Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Traffic ; 25(5): e12937, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38777335

RESUMO

The polymorphic APOE gene is the greatest genetic determinant of sporadic Alzheimer's disease risk: the APOE4 allele increases risk, while the APOE2 allele is neuroprotective compared with the risk-neutral APOE3 allele. The neuronal endosomal system is inherently vulnerable during aging, and APOE4 exacerbates this vulnerability by driving an enlargement of early endosomes and reducing exosome release in the brain of humans and mice. We hypothesized that the protective effects of APOE2 are, in part, mediated through the endosomal pathway. Messenger RNA analyses showed that APOE2 leads to an enrichment of endosomal pathways in the brain when compared with both APOE3 and APOE4. Moreover, we show age-dependent alterations in the recruitment of key endosomal regulatory proteins to vesicle compartments when comparing APOE2 to APOE3. In contrast to the early endosome enlargement previously shown in Alzheimer's disease and APOE4 models, we detected similar morphology and abundance of early endosomes and retromer-associated vesicles within cortical neurons of aged APOE2 targeted-replacement mice compared with APOE3. Additionally, we observed increased brain extracellular levels of endosome-derived exosomes in APOE2 compared with APOE3 mice during aging, consistent with enhanced endosomal cargo clearance by exosomes to the extracellular space. Our findings thus demonstrate that APOE2 enhances an endosomal clearance pathway, which has been shown to be impaired by APOE4 and which may be protective due to APOE2 expression during brain aging.


Assuntos
Envelhecimento , Apolipoproteína E2 , Encéfalo , Endossomos , Exossomos , Animais , Humanos , Camundongos , Envelhecimento/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Apolipoproteína E2/metabolismo , Apolipoproteína E2/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E3/genética , Apolipoproteína E4/metabolismo , Apolipoproteína E4/genética , Encéfalo/metabolismo , Endossomos/metabolismo , Exossomos/metabolismo , Camundongos Endogâmicos C57BL , Neurônios/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(52): e2307423120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38109552

RESUMO

Hepatitis E virus (HEV) is a major cause of acute hepatitis worldwide. As the other positive-strand RNA viruses, it is believed to replicate its genome in a membrane-associated replication complex. However, current understanding of the host factors required for productive HEV infection is limited and the site as well as the composition of the HEV replication complex are still poorly characterized. To identify host factors required for HEV RNA replication, we performed a genome-wide CRISPR/Cas9 screen in permissive human cell lines harboring subgenomic HEV replicons allowing for positive and negative selection. Among the validated candidates, Ras-related early endosomal protein Rab5A was selected for further characterization. siRNA-mediated silencing of Rab5A and its effectors APPL1 and EEA1, but not of the late and recycling endosome components Rab7A and Rab11A, respectively, significantly reduced HEV RNA replication. Furthermore, pharmacological inhibition of Rab5A and of dynamin-2, required for the formation of early endosomes, resulted in a dose-dependent decrease of HEV RNA replication. Colocalization studies revealed close proximity of Rab5A, the HEV ORF1 protein, corresponding to the viral replicase, as well as HEV positive- and negative-strand RNA. In conclusion, we successfully exploited CRISPR/Cas9 and selectable subgenomic replicons to identify host factors of a noncytolytic virus. This approach revealed a role for Rab5A and early endosomes in HEV RNA replication, likely by serving as a scaffold for the establishment of functional replication complexes. Our findings yield insights into the HEV life cycle and the virus-host interactions required for productive infection.


Assuntos
Vírus da Hepatite E , Hepatite E , Humanos , Vírus da Hepatite E/genética , Sistemas CRISPR-Cas , Endossomos/genética , Endossomos/metabolismo , Replicação Viral/genética , RNA Viral/genética
3.
J Virol ; 97(11): e0106723, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37855618

RESUMO

IMPORTANCE: Many plant viruses are transmitted by insect vectors in a circulative manner. For efficient transmission, the entry of the virus from vector hemolymph into the primary salivary gland (PSG) is a step of paramount importance. Yet, vector components mediating virus entry into PSG remain barely characterized. Here, we demonstrate the role of clathrin-mediated endocytosis and early endosomes in begomovirus entry into whitefly PSG. Our findings unravel the key components involved in begomovirus transport within the whitefly body and transmission by their whitefly vectors and provide novel clues for blocking begomovirus transmission.


