypothyroidism with recessive inheritance resulting from disease-causing variants in thyroid hormone biosynthesis pathway genes, like DUOX2, TG, TPO, SLC5A5, SLC26A4, IYD, DUOXA2, and SLC26A7. Thyroid peroxidase (TPO) is a crucial enzyme involved in thyroid hormone biosynthesis and is one of the frequently mutated genes in patients with TDH. The purpose of the study was to describe the in silico and functional characterization of novel variants in TPO gene identified in patients with TDH. METHODS: We performed exome sequencing in Indian patients with TDH. In the current study, we describe the results of patients with TPO gene mutations. Exome sequencing results were further analysed by Sanger sequencing, computational studies, and in vitro functional studies such as immunofluorescence and enzyme assay. RESULTS: We identified nine biallelic disease-causing variants in the TPO gene in 12 patients from nine unrelated Indian families. Eight of the nine variants were novel. No recurrent variants were identified. Computational analysis of six missense variants showed that these amino acid substitutions caused changes in non-covalent interactions with the adjacent residues that may affect the TPO protein structure and function. In vitro experimental data using immunofluorescence assay showed that these variants did not affect the plasma membrane localization of the TPO protein but caused a significant loss of TPO enzymatic activity compared to the wild type. CONCLUSION: Our study revealed multiple novel pathogenic variants in TPO gene in Indian patients, thereby expanding the genotype spectrum. Functional studies helped us to reveal the pathogenicity of the missense variants.
RESUMO
Introduction: Defects in any thyroid hormone synthesis steps cause thyroid dyshormonogenesis (THD). THD due to thyroglobulin (TG) gene variants is a cause of congenital hypothyroidism (CH) with a wide clinical spectrum, ranging from mild to severe permanent hypothyroidism. We present high-throughput sequencing results of patients with TG variants. Methods: A CH high-throughput sequencing-panel of the main genes involved in the regulation of thyroid hormonogenesis was performed to identify those TG variants that may be related to patient THD phenotype. Results: We identified 21 TG gene variants in 19 patients (11.8%) which could explain their phenotype. Ten of those (47.6%) were not previously described. CH was biochemically severe in these 19 patients. Eight of them were reevaluated after one month of discontinuing LT4 treatment and all had severe permanent hypothyroidism. We also identified another 16 patients who presented heterozygous TG variants, of whom, at reevaluation, five had mild permanent and only one had severe permanent hypothyroidisms. Discussions: In this study, 10 novel and 11 previously reported variants in the TG gene have been identified that could explain the phenotype of 19 patients from non-consanguineous families from a large THD cohort. Although not all these TG gene variants can explain all the patients' THD phenotypes, some of them had severe or mild permanent hypothyroidism at reevaluation.
Assuntos
Hipotireoidismo Congênito , Tireoglobulina , Humanos , Tireoglobulina/genética , Feminino , Masculino , Hipotireoidismo Congênito/genética , Criança , Pré-Escolar , Sequenciamento de Nucleotídeos em Larga Escala , Fenótipo , Lactente , Disgenesia da Tireoide/genética , Mutação , Adolescente , Adulto , Recém-NascidoRESUMO
CONTEXT: Thyroglobulin (Tg), encoded by TG, is essential for thyroid hormone synthesis. TG defects result in congenital hypothyroidism (CH). Most reported patients were born before the introduction of newborn screening (NBS). OBJECTIVE: We aimed to clarify the phenotypic features of patients with TG defects diagnosed and treated since the neonatal period. METHODS: We screened 1061 patients with CH for 13 CH-related genes and identified 30 patients with TG defects. One patient was diagnosed due to hypothyroidism-related symptoms and the rest were diagnosed via NBS. Patients were divided into 2 groups according to their genotypes, and clinical characteristics were compared. We evaluated the functionality of the 7 missense variants using HEK293 cells. RESULTS: Twenty-seven rare TG variants were detected, including 15 nonsense, 3 frameshift, 2 splice-site, and 7 missense variants. Patients were divided into 2 groups: 13 patients with biallelic truncating variants and 17 patients with monoallelic/biallelic missense variants. Patients with missense variants were more likely to develop thyroid enlargement with thyrotropin stimulation than patients with biallelic truncating variants. Patients with biallelic truncating variants invariably required full hormone replacement, whereas patients with missense variants required variable doses of levothyroxine. Loss of function of the 7 missense variants was confirmed in vitro. CONCLUSION: To our knowledge, this is the largest investigation on the clinical presentation of TG defects diagnosed in the neonatal period. Patients with missense variants showed relatively mild hypothyroidism with compensative goiter. Patients with only truncating variants showed minimal or no compensative goiter and required full hormone replacement.