Assuntos
Begomovirus , Endocitose , Hemípteros , Animais , Begomovirus/fisiologia , Clatrina/metabolismo , Endossomos , Hemípteros/metabolismo , Hemípteros/virologia , Doenças das Plantas , Glândulas Salivares/metabolismo , Glândulas Salivares/virologia
4.
Exp Cell Res ; 398(2): 112415, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33296662

RESUMO

A Disintegrin And Metalloprotease 23 (ADAM23) is a member of the ADAMs family of transmembrane proteins, mostly expressed in nervous system, and involved in traffic and stabilization of Kv1-potassium channels, synaptic transmission, neurite outgrowth, neuronal morphology and cell adhesion. Also, ADAM23 has been linked to human pathological conditions, such as epilepsy, cancer metastasis and cardiomyopathy. ADAM23 functionality depends on the molecule presence at the cell surface and along the secretory pathway, as expected for a cell surface receptor. Because endocytosis is an important functional regulatory mechanism of plasma membrane receptors and no information is available about the traffic or turnover of non-catalytic ADAMs, we investigated ADAM23 internalization, recycling and half-life properties. Here, we show that ADAM23 undergoes constitutive internalization from the plasma membrane, a process that depends on lipid raft integrity, and is redistributed to intracellular vesicles, especially early and recycling endosomes. Furthermore, we observed that ADAM23 is recycled from intracellular compartments back to the plasma membrane and thus has longer half-life and higher cell surface stability compared with other ADAMs. Our findings suggest that regulation of ADAM23 endocytosis/stability could be exploited therapeutically in diseases in which ADAM23 is directly involved, such as epilepsy, cancer progression and cardiac hypertrophy.


Assuntos
Proteínas ADAM/metabolismo , Endocitose , Membrana Celular/metabolismo , Células Cultivadas , Endossomos/metabolismo , Meia-Vida , Humanos , Microdomínios da Membrana/metabolismo
5.
Alzheimers Dement ; 17(2): 271-292, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32975365

RESUMO

OBJECTIVE: Recent clinical trials targeting amyloid beta (Aß) and tau in Alzheimer's disease (AD) have yet to demonstrate efficacy. Reviewing the hypotheses for AD pathogenesis and defining possible links between them may enhance insights into both upstream initiating events and downstream mechanisms, thereby promoting discovery of novel treatments. Evidence that in Down syndrome (DS), a population markedly predisposed to develop early onset AD, increased APP gene dose is necessary for both AD neuropathology and dementia points to normalization of the levels of the amyloid precursor protein (APP) and its products as a route to further define AD pathogenesis and discovering novel treatments. BACKGROUND: AD and DS share several characteristic manifestations. DS is caused by trisomy of whole or part of chromosome 21; this chromosome contains about 233 protein-coding genes, including APP. Recent evidence points to a defining role for increased expression of the gene for APP and for its 99 amino acid C-terminal fragment (C99, also known as ß-CTF) in dysregulating the endosomal/lysosomal system. The latter is critical for normal cellular function and in neurons for transmitting neurotrophic signals. NEW/UPDATED HYPOTHESIS: We hypothesize that the increase in APP gene dose in DS initiates a process in which increased levels of full-length APP (fl-APP) and its products, including ß-CTF and possibly Aß peptides (Aß42 and Aß40), drive AD pathogenesis through an endosome-dependent mechanism(s), which compromises transport of neurotrophic signals. To test this hypothesis, we carried out studies in the Ts65Dn mouse model of DS and examined the effects of Posiphen, an orally available small molecule shown in prior studies to reduce fl-APP. In vitro, Posiphen lowered fl-APP and its C-terminal fragments, reversed Rab5 hyperactivation and early endosome enlargement, and restored retrograde transport of neurotrophin signaling. In vivo, Posiphen treatment (50 mg/kg/d, 26 days, intraperitoneal [i.p.]) of Ts65Dn mice was well tolerated and demonstrated no adverse effects in behavior. Treatment resulted in normalization of the levels of fl-APP, C-terminal fragments and small reductions in Aß species, restoration to normal levels of Rab5 activity, reduced phosphorylated tau (p-tau), and reversed deficits in TrkB (tropomyosin receptor kinase B) activation and in the Akt (protein kinase B [PKB]), ERK (extracellular signal-regulated kinase), and CREB (cAMP response element-binding protein) signaling pathways. Remarkably, Posiphen treatment also restored the level of choline acetyltransferase protein to 2N levels. These findings support the APP gene dose hypothesis, point to the need for additional studies to explore the mechanisms by which increased APP gene expression acts to increase the risk for AD in DS, and to possible utility of treatments to normalize the levels of APP and its products for preventing AD in those with DS. MAJOR CHALLENGES FOR THE HYPOTHESIS: Important unanswered questions are: (1) When should one intervene in those with DS; (2) would an APP-based strategy have untoward consequences on possible adaptive changes induced by chronically increased APP gene dose; (3) do other genes present on chromosome 21, or on other chromosomes whose expression is dysregulated in DS, contribute to AD pathogenesis; and (4) can one model strategies that combine the use of an APP-based treatment with those directed at other AD phenotypes including p-tau and inflammation. LINKAGE TO OTHER MAJOR THEORIES: The APP gene dose hypothesis interfaces with the amyloid cascade hypothesis of AD as well as with the genetic and cell biological observations that support it. Moreover, upregulation of fl-APP protein and products may drive downstream events that dysregulate tau homeostasis and inflammatory responses that contribute to propagation of AD pathogenesis.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Inibidores da Colinesterase/administração & dosagem , Síndrome de Down/genética , Endossomos , Fenótipo , Fisostigmina/análogos & derivados , Doença de Alzheimer/fisiopatologia , Precursor de Proteína beta-Amiloide/genética , Animais , Modelos Animais de Doenças , Síndrome de Down/metabolismo , Endossomos/metabolismo , Endossomos/patologia , Humanos , Camundongos , Neurônios/metabolismo , Fosforilação , Fisostigmina/administração & dosagem
6.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34884765

RESUMO

Triple-negative breast cancer (TNBC) cells overexpress the epidermal growth factor receptor (EGFR). Nuclear EGFR (nEGFR) drives resistance to anti-EGFR therapy and is correlated with poor survival in breast cancer. Inhibition of EGFR nuclear translocation may be a reasonable approach for the treatment of TNBC. The anti-malarial drugs chloroquine and primaquine have been shown to promote an anticancer effect. The aim of the present study was to investigate the effect and mechanism of chloroquine- and primaquine-induced apoptosis of breast cancer cells. We showed that primaquine, a malaria drug, inhibits the growth, migration, and colony formation of breast cancer cells in vitro, and inhibits tumor growth in vivo. Primaquine induces damage to early endosomes and inhibits the nuclear translocation of EGFR. Primaquine inhibits the interaction of Stat3 and nEGFR and reduces the transcript and protein levels of c-Myc. Moreover, primaquine and chloroquine induce the apoptosis of breast cancer cells through c-Myc/Bcl-2 downregulation, induce early endosome damage and reduce nEGFR levels, and induce apoptosis in breast cancer through nEGFR/Stat3-dependent c-Myc downregulation. Our study of primaquine and chloroquine provides a rationale for targeting EGFR signaling components in the treatment of breast cancer.


Assuntos
Apoptose/fisiologia , Primaquina/farmacologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fator de Transcrição STAT3/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antimaláricos/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cloroquina/farmacologia , Regulação para Baixo , Reposicionamento de Medicamentos , Endossomos/metabolismo , Receptores ErbB/metabolismo , Humanos , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/patologia
7.
J Biol Chem ; 294(34): 12836-12845, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31292193

RESUMO

Focal adhesion kinase (FAK) is a central regulator of integrin-dependent cell adhesion and migration and has recently been shown to co-localize with endosomal proteins. The early endocytic protein Rab5 controls integrin trafficking, focal adhesion disassembly, and cell migration and has been shown to be activated upon integrin engagement by mechanisms that remain unclear. Because FAK is a critical regulator of integrin-dependent signaling and Rab5 recapitulates FAK-mediated effects, we evaluated the possibility that FAK activates Rab5 and contributes to cell migration. Pulldown assays revealed that Rab5-GTP levels are decreased upon treatment with a pharmacological inhibitor of FAK, PF562,271, in resting A549 cells. These events were associated with decreased peripheral Rab5 puncta and a reduced number of early endosome antigen 1 (EEA1)-positive early endosomes. Accordingly, as indicated by FAK inhibition experiments and in FAK-null fibroblasts, adhesion-induced FAK activity increased Rab5-GTP levels. In fact, expression of WT FAK and FAK/Y180A/M183A (open conformation), but not FAK/Arg454 (kinase-dead), augmented Rab5-GTP levels in FAK-null fibroblasts and A549 cells. Moreover, expression of a GDP-bound Rab5 mutant (Rab5/S34N) or shRNA-mediated knockdown of endogenous Rab5 prevented FAK-induced A549 cell migration, whereas expression of WT or GTP-bound Rab5 (Rab5/Q79L), but not Rab5/S34N, promoted cell migration in FAK-null fibroblasts. Mechanistically, FAK co-immunoprecipitated with the GTPase-activating protein p85α in a phosphorylation (Tyr397)-dependent manner, preventing Rab5-GTP loading, as shown by knockdown and transfection recovery experiments. Taken together, these results reveal that FAK activates Rab5, leading to cell migration.