Assuntos
Hipotireoidismo Congênito , Estudos de Associação Genética , Triagem Neonatal , Tireoglobulina , Humanos , Hipotireoidismo Congênito/genética , Hipotireoidismo Congênito/diagnóstico , Feminino , Masculino , Tireoglobulina/genética , Recém-Nascido , Japão/epidemiologia , Pré-Escolar , Mutação de Sentido Incorreto , Lactente , Criança , Fenótipo , Genótipo , Células HEK293 , População do Leste AsiáticoRESUMO
Background: Congenital hypothyroidism (CH) is the most common neonatal metabolic disorder. In patients with CH in China, thyroid dyshormonogenesis is more common than thyroid dysgenesis; however, the genetic causes of CH due to thyroid dyshormonogenesis remain largely unknown. Therefore, we aimed at identifying novel candidate causative genes for CH. Methods: To identify novel CH candidate genes, a total of 599 patients with CH were enrolled and next-generation sequencing was performed. The functions of the identified variants were confirmed using HEK293T and FTC-133 cell lines in vitro and in a mouse model organism in vivo. Results: Three pathogenic contactin 6 (CNTN6) variants were identified in two patients with CH. Pedigree analysis showed that CH caused by CNTN6 variants was inherited in an autosomal recessive pattern. The CNTN6 gene was highly expressed in the thyroid in humans and mice. Cntn6 knockout mice presented with thyroid dyshormonogenesis and CH due to the decreased expression of crucial genes for thyroid hormone biosynthesis (Slc5a5, Tpo, and Duox2). All three CNTN6 variants resulted in the blocking of the release of the Notch intracellular domain, which could not translocate into the nucleus, impaired NOTCH1 transcriptional activity, and decreased expression of SLC5A5, TPO, and DUOX2. Further, we found that DTX1 was required for CNTN6 to promote thyroid hormone biosynthesis through Notch signaling. Conclusions: This study demonstrated that CNTN6 is a novel causative gene for CH through the mediation of thyroid hormone biosynthesis via Notch signaling, which provides new insights into the genetic background and mechanisms involved in CH and thyroid dyshormonogenesis.
Assuntos
Hipotireoidismo Congênito , Humanos , Animais , Camundongos , Hipotireoidismo Congênito/genética , Oxidases Duais/genética , Células HEK293 , Mutação , Iodeto Peroxidase/genética , Hormônios Tireóideos , Contactinas/genéticaRESUMO
Thyroid dyshormonogenesis (TDH) is responsible for 15%-25% of congenital hypothyroidism (CH) cases. Pathogenetic variants of this common inherited endocrine disorders vary geographically. Unraveling the genetic underpinnings of TDH is essential for genetic counseling and precise therapeutic strategies. This study aims to identify genetic variants associated with TDH in Southern Taiwan using whole exome sequencing (WES). We included CH patients diagnosed through newborn screening at a tertiary medical center from 2011 to 2022. Permanent TDH was determined based on imaging evidence of bilateral thyroid structure and the requirement for continuous medication beyond 3 years of age. Genomic DNA extracted from blood was used for exome library construction, and pathogenic variants were detected using an in-house algorithm. Of the 876 CH patients reviewed, 121 were classified as permanent, with 47 (40%) confirmed as TDH. WES was conducted for 45 patients, and causative variants were identified in 32 patients (71.1%), including DUOX2 (15 cases), TG (8 cases), TSHR (7 cases), TPO (5 cases), and DUOXA2 (1 case). Recurrent variants included DUOX2 c.3329G>A, TSHR c.1349G>A, TG c.1348delT, and TPO c.2268dupT. We identified four novel variants based on genotype, including TSHR c.1135C>T, TSHR c.1349G>C, TG c.2461delA, and TG c.2459T>A. This study underscores the efficacy of WES in providing definitive molecular diagnoses for TDH. Molecular diagnoses are instrumental in genetic counseling, formulating treatment, and developing management strategies. Future research integrating larger population cohorts is vital to further elucidate the genetic landscape of TDH.
Assuntos
Hipotireoidismo Congênito , Sequenciamento do Exoma , Iodeto Peroxidase , Receptores da Tireotropina , Humanos , Taiwan , Feminino , Masculino , Hipotireoidismo Congênito/genética , Hipotireoidismo Congênito/diagnóstico , Recém-Nascido , Iodeto Peroxidase/genética , Receptores da Tireotropina/genética , Oxidases Duais/genética , Tireoglobulina/genética , Proteínas de Ligação ao Ferro/genética , Pré-Escolar , Variação Genética , Mutação , Disgenesia da Tireoide/genética , Disgenesia da Tireoide/diagnóstico , Lactente , AutoantígenosRESUMO
Background: More than 40 years have passed since the introduction of newborn screening (NBS) for congenital hypothyroidism (CH), and many early diagnosed patients have reached adulthood. Their thyroid morphology and function have been little studied. This cross-sectional, observational study was conducted to characterize the thyroid morphology and function of adult CH patients diagnosed in the framework of NBS for CH. Methods: A total of 103 adult CH patients born after 1979 were enrolled at Ito Hospital, Tokyo, Japan, and were classified into Goiter, Normal gland, and Dysgenesis groups based on ultrasonographic findings. For 60 patients, genetic analysis was performed. Thyroid function test results and the proportion of patients with thyroid nodules were compared among the three groups and between 56 female CH patients and 168 non-CH women matched for thyrotropin levels. Results: A significantly low serum free triiodothyronine/free thyroxine ratio (0.22) was observed in the Dysgenesis group. Thyroid nodules were detected in 14.3% (8/56) of female CH patients, more frequently than in non-CH women. Thyroid nodules were detected most frequently in the Goiter group (71%, 10/14). Genetic defects were identified in 89% (8/9) of patients belonging to the Goiter group, including thyroglobulin defect (33%, 3/9), thyroid peroxidase defect (33%, 3/9), and dual oxidase 2 defect (22%, 2/9). Conclusions: Our results suggest that adults with thyroid dysgenesis on levothyroxine replacement therapy have relative triiodothyronine deficiency. Most adults with goitrous CH have genetic dyshormonogenesis. They are at high risk of developing thyroid nodules. Our findings support the current guideline recommendation that CH patients with dyshormonogenesis should undergo periodic thyroid ultrasonography.