Assuntos
Movimento Celular , Quinase 1 de Adesão Focal/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Células A549 , Humanos , Células Tumorais Cultivadas
8.
J Cell Sci ; 131(13)2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29980602

RESUMO

The early endosome (EE), also known as the sorting endosome (SE) is a crucial station for the sorting of cargoes, such as receptors and lipids, through the endocytic pathways. The term endosome relates to the receptacle-like nature of this organelle, to which endocytosed cargoes are funneled upon internalization from the plasma membrane. Having been delivered by the fusion of internalized vesicles with the EE or SE, cargo molecules are then sorted to a variety of endocytic pathways, including the endo-lysosomal pathway for degradation, direct or rapid recycling to the plasma membrane, and to a slower recycling pathway that involves a specialized form of endosome known as a recycling endosome (RE), often localized to the perinuclear endocytic recycling compartment (ERC). It is striking that 'the endosome', which plays such essential cellular roles, has managed to avoid a precise description, and its characteristics remain ambiguous and heterogeneous. Moreover, despite the rapid advances in scientific methodologies, including breakthroughs in light microscopy, overall, the endosome remains poorly defined. This Review will attempt to collate key characteristics of the different types of endosomes and provide a platform for discussion of this unique and fascinating collection of organelles. Moreover, under-developed, poorly understood and important open questions will be discussed.


Assuntos
Endocitose , Endossomos/metabolismo , Animais , Transporte Biológico , Endossomos/genética , Humanos , Vesículas Transportadoras/metabolismo
9.
J Virol ; 93(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30760565

RESUMO

The budded virus of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) infects insect cells through mainly clathrin-mediated endocytosis. However, the cell entry pathway of AcMNPV remains unclear. In this study, by using population-based analysis of single-virus tracking and electron microscopy, we investigated the internalization, fusion behavior, and endocytic trafficking of AcMNPV. AcMNPV internalization into host insect cells was facilitated by actin polymerization and dynamin. After incorporation into early endosomes, the AcMNPV envelope fused with the membranes of early endosome, allowing for nucleocapsid release into the cytoplasm. Microtubules were implicated in the bidirectional and long-range transport of virus-containing endosomes. In addition, microtubule depolymerization reduced the motility of virus-bearing early endosomes, impairing the progression of infection beyond enlarged early endosomes. These findings demonstrated that AcMNPV internalization was facilitated by actin polymerization in a dynamin-dependent manner, and nucleocapsid release occurred in early endosomes in a microtubule-dependent manner. This study provides mechanistic and kinetic insights into AcMNPV infection and enhance our understanding of the infection pathway of baculoviruses.IMPORTANCE Baculoviruses are used widely as environmentally benign pesticides, protein expression systems, and potential mammalian gene delivery vectors. Despite the significant application value, little is known about the cell entry and endocytic trafficking pathways of baculoviruses. In this study, we demonstrated that the alphabaculovirus AcMNPV exhibited actin- and microtubule-dependent transport for nucleocapsid release predominantly from within early endosomes. In contrast to AcMNPV transduction in mammalian cells, its infection in host insect cells is facilitated by actin polymerization for internalization and microtubules for endocytic trafficking within early endosomes, implying that AcMNPV exhibits cell type specificity in the requirement of the cytoskeleton network. In addition, experimental depolymerization of microtubules impaired the progression of infection beyond enlarged early endosomes. This is the first study that dissects the cell entry pathway of baculoviruses in host cells at the single-particle level, which advances our understanding of the early steps of baculovirus entry.


Assuntos
Nucleocapsídeo , Nucleopoliedrovírus , Internalização do Vírus , Actinas/metabolismo , Animais , Transporte Biológico Ativo , Dinaminas/metabolismo , Endocitose , Endossomos/metabolismo , Endossomos/ultraestrutura , Endossomos/virologia , Proteínas de Insetos/metabolismo , Microscopia Eletrônica de Transmissão , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Nucleocapsídeo/metabolismo , Nucleocapsídeo/ultraestrutura , Nucleopoliedrovírus/fisiologia , Nucleopoliedrovírus/ultraestrutura , Células Sf9 , Spodoptera
10.
J Virol ; 93(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31092570

RESUMO

Baculoviruses, although they infect insects in nature, can transduce a wide variety of mammalian cells and are therefore promising gene therapy vectors. However, baculovirus transduction into many mammalian cells is very inefficient, and the limiting stages and factors remain unknown. An important finding is that a short-duration trigger with low pH can significantly enhance virus transduction efficiency, but the mechanism is poorly understood. Herein, we performed a detailed comparative study on entry mechanisms of the prototypical baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) into insect and mammalian cells. The results showed that AcMNPV could be internalized into mammalian cells efficiently, but fusion in early endosomes (EEs) appeared to be the major obstacle. Measurement of endosomal pH suggested that virus fusion might be restricted under relatively high-pH conditions in mammalian cells. Interestingly, mutations of the major viral fusion protein GP64 that conferred decreased fusogenicity did not affect virus infection of insect cells, whereas virus transduction into mammalian cells was severely impaired, suggesting a more stringent dependence on GP64 fusogenicity for AcMNPV entry into mammalian cells than into insect cells. An increase in the fusogenicity of GP64 mutants resulting from low pH triggered the rescue of fusion-deficient recombinant virus transduction efficiency. Based on the above-described findings, the pH of EEs was specifically reduced with a Na+/K+-ATPase inhibitor, and the AcMNPV transduction of many mammalian cells indeed became highly efficient. This study not only revealed the roadblocks to mammalian cell entry of baculovirus but also provides a new strategy for improving baculovirus-based gene delivery and therapy.IMPORTANCE Baculoviruses can transduce a wide variety of mammalian cells but do so with low efficiency, which greatly limits their practical application as potential gene delivery vectors. So far, the understanding of baculovirus entry into mammalian cells is obscure, and the limiting stages and factors are unclear. In this study, by comparatively analyzing the mechanisms of baculovirus entry into mammalian and insect cells, virus fusion during the early stage of endocytosis was revealed as the major obstacle for efficient baculovirus transduction into mammalian cells. A higher fusogenicity of the major viral fusion protein GP64 was found to be required for virus entry into mammalian cells than for entry into insect cells. Interestingly, by decreasing the pH of early endosomes with a specific agent, virus transduction of a wide range of mammalian cells was greatly enhanced. This study uncovers the roadblocks to mammalian cell entry of baculoviruses and presents mechanisms to overcome the roadblocks.


Assuntos
Endossomos/virologia , Nucleopoliedrovírus/crescimento & desenvolvimento , Nucleopoliedrovírus/genética , Transdução Genética , Internalização do Vírus , Animais , Linhagem Celular , Endossomos/química , Humanos , Concentração de Íons de Hidrogênio , Insetos , Mamíferos , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo
11.
Brain ; 142(8): 2238-2252, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31203368

RESUMO

Hereditary spastic paraplegias refer to a heterogeneous group of neurodegenerative disorders resulting from degeneration of the corticospinal tract. Clinical characterization of patients with hereditary spastic paraplegias represents progressive spasticity, exaggerated reflexes and muscular weakness. Here, to expand on the increasingly broad pools of previously unknown hereditary spastic paraplegia causative genes and subtypes, we performed whole exome sequencing for six affected and two unaffected individuals from two unrelated Chinese families with an autosomal dominant hereditary spastic paraplegia and lacking mutations in known hereditary spastic paraplegia implicated genes. The exome sequencing revealed two stop-gain mutations, c.247_248insGTGAATTC (p.I83Sfs*11) and c.526G>T (p.E176*), in the ubiquitin-associated protein 1 (UBAP1) gene, which co-segregated with the spastic paraplegia. We also identified two UBAP1 frameshift mutations, c.324_325delCA (p.H108Qfs*10) and c.425_426delAG (p.K143Sfs*15), in two unrelated families from an additional 38 Chinese pedigrees with autosomal dominant hereditary spastic paraplegias and lacking mutations in known causative genes. The primary disease presentation was a pure lower limb predominant spastic paraplegia. In vivo downregulation of Ubap1 in zebrafish causes abnormal organismal morphology, inhibited motor neuron outgrowth, decreased mobility, and shorter lifespan. UBAP1 is incorporated into endosomal sorting complexes required for transport complex I and binds ubiquitin to function in endosome sorting. Patient-derived truncated form(s) of UBAP1 cause aberrant endosome clustering, pronounced endosome enlargement, and cytoplasmic accumulation of ubiquitinated proteins in HeLa cells and wild-type mouse cortical neuron cultures. Biochemical and immunocytochemical experiments in cultured cortical neurons derived from transgenic Ubap1flox mice confirmed that disruption of UBAP1 leads to dysregulation of both early endosome processing and ubiquitinated protein sorting. Strikingly, deletion of Ubap1 promotes neurodegeneration, potentially mediated by apoptosis. Our study provides genetic and biochemical evidence that mutations in UBAP1 can cause pure autosomal dominant spastic paraplegia.


Assuntos
Proteínas de Transporte/genética , Paraplegia Espástica Hereditária/genética , Adolescente , Adulto , Animais , Povo Asiático/genética , Criança , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Mutação , Linhagem , Peixe-Zebra
12.
Proc Natl Acad Sci U S A ; 114(52): 13798-13803, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29229837

RESUMO

Phosphatidylethanolamine (PE) is a major phospholipid species with important roles in membrane trafficking and reorganization. Accumulating clinical data indicate that the presence of circulating antibodies against PE is positively correlated with the symptoms of antiphospholipid syndromes (APS), including thrombosis and repeated pregnancy loss. However, PE is generally sequestered inside a normal resting cell, and the mechanism by which circulating anti-PE antibodies access cellular PE remains unknown. The studies presented here were conducted with synthetic PE-binding agents, plasma samples from patients with anti-PE autoimmunity, and purified anti-PE antibodies. The results suggest that the cellular vulnerability to anti-PE antibodies may be mediated by the binding of PE molecules in the membrane of the early endosome. Endosomal PE binding led to functional changes in endothelial cells, including declines in proliferation and increases in the production of reactive oxygen species, as well as the expression of inflammatory molecules. Collectively, our findings provide insight into the etiology of anti-PE autoimmunity and, because endosomes are of central importance in almost all types of cells, could have important implications for a wide range of biological processes.