Assuntos
Hipotireoidismo Congênito , Bócio , Mixedema , Nódulo da Glândula Tireoide , Tireoidite Autoimune , Recém-Nascido , Humanos , Adulto , Feminino , Hipotireoidismo Congênito/diagnóstico , Hipotireoidismo Congênito/tratamento farmacológico , Tri-Iodotironina , Estudos Transversais , Tiroxina/uso terapêuticoRESUMO
OBJECTIVES: An increased incidence of congenital hypothyroidism (CH) has been described worldwide over the years. In this study, we aimed to investigate the epidemiologic characteristics of CH, the iodine status in Guangzhou, China and to investigate which factors might influence the CH incidence during the period 2010-2020. METHODS: We retrospectively reviewed all cases of CH detected by newborn screening during the period 2010-2020. CH was classified as either suspected thyroid dyshormonogenesis (SDH) or thyroid dysgenesis (TD) based on thyroid ultrasound at first diagnosis. Patients were re-evaluated after 4 weeks of L-thyroxine withdrawal at age of 2-3 years to confirm the diagnosis of permanent CH (PCH) or transient CH (TCH). RESULTS: From 2010 to 2020, 1,655 patients with CH were confirmed from 2,400,383 newborns (1:1,450). The CH incidence increased from 1:2,584 in period [2010-2014] to 1:1,086 in period [2015-2020]. Among the 1,337 patients with thyroid ultrasound, 84.29% were SDH whereas 15.71% had TD. Further analysis revealed that more SDH (78.32%) were TCH whereas more TD (87.12%) turned to be PCH. The proportion of blood spot thyrotropin values >5 mIU/L ranged from 8.03 to 20.46%, indicating iodine deficiency. The prevalence of preterm infants increased from 5.50% in period [2010-2014] to 7.06% in period [2015-2020] (p<0.001). CONCLUSIONS: In the past decade, the CH incidence has increased progressively. SDH was the majority of CH, most of which were TCH, while most patients with TD were PCH. The increased incidence might be mainly due to iodine deficiency and increased rates of preterm infants in our study.
Assuntos
Hipotireoidismo Congênito , Iodo , Pré-Escolar , China/epidemiologia , Hipotireoidismo Congênito/diagnóstico , Hipotireoidismo Congênito/epidemiologia , Hipotireoidismo Congênito/etiologia , Humanos , Incidência , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Triagem Neonatal , Estudos Retrospectivos , Tireotropina , TiroxinaRESUMO
Thyroglobulin gene abnormalities cause thyroid dyshormonogenesis. A 6-yr-old boy of consanguineous parents presented with a large goiter and mild hypothyroidism (thyroid-stimulating hormone [TSH] 7.2 µIU/mL, free T3 [FT3] 3.4 pg/mL, free T4 [FT4] 0.6 ng/dL). Despite levothyroxine (LT4) administration and normal TSH levels, the goiter progressed slowly and increased rapidly in size at the onset of puberty. Thyroid scintigraphy revealed a remarkably high 123I uptake of 75.2%, with a serum thyroglobulin level of 13 ng/ml, which was disproportionately low for the goiter size. DNA sequencing revealed a novel homozygous missense variant, c.434G>A [p.Gly145Glu], in the thyroglobulin gene. Goiter growth was suppressed by increasing the LT4 dose. Thyroidectomy was performed at 17-yr-of-age. Thyroglobulin analysis of the thyroid tissue detected mutant thyroglobulin present in the endoplasmic reticulum, demonstrating that thyroglobulin transport from the endoplasmic reticulum to the Golgi apparatus was impaired by the Gly145Glu variant. During the clinical course, an elevated FT3/FT4 ratio was observed along with thyroid enlargement. A high FT3/FT4 ratio and goiter seemed to be compensatory responses to impaired hormone synthesis. Thyroglobulin defects with goiter should be treated with LT4, even if TSH levels are normal.