Assuntos
Anticorpos Antifosfolipídeos/imunologia , Síndrome Antifosfolipídica/imunologia , Endossomos/imunologia , Células Endoteliais da Veia Umbilical Humana/imunologia , Imunoglobulina M/imunologia , Fosfatidiletanolaminas/imunologia , Síndrome Antifosfolipídica/patologia , Endossomos/patologia , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos
13.
J Integr Plant Biol ; 62(10): 1484-1499, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32198818

RESUMO

Most eukaryotic cells are polarized. Common toolbox regulating cell polarization includes Rho guanosine triphosphatases (GTPases), in which spatiotemporal activation is regulated by a plethora of regulators. Rho of plants (ROPs) are the only Rho GTPases in plants. Although vesicular trafficking was hinted in the regulation of ROPs, it was unclear where vesicle-carried ROP starts, whether it is dynamically regulated, and which components participate in vesicle-mediated ROP targeting. In addition, although vesicle trafficking and guanine nucleotide inhibitor (GDI) pathways in Rho signaling have been extensively studied in yeast, it is unknown whether the two pathways interplay. Unclear are also cellular and developmental consequences of their interaction in multicellular organisms. Here, we show that the dynamic targeting of ROP through vesicles requires coat protein complex II and ADP-ribosylation factor 1-mediated post-Golgi trafficking. Trafficking of vesicle-carried ROPs between the plasma membrane and the trans-Golgi network is mediated through adaptor protein 1 and sterol-mediated endocytosis. Finally, we show that GDI and vesicle trafficking synergistically regulate cell polarization and ROP targeting, suggesting that the establishment and maintenance of cell polarity is regulated by an evolutionarily conserved mechanism.


Assuntos
Proteínas rho de Ligação ao GTP/metabolismo , Endossomos/metabolismo , Proteínas rho de Ligação ao GTP/genética , Rede trans-Golgi/metabolismo
14.
Hum Mutat ; 40(3): 267-280, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30520571

RESUMO

Next-generation sequencing (NGS) has been instrumental in solving the genetic basis of rare inherited diseases, especially neurodevelopmental syndromes. However, functional workup is essential for precise phenotype definition and to understand the underlying disease mechanisms. Using whole exome (WES) and whole genome sequencing (WGS) in four independent families with hypotonia, neurodevelopmental delay, facial dysmorphism, loss of white matter, and thinning of the corpus callosum, we identified four previously unreported homozygous truncating PPP1R21 alleles: c.347delT p.(Ile116Lysfs*25), c.2170_2171insGGTA p.(Ile724Argfs*8), c.1607dupT p.(Leu536Phefs*7), c.2063delA p.(Lys688Serfs*26) and found that PPP1R21 was absent in fibroblasts of an affected individual, supporting the allele's loss of function effect. PPP1R21 function had not been studied except that a large scale affinity proteomics approach suggested an interaction with PIBF1 defective in Joubert syndrome. Our co-immunoprecipitation studies did not confirm this but in contrast defined the localization of PPP1R21 to the early endosome. Consistent with the subcellular expression pattern and the clinical phenotype exhibiting features of storage diseases, we found patient fibroblasts exhibited a delay in clearance of transferrin-488 while uptake was normal. In summary, we delineate a novel neurodevelopmental syndrome caused by biallelic PPP1R21 loss of function variants, and suggest a role of PPP1R21 within the endosomal sorting process or endosome maturation pathway.


Assuntos
Alelos , Endocitose , Mutação com Perda de Função/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Fosfoproteínas Fosfatases/genética , Adulto , Criança , Pré-Escolar , Endossomos/metabolismo , Endossomos/ultraestrutura , Feminino , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Homozigoto , Humanos , Lactente , Recém-Nascido , Masculino , Bainha de Mielina/metabolismo , Bainha de Mielina/ultraestrutura , Linhagem , Fosfoproteínas Fosfatases/química , Síndrome , Transferrina/metabolismo
15.
Int J Mol Sci ; 20(19)2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31581681

RESUMO

Dengue virus (DENV) infection triggers the activation of autophagy to facilitate the viral replication cycle from various aspects. Although a number of stimulators are proposed to activate autophagy, none of them appears prior to the uncoating process. Given that T-cell immunoglobulin and mucin domain 1 (TIM-1) receptor is a putative DENV receptor and promotes apoptotic body clearance by autophagy induction, it raises the possibility that TIM-1 may participate in the activation of DENV-induced autophagy. In this study, confocal images first revealed the co-localization of TIM-1 with autophagosomes in DENV-induced autophagy rather than rapamycin-induced autophagy, suggesting the co-transportation of TIM-1 with DENV during infection. The treatment of siRNA to knockdown TIM-1 expression in DENV-infected GFP-microtubule-associated protein light chain 3 (LC3)-Huh7.5 cells revealed that TIM-1 is required not only for DENV cellular internalization but also for autophagy activation. Furthermore, knockdown p85, a subunit of phosphoinositide 3-kinases (PI3Ks), which is co-localized with TIM-1 at rab5-positive endosomes caused the reduction of autophagy, indicating that TIM-1-mediated DENV-induced autophagy requires p85. Taken together, the current study uncovered TIM-1 as a novel factor for triggering autophagy in DENV infection through TIM-1-p85 axis, in addition to serving as a DENV receptor.


Assuntos
Autofagia , Vírus da Dengue , Dengue/metabolismo , Dengue/virologia , Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Transdução de Sinais , Autofagossomos/metabolismo , Biomarcadores , Linhagem Celular , Técnicas de Silenciamento de Genes , Humanos , Modelos Biológicos , Replicação Viral
16.
Neurobiol Dis ; 120: 165-173, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30176349

RESUMO

Cystatin C (CysC) plays diverse protective roles under conditions of neuronal challenge. We investigated whether CysC protects from trisomy-induced pathologies in a mouse model of Down syndrome (DS), the most common cause of developmental cognitive and behavioral impairments in humans. We have previously shown that the segmental trisomy mouse model, Ts[Rb(12.1716)]2Cje (Ts2) has DS-like neuronal and behavioral deficiencies. The current study reveals that transgene-mediated low levels of human CysC overexpression has a preventive effect on numerous neuropathologies in the brains of Ts2 mice, including reducing early and late endosome enlargement in cortical neurons and decreasing loss of basal forebrain cholinergic neurons (BFCNs). Consistent with these cellular benefits, behavioral dysfunctions were also prevented, including deficits in nesting behavior and spatial memory. We determined that the CysC-induced neuroprotective mechanism involves activation of the phosphotidylinositol kinase (PI3K)/AKT pathway. Activating this pathway leads to enhanced clearance of accumulated endosomal substrates, protecting cells from DS-mediated dysfunctions in the endosomal system and, for BFCNs, from neurodegeneration. Our findings suggest that modulation of the PI3/AKT pathway offers novel therapeutic interventions for patients with DS.


Assuntos
Cistatina C/biossíntese , Modelos Animais de Doenças , Síndrome de Down/metabolismo , Endossomos/metabolismo , Transdução de Sinais/fisiologia , Animais , Cistatina C/genética , Síndrome de Down/genética , Endossomos/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo
17.
Adv Exp Med Biol ; 1074: 335-343, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29721961

RESUMO

Early endosomes are organelles that receive macromolecules and solutes from the extracellular environment. The major function of early endosomes is to sort these cargos into recycling and degradative compartments of the cell. Degradation of the cargo involves maturation of early endosomes into late endosomes, which, after acquisition of hydrolytic enzymes, form lysosomes. Endosome maturation involves recruitment of specific proteins and lipids to the early endosomal membrane, which drives changes in endosome morphology. Defects in early endosome maturation are generally accompanied by alterations in morphology, such as increase in volume and/or number. Enlarged early endosomes have been observed in Alzheimer's disease and Niemann Pick Disease type C, which also exhibit defects in endocytic sorting. This article discusses the mechanisms that regulate early endosome morphology and highlights the potential importance of endosome maturation in the retinal pigment epithelium.


Assuntos
Endossomos/ultraestrutura , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Modelos Animais de Doenças , Síndrome de Down/metabolismo , Síndrome de Down/patologia , Endocitose/fisiologia , Endossomos/fisiologia , Humanos , Degeneração Macular/congênito , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Fusão de Membrana , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Modelos Biológicos , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Niemann-Pick Tipo C/patologia , Biogênese de Organelas , Transporte Proteico/fisiologia , Doença de Stargardt , Proteínas rab de Ligação ao GTP/metabolismo
18.
J Neurosci ; 35(12): 5067-86, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-25810535

RESUMO

An organelle's subcellular localization is closely related to its function. Early endosomes require localization to somatodendritic regions in neurons to enable neuronal morphogenesis, polarized sorting, and signal transduction. However, it is not known how the somatodendritic localization of early endosomes is achieved. Here, we show that the kinesin superfamily protein 16B (KIF16B) is essential for the correct localization of early endosomes in mouse hippocampal neurons. Loss of KIF16B induced the aggregation of early endosomes and perturbed the trafficking and functioning of receptors, including the AMPA and NGF receptors. This defect was rescued by KIF16B, emphasizing the critical functional role of the protein in early endosome and receptor transport. Interestingly, in neurons expressing a KIF16B deletion mutant lacking the second and third coiled-coils of the stalk domain, the early endosomes were mistransported to the axons. Additionally, the binding of the motor domain of KIF16B to microtubules was inhibited by the second and third coiled-coils (inhibitory domain) in an ATP-dependent manner. This suggests that the intramolecular binding we find between the inhibitory domain and motor domain of KIF16B may serve as a switch to control the binding of the motor to microtubules, thereby regulating KIF16B activity. We propose that this novel autoregulatory "stalk inhibition" mechanism underlies the ability of KIF16B to potentiate the selective somatodendritic localization of early endosomes.


Assuntos
Dendritos/metabolismo , Endossomos/metabolismo , Cinesinas/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Animais , Células Cultivadas , Técnicas de Silenciamento de Genes , Hipocampo/metabolismo , Humanos , Cinesinas/genética , Camundongos , Microtúbulos/metabolismo , Ligação Proteica/genética , Ligação Proteica/fisiologia , Domínios e Motivos de Interação entre Proteínas/genética , Domínios e Motivos de Interação entre Proteínas/fisiologia , Transporte Proteico/genética , Transporte Proteico/fisiologia , Receptor de Fator de Crescimento Neural/metabolismo , Receptores de AMPA/metabolismo , Deleção de Sequência
19.
Biosci Biotechnol Biochem ; 80(5): 902-10, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27104762

RESUMO

Homotypic fusion of early endosomes is important for efficient protein trafficking and sorting. The key controller of this process is Rab5 which regulates several effectors and PtdInsPs levels, but whose mechanisms are largely unknown. Here, we report that vicenistatin, a natural product, enhanced homotypic fusion of early endosomes and induced the formation of large vacuole-like structures in mammalian cells. Unlike YM201636, another early endosome vacuolating compound, vicenistatin did not inhibit PIKfyve activity in vitro but activated Rab5-PAS pathway in cells. Furthermore, vicenistatin increased the membrane surface fluidity of cholesterol-containing liposomes in vitro, and cholesterol deprivation from the plasma membrane stimulated vicenistatin-induced vacuolation in cells. These results suggest that vicenistatin is a novel compound that induces the formation of vacuole-like structures by activating Rab5-PAS pathway and increasing membrane fluidity.


Assuntos
Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Endossomos/efeitos dos fármacos , Lactamas/farmacologia , Macrolídeos/farmacologia , Fusão de Membrana/efeitos dos fármacos , Vacúolos/efeitos dos fármacos , Aminopiridinas/farmacologia , Animais , Linhagem Celular , Colesterol/metabolismo , Endocitose/fisiologia , Endossomos/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Flavoproteínas/genética , Flavoproteínas/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Lipossomos/química , Lipossomos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Transporte Proteico , Ratos , Transdução de Sinais , Vesículas Transportadoras/efeitos dos fármacos , Vesículas Transportadoras/metabolismo , Vacúolos/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo
20.
Biochim Biophys Acta ; 1833(12): 2561-2572, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23830917

RESUMO

Recent evidences show that the localization of different plasma membrane Ca(2+) ATPases (PMCAs) is regulated in various complex, cell type-specific ways. Here we show that in low-density epithelial and endothelial cells PMCA4b localized mostly in intracellular compartments and its plasma membrane localization was enhanced upon increasing density of cells. In good correlation with the enhanced plasma membrane localization a significantly more efficient Ca(2+) clearance was observed in confluent versus non-confluent HeLa cell cultures expressing mCherry-PMCA4b. We analyzed the subcellular localization and function of various C-terminally truncated PMCA4b variants and found that a truncated mutant PMCA4b-ct24 was mostly intracellular while another mutant, PMCA4b-ct48, localized more to the plasma membrane, indicating that a protein sequence corresponding to amino acid residues 1158-1181 contained a signal responsible for the intracellular retention of PMCA4b in non-confluent cultures. Alteration of three leucines to alanines at positions 1167-1169 resulted in enhanced cell surface expression and an appropriate Ca(2+) transport activity of both wild type and truncated pumps, suggesting that the di-leucine-like motif (1167)LLL was crucial in targeting PMCA4b. Furthermore, upon loss of cell-cell contact by extracellular Ca(2+) removal, the wild-type pump was translocated to the early endosomal compartment. Targeting PMCA4b to early endosomes was diminished by the L(1167-69)A mutation, and the mutant pump accumulated in long tubular cytosolic structures. In summary, we report a di-leucine-like internalization signal at the C-tail of PMCA4b and suggest an internalization-mediated loss of function of the pump upon low degree of cell-cell contact.


Assuntos
Membrana Celular/enzimologia , Leucina/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/química , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Asparagina/metabolismo , Cálcio/metabolismo , Compartimento Celular , Contagem de Células , Cães , Dinaminas/metabolismo , Endocitose , Endossomos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Lisina/metabolismo , Células Madin Darby de Rim Canino , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação/genética , Sinais Direcionadores de Proteínas , Transporte Proteico , Alinhamento de Sequência , Relação Estrutura-Atividade , Frações Subcelulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA