Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.514
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 849, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256665

RESUMO

BACKGROUND: The commercial utilization of genetically modified soybeans has yielded substantial economic advantages. Nevertheless, the genetic drift towards wild soybeans is one of the main ecological risks that needs to be addressed. Previous experiments demonstrated the absence of fitness cost or florescence overlap in hybrid offspring resulting from the crossbreeding of transgenic soybean GTS40-3-2 and Zhengzhou wild soybeans. In this study, hybrid progeny was systematically crossed with wild soybeans to establish a backcross progeny system. This system was employed to evaluate the ecological risk associated with the backcross progeny of transgenic and wild soybeans. RESULTS: The findings indicated that the offspring from the backcross exhibited glyphosate tolerance. Furthermore, the expression of foreign proteins in the backcross offspring was notably lower than in the transgenic soybean, and there was no significant difference when compared to the hybrid progeny. Parameters such as germination rate, aboveground biomass, pods per plant, full seeds per plant, and 100-grain weight exhibited no significant differences between the negative and positive lines of the backcross progenies, and no fitness cost was identified in comparison to wild soybeans. These results underscore the potential for foreign genes to propagate within other wild soybeans, which requires continuous attention. CONCLUSIONS: The widespread adoption of genetically modified soybeans has undeniably led to substantial economic gains. However, the research findings emphasize the critical importance of addressing the ecological risks posed by genetic drift towards wild soybeans. The backcross progeny system established in this study indicates that the potential for foreign gene dissemination to wild soybean populations warrants continued attention and mitigation strategies.


Assuntos
3-Fosfoshikimato 1-Carboxiviniltransferase , Glycine max , Glicina , Glifosato , Resistência a Herbicidas , 3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Aptidão Genética , Glicina/análogos & derivados , Glicina/farmacologia , Glycine max/genética , Glycine max/efeitos dos fármacos , Glycine max/crescimento & desenvolvimento , Glifosato/toxicidade , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Herbicidas/toxicidade , Plantas Geneticamente Modificadas/genética
2.
Glob Chang Biol ; 30(7): e17373, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38967106

RESUMO

Climate change is an environmental emergency threatening species and ecosystems globally. Oceans have absorbed about 90% of anthropogenic heat and 20%-30% of the carbon emissions, resulting in ocean warming, acidification, deoxygenation, changes in ocean stratification and nutrient availability, and more severe extreme events. Given predictions of further changes, there is a critical need to understand how marine species will be affected. Here, we used an integrated risk assessment framework to evaluate the vulnerability of 132 chondrichthyans in the Eastern Tropical Pacific (ETP) to the impacts of climate change. Taking a precautionary view, we found that almost a quarter (23%) of the ETP chondrichthyan species evaluated were highly vulnerable to climate change, and much of the rest (76%) were moderately vulnerable. Most of the highly vulnerable species are batoids (77%), and a large proportion (90%) are coastal or pelagic species that use coastal habitats as nurseries. Six species of batoids were highly vulnerable in all three components of the assessment (exposure, sensitivity and adaptive capacity). This assessment indicates that coastal species, particularly those relying on inshore nursery areas are the most vulnerable to climate change. Ocean warming, in combination with acidification and potential deoxygenation, will likely have widespread effects on ETP chondrichthyan species, but coastal species may also contend with changes in freshwater inputs, salinity, and sea level rise. This climate-related vulnerability is compounded by other anthropogenic factors, such as overfishing and habitat degradation already occurring in the region. Mitigating the impacts of climate change on ETP chondrichthyans involves a range of approaches that include addressing habitat degradation, sustainability of exploitation, and species-specific actions may be required for species at higher risk. The assessment also highlighted the need to further understand climate change's impacts on key ETP habitats and processes and identified knowledge gaps on ETP chondrichthyan species.


El cambio climático es una emergencia medioambiental que amenaza a especies y ecosistemas en todo el mundo. Los océanos han absorbido alrededor del 90% del calor antropogénico y entre el 20% y el 30% de las emisiones de carbono, lo que ha provocado su calentamiento, acidificación, desoxigenación, cambios en la estratificación de los océanos y en la disponibilidad de nutrientes, así como fenómenos extremos más pronunciados. Dadas las predicciones de cambios, hay una importante necesidad de entender cómo las especies marinas se verán afectadas. En este estudio utilizamos una Evaluación Integrada de Riesgos para evaluar la vulnerabilidad de 132 condrictios del Pacífico Tropical Oriental (PTO) a los impactos del cambio climático. Adoptando un enfoque preventivo, estimamos que la vulnerabilidad general al cambio climático es Alta para casi una cuarta parte (23%) de las especies de condrictios del PTO evaluadas y Moderada para gran parte del resto (76%). La mayoría de las especies altamente vulnerables son batoideos (77%), y una gran proporción de éstas (90%) son especies costeras o especies pelágicas que utilizan los hábitats costeros como áreas de crianza. Seis especies de batoideos tuvieron una vulnerabilidad Alta en los tres componentes de la evaluación. Esta evaluación indica que las especies costeras, en particular las que dependen de áreas de crianza costeras, son las más vulnerables al cambio climático. Es probable que el calentamiento de los océanos, junto con la acidificación y la posible desoxigenación, tenga efectos generalizados sobre las especies de condrictios del PTO, pero las especies costeras se verán también afectadas por los cambios en los aportes de agua dulce, la salinidad y el aumento del nivel del mar. Esta vulnerabilidad relacionada con el clima se ve agravada por otros factores antropogénicos que ya se están produciendo en la región, como la sobrepesca y la degradación del hábitat. La mitigación de los impactos del cambio climático sobre los condrictios del PTO implica medidas que incluyan abordar la degradación del hábitat y la sostenibilidad de la explotación pesquera, y acciones para las especies de mayor riesgo son necesarias. Esta evaluación también destaca la necesidad de comprender mejor los impactos del cambio climático en los hábitats y procesos clave del PTO y las lagunas de conocimiento identificadas en relación con las especies de condrictios del PTO.


Assuntos
Mudança Climática , Animais , Oceano Pacífico , Medição de Risco , Ecossistema , Peixes/fisiologia
3.
Environ Sci Technol ; 58(9): 4070-4082, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38390827

RESUMO

Antibiotics are being increasingly detected in aquatic environments, and their potential ecological risk is of great concern. However, most antibiotic toxicity studies involve single-exposure experiments. Herein, we studied the effects and mechanisms of repeated versus single clarithromycin (CLA) exposure on Microcystis aeruginosa. The 96 h effective concentration of CLA was 13.37 µg/L upon single exposure but it reduced to 6.90 µg/L upon repeated exposure. Single-exposure CLA inhibited algal photosynthesis by disrupting energy absorption, dissipation and trapping, reaction center activation, and electron transport, thereby inducing oxidative stress and ultrastructural damage. In addition, CLA upregulated glycolysis, pyruvate metabolism, and the tricarboxylic acid cycle. Repeated exposure caused stronger inhibition of algal growth via altering photosynthetic pigments, reaction center subunits biosynthesis, and electron transport, thereby inducing more substantial oxidative damage. Furthermore, repeated exposure reduced carbohydrate utilization by blocking the pentose phosphate pathway, consequently altering the characteristics of extracellular polymeric substances and eventually impairing the defense mechanisms of M. aeruginosa. Risk quotients calculated from repeated exposure were higher than 1, indicating significant ecological risks. This study elucidated the strong influence of repeated antibiotic exposure on algae, providing new insight into antibiotic risk assessment.


Assuntos
Microcystis , Microcystis/metabolismo , Claritromicina/metabolismo , Claritromicina/farmacologia , Fotossíntese , Antibacterianos/toxicidade , Estresse Oxidativo , Metabolismo Energético
4.
Environ Sci Technol ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38323904

RESUMO

Neonicotinoid insecticides (neonics) are extensively employed in agriculture and pervade various environmental matrices. However, few studies have documented the occurrence and potential chronic ecological risks of these chemicals in the marine environment. We collected 720 seawater samples from Xiangshan Bay during 2015-2019 and the integrated concentrations of seven neonics were determined using the relative potency factor method. Trend analyses using the Mann-Kendall test in time series, along with the estimation of the flux of neonics into the sea, were conducted. At last, the ecological risk of neonics was evaluated by water quality criteria derivation based on species sensitivity distribution. Our findings revealed that 47.6% of samples contained at least one neonic, with the integrated concentration of neonics ranging from 63.30 to 1684.14 ng/L. Imidacloprid and dinotefuran exhibited the highest frequency of detection in the analysis. The significance level of the Mann-Kendall test ranged from 2.16 × 10-10 to 1.21 × 10-5 (S > 0), indicating all neonics behaved with sharply increasing trends. Approximately 8.47 × 10-2 tons of neonics were discharged into Xiangshan Bay. Notably, the integrated concentrations of neonics represented a potential chronic ecological risk to marine organisms. This study provided novel insights into the spatial distribution, source, and migration of neonic species and their impacts on marine ecosystems.

5.
Environ Sci Technol ; 58(40): 17970-17978, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39324330

RESUMO

Textile printing and dyeing wastewater is a substantial source of highly toxic halogenated pollutants because of the chlorination decolorization. However, information on the occurrence and fate of the highly toxic halogenated byproducts, which are produced by chlorination decolorization of the textile printing and dyeing wastewater, is very limited. In this study, the occurrence of six categories of halogenated byproducts (haloacetic acids (HAAs), haloacetonitriles (HANs), N-nitrosamines (NAs), trihalomethanes, halogenated ketones, and halonitromethanes) was investigated along the full-scale treatment processes of textile printing and dyeing wastewater treatment plants. Furthermore, the ecological risk of the halogenated byproducts was evaluated. The results showed that the total concentration of halogenated byproducts increased significantly after chlorination. Large amounts of HAAs (average 122.1 µg/L), HANs (average 80.9 µg/L), THMs (average 48.3 µg/L), and NAs (average 2314.3 ng/L) were found in the chlorinated textile wastewater, and the results showed that the generations of HANs and NAs were positively correlated with the BIX and ß/α index, indicating that the HANs and NAs might form from the microbial metabolites. In addition, HAAs and HANs exhibited high ecological risk quotients (>1), suggesting their high potential ecological risk. The results also demonstrated that most halogenated byproducts could be effectively removed by reverse osmosis treatment processes except NAs, with a lower removal rate of 18%. This study is believed to provide an important theoretical basis for controlling and reducing the ecological risks of halogenated byproducts in textile printing and dyeing wastewater effluents.


Assuntos
Halogenação , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Poluentes Químicos da Água/química , Medição de Risco , Indústria Têxtil , Impressão , Corantes/química , Têxteis
6.
Environ Sci Technol ; 58(31): 13613-13623, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39051121

RESUMO

China is a significant producer and consumer of various brominated flame retardants (BFRs), raising environmental concerns due to their widespread presence and potential threats to ecosystems and organisms. This study adopts a life cycle perspective, combining material flow analysis, multimedia environmental modeling, and ecological risk assessment to systematically analyze the substance metabolism and ecological risks of six BFR types in China from 1970 to 2021. The findings reveal that China's cumulative BFR consumption reached 3.3 Mt, with the electronics sector being the predominant contributor at 52.1%. Consequently, 1.5 kt of BFRs were released into the environment, with 24.9%, 31.5%, and 43.6% being discharged into the air, water, and soil, respectively. Notably, the proportion of novel BFRs in emissions has steadily increased over the years, exemplified by the increase in decabromodiphenyl ethane (DBDPE) from 21.3% in 2010 to 30.1% in 2021. Geographically, BFR concentrations are higher in the eastern and southwestern regions compared to those in the northwest. Presently, certain BFRs like tetrabromobisphenol A (TBBPA) and DBDPE exhibit moderate to high ecological risks, primarily concentrated in the Shandong and Sichuan provinces. A combination of efficient recycling, emission control, and substitution with novel flame-retardant can minimize the exposure of BFRs to the environment and organisms.


Assuntos
Retardadores de Chama , Retardadores de Chama/análise , China , Medição de Risco , Monitoramento Ambiental
7.
Environ Res ; 245: 118053, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38160976

RESUMO

The middle reaches of the Yellow River are rich in energy resources, with the Kuye River, a first-class river in this region, serving as a vital hub for the coal chemical industry within China. This study investigated the occurrence patterns, environmental trends, and ecological risks associated with polycyclic aromatic hydrocarbons (PAHs) in the Kuye River Basin, offering insights into the environmental dynamics of regions. The findings indicated that the river sediments primarily contained PAHs with medium to high-molecular weights, exhibiting levels ranging from 402.92 ng/g dw to 16,783.72 ng/g dw, while water bodies predominantly featured PAHs with low to medium molecular weights, ranging from 299.34 ng/L to 10,930.9 ng/L. The source analysis of PAHs indicated that industrial and traffic exhaust emissions were the primary contributors to PAHs in the Kuye basin, with sediments serving as a secondary release source based on fugacity fraction. The content of PAHs in sediment correlated closely with the environmental factors, and the PAHs inventory of the basin was 19.97 tons. The increased overall PAH concentration in the basin posed significant ecological and public health concerns, necessitating urgent attention.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise , Sedimentos Geológicos/análise , Poluentes Químicos da Água/análise , Rios/química , China , Medição de Risco , Água
8.
Environ Res ; 252(Pt 1): 118863, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38580004

RESUMO

In this study, a systematic monitoring campaign of 30 antibiotics belonging to tetracyclines (TCs), macrolides (MLs), fluoroquinolones (FQs) and sulfonamides (SAs) was performed in the Xi'an section of the Wei River during three sampling events (December 2021, June 2022, and September 2022). The total concentrations of antibiotics in water ranged from 297 to 461 ng/L with high detection frequencies ranging from 45% to 100% for the various antibiotics. A marked seasonal variation in concentrations was found with total antibiotic concentrations in winter being 1.5 and 2 times higher than those in the summer and autumn seasons, respectively. The main contaminants in both winter and summer seasons were FQs, but in the autumn SAs were more abundant, suggesting different seasonal sources or more effective runoff for certain antibiotics during periods of rainfall. Combined analysis using redundancy and clustering analysis indicated that the distribution of antibiotics in the Wei River was affected by the confluence with dilution of tributaries and outlet of domestic sewage. Ecological risk assessment based on risk quotient (RQ) showed that most antibiotics in water samples posed insignificant risk to fish and green algae, as well as insignificant to low risk to Daphnia. The water-sediment distribution coefficients of SAs were higher than those of other antibiotics, indicating that particle-bound runoff could be a significant source for this class of antibiotics.


Assuntos
Antibacterianos , Monitoramento Ambiental , Rios , Estações do Ano , Poluentes Químicos da Água , Rios/química , Poluentes Químicos da Água/análise , China , Antibacterianos/análise , Medição de Risco
9.
Environ Res ; 245: 117901, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38092235

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are significant petroleum pollutants that have long-term impacts on human health and ecosystems. However, assessing their toxicity presents challenges due to factors such as cost, time, and the need for comprehensive multi-component analysis methods. In this study, we utilized network toxicity models, enrichment analysis, and molecular docking to analyze the toxicity mechanisms of PAHs at different levels: compounds, target genes, pathways, and species. Additionally, we used the maximum acceptable concentration (MAC) value and risk quotient (RQ) as an indicator for the potential ecological risk assessment of PAHs. The results showed that higher molecular weight PAHs had increased lipophilicity and higher toxicity. Benzo[a]pyrene and Fluoranthene were identified as core compounds, which increased the risk of cancer by affecting core target genes such as CCND1 in the human body, thereby influencing signal transduction and the immune system. In terms of biological species, PAHs had a greater toxic impact on aquatic organisms compared to terrestrial organisms. High molecular weight PAHs had lower effective concentrations on biological species, and the ecological risk was higher in the Yellow River Delta region. This research highlights the potential application of network toxicity models in understanding the toxicity mechanisms and species toxicity of PAHs and provides valuable insights for monitoring, prevention, and ecological risk assessment of these pollutants.


Assuntos
Poluentes Ambientais , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Humanos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Ecossistema , Poluentes Ambientais/toxicidade , Poluentes Ambientais/análise , Petróleo/toxicidade , Petróleo/análise , Simulação de Acoplamento Molecular , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Medição de Risco , China , Sedimentos Geológicos/análise
10.
Environ Res ; 245: 118040, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38154566

RESUMO

Humans are having an increasingly profound impact on the environment along with the advent of the Anthropocene. Ecological risk assessment (ERA) as a method to quantify ecological problems can provide support for decision-makers, and it is one of key issues to integrate ecosystem services into ERA. In this study, an ERA framework was proposed under the loss-probability paradigm from the perspective of ecosystem services risk bundles. The results showed that initiatives aimed at ecological protection in Shanxi Province had been effective, the number of watersheds with low-risk bundles increased significantly (from 16.09% to 34.49%) and the watersheds basically overlapped with key forestation areas. However, the effects of forestation activities may no longer be as significant as they once were, as the relationship between forestation and water supply was becoming increasingly contradictory. Meanwhile, the conflict between urban expansion and natural ecosystem protection was intensifying, habitat degradation risks were gradually polarized, and the risk bundles dominated by high carbon emission and habitat degradation were increasing significantly (from 15.88% to 33.54%). Strengthening the construction of urban green space and controlling the expansion of human activities may be the next focus of ecological conservation in Shanxi Province. This study enriched the ERA framework with an ecosystem services risk bundle approach.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Humanos , Abastecimento de Água , China , Medição de Risco
11.
Environ Res ; 246: 118023, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38145733

RESUMO

Pesticides represent one of the largest intentional inputs of potentially hazardous compounds into agricultural soils. However, as an important vegetable producing country, surveys on pesticide residues in soils of vegetable production areas are scarce in China. This study presented the occurrence, spatial distribution, correlation between vegetable types and pesticides, and ecological risk evaluation of 94 current-use pesticides in 184 soil samples from vegetable production areas of Zhejiang province (China). The ecological risks of pesticides to soil biota were evaluated with toxicity exposure ratios (TERs) and risk quotient (RQ). The pesticide concentrations varied largely from below the limit of quantification to 20703.06 µg/kg (chlorpyrifos). The situation of pesticide residues in Jiaxing is more serious than in other cities. Soils in the vegetable areas are highly diverse in pesticide combinations. Eisenia fetida suffered exposure risk from multiple pesticides. The risk posed by chlorpyrifos, which exhibited the highest RQs at all scenarios, was worrisome. Only a few pesticides accounted for the overall risk of a city, while the other pesticides make little or zero contribution. This work will guide the appropriate use of pesticides and manage soil ecological risks, achieving green agricultural production.


Assuntos
Clorpirifos , Resíduos de Praguicidas , Praguicidas , Poluentes do Solo , Praguicidas/toxicidade , Praguicidas/análise , Resíduos de Praguicidas/toxicidade , Resíduos de Praguicidas/análise , Solo/química , Verduras , Monitoramento Ambiental , Medição de Risco , Poluentes do Solo/toxicidade , Poluentes do Solo/análise
12.
Environ Res ; 262(Pt 1): 119842, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39187148

RESUMO

Brominated flame retardants (BFRs) and their substitutes are prevalent in the environment, especially near industrial point sources. In non-point source pollution areas, it is crucial to investigate the seasonal pollution characteristics to identify the pollution sources. In this study, compositional profiles, seasonal variations, and ecological risks of legacy BFRs and novel BFRs (NBFRs) in the water and sediment from the Tuojiang River located in southwest China were investigated. The results indicated that ΣBFRs ranged from not detected (n.d.) to 42.0 ng/L in water and from 0.13 to 17.6 ng/g in sediment, while ΣNBFRs ranged from n.d. to 15.8 ng/L in water, and from 0.25 to 6.82 ng/g in sediment. A significant seasonal variation was observed in water and sediments with high proportions of legacy BFRs (median percentage of 68.8% and 51.3% in water and sediment) in the dry season, while NBFRs (median percentage of 53.2% and 71.6% in water and sediment) exhibited predominance in the wet season. This highlighted the importance of surface runoff and atmospheric deposition as important sources of NBFRs in aquatic environments. Moreover, there were high ratios of decabromodiphenyl ethane (DBDPE) and BDE-209 (average: 1.38 and 2.76 in dry and wet season) in sediments adjacent to the residual areas, indicating a consumption shift from legacy BFRs to NBFRs in China. It was observed that legacy BFRs showed higher ecological risks compared to NBFRs in both water and sediment environments, with BDE-209 posing low to medium risks to sediment organisms. This study provides better understanding of contamination characteristics and sources of legacy BFRs and NBFRs in non-point source pollution areas.

13.
Environ Res ; 262(Pt 2): 119920, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39237016

RESUMO

Environmental occurrence and risks of novel synthetic phenolic antioxidants (SPAs) remain largely unclear. By using a typical algae (Chlorella pyrenoidosa) as model organism, we evaluated the ecological risks of both traditional and novel SPAs, based on their concentrations in water, sediment, and soil collected from the Yangtze River Delta, China. Detection frequencies (DFs) of 10 novel SPAs were 25-100% in water, 3-100% in sediment, and 0-100% in soil, with geometric means (GMs) of 2700 ng/L, 1270 ng/g, and 2440 ng/g, respectively. For 8 traditional SPAs, DFs were 50-100% (GM: 680 ng/L), 3-100% (534 ng/g), and 47-100% (2240 ng/g) in water, sediment, and soil, respectively. AO3114 was the main pollutant in water, while AO1010 dominated in sediment and soil. Notably, low-molecular-weight SPAs showed migration behavior from sediment to water. Four SPAs (AO626, AO1035, AO1098, and AO1076) showed dose- and time-dependent toxicity on Chlorella pyrenoidosa. As time progressed, sediment-released SPAs became more toxic than those in water. Two SPAs (AO1135 and BHT-Q) posed high risks (RQW > 1) to green algae, daphnia, and fish. The SPA mixture exhibited high risks (RQmix > 1) to these organisms, increasing with the trophic level. This research holds valuable guidance for further SPA risk assessments.

14.
Environ Res ; 263(Pt 1): 120036, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39304014

RESUMO

Elucidating exposure risks associated with the most widely used agrochemicals and their metabolites in celery agrosystems are vital for food safety and human health. The occurrence, distribution, dissipation and metabolism of imidacloprid (IMI), acetamiprid (ACE), thiamethoxam (THM) and difenoconazole (DIF) in celery tissues reflected by initial depositions, uptake characteristics, half-lives, concentration variations. DIF exhibited unacceptable ecological risk to soil organisms under multi-risk evaluation models, including toxicity exposure ratio, risk quotient, and BITSSD model. The joint dietary risks of target pesticides were 37.273-647.454% and 0.400-2522.016% based on deterministic and probabilistic models, with non-carcinogenic risks of 30.207-85.522% and 1.229-2524.662%, respectively. Children aged 1-6 years suffered the highest exposure, with the leaves posing higher risk than other tissues. Long-term exposure risks should be continuously assessed for ecological sustainability and human health, given the widespread usage and cumulative effects of target pesticides, especially for rural children.

15.
Environ Res ; 260: 119730, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39117058

RESUMO

Benzotriazoles are a class of ultraviolet absorbents which absorb UV ranging from 280 to 400 nm and are widely used in personal care products and industrial production. Their residues in environmental matrices have received great concern in recent years, but most studies have focused on pollution in water and few have examined BUVs in marine sediments. In this study, we investigated the occurrence, potential sources, and ecological risk of 15 types of BUVs in the sediments of Bohai Sea in China for the first time. The total concentrations of the 15 BUVs ranged from 0.139 to 4.125 ng/g dw with a median concentration of 0.340 ng/g. UV-327 and UV-360 were predominant among the BUV congeners, accounting for 22.6% and 17.7% of the total concentration of Σ15BUVs, respectively. The detection frequencies of the BUV congeners generally exceeded 95%, reflecting the wide use and persistence of these chemicals. The concentrations of the BUV congeners in this study were one order of magnitude lower than those in other areas. Moreover, the distributions of BUVs presented a decreasing gradient from nearshore to offshore, indicating that coastal input was the main influencing factor. Two potential primary sources, plastic manufacturing and domestic wastewater, were identified via principle component analysis. The ecological risks of BUVs to aquatic organisms in the sediments were evaluated using the risk quotient (RQ) method. Generally, the risk to aquatic organisms from exposure to BUVs in Bohai Sea could be considered low at the measured concentrations. While our study provides important new insight into the ecological risks of BUVs in the estuary, further research on the pollution levels and toxicity risks of BUVs in Bohai Sea should be conducted to better understand the ecological effect of these pollutants.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Triazóis , Poluentes Químicos da Água , Sedimentos Geológicos/química , Sedimentos Geológicos/análise , China , Poluentes Químicos da Água/análise , Triazóis/análise , Triazóis/toxicidade , Medição de Risco , Oceanos e Mares
16.
Environ Res ; 252(Pt 1): 118840, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38570130

RESUMO

Although trace metals in strawberry production system have attracted growing attention, little is known about metal fractionation in soil for strawberry cultivation. We hypothesized that the metal fractions in soil influenced by strawberry production had significant effect on food chain transport of metals and their risk in soil. Here, samples of strawberries and soil were gathered in the Yangtze River Delta, China to verify the hypothesis. Results showed that the acid-soluble Cr, Cd, and Ni in soil for strawberry cultivation were 21.5%-88.3% higher than those in open field soil, which enhanced uptake and bioaccessible levels of these metals in strawberries. Overall, the ecological, mobility, and health risks of Pb, Zn, Ni, and Cu in soil were at a low level. However, the ecological risk of bioavailable Cd, mobility risk of Cd, and cancer risk of bioavailable Cr in over 70% of the soil samples were at moderate, high, and acceptable levels, respectively. Since the increased acid-soluble Cr and Ni in soil were related to soil acidification induced by strawberry production, nitrogen fertilizer application should be optimized to prevent soil acidification and reduce transfer of Cr and Ni. Additionally, as Cd and organic matter accumulated in soil, the acid-soluble Cd and the ecological and mobility risks of Cd in soil were enhanced. To decrease transfer and risk of Cd in soil, organic fertilizer application should be optimized to mitigate Cd accumulation, alter organic matter composition, and subsequently promote the transformation of bioavailable Cd into residual Cd in soil.


Assuntos
Fragaria , Poluentes do Solo , Solo , Fragaria/química , Fragaria/crescimento & desenvolvimento , Poluentes do Solo/análise , Medição de Risco , China , Solo/química , Cadeia Alimentar , Monitoramento Ambiental/métodos , Agricultura/métodos , Metais/análise , Metais Pesados/análise
17.
Environ Res ; 252(Pt 2): 118946, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38631470

RESUMO

Heavy metals pollution is a notable threat to environment and human health. This study evaluated the potential ecological and health risks of heavy metals (Cu, Cr, Cd, Pb, Zn, Ni, and As) and their accumulation in a peanut-soil system based on 34 soil and peanut kernel paired samples across China. Soil As and Cd posed the greatest pollution risk with 47.1% and 17.6% of soil samples exceeding the risk screen levels, respectively, with 26.5% and 20.6% of the soil sites at relatively strong potential ecological risk level, respectively, and with the geo-accumulation levels at several soil sites in the uncontaminated to moderately contaminated categories. About 35.29% and 2.94% of soil sites were moderately and severely polluted based on Nemerow comprehensive pollution index, respectively, and a total of 32.4% of samples were at moderate ecological hazard level based on comprehensive potential ecological risk index values. The Cd, Cr, Ni, and Cu contents exceeded the standard in 11.76, 8.82, 11.76 and 5.88% of the peanut kernel samples, respectively. Soil metals posed more health risks to children than adults in the order As > Ni > Cr > Cu > Pb > Zn > Cd for non-carcinogenic health risks and Ni > Cr â‰« Cd > As > Pb for carcinogenic health risks. The soil As non-cancer risk index for children was greater than the permitted limits at 14 sites, and soil Ni and Cr posed the greatest carcinogenic risk to adults and children at many soil sites. The metals in peanut did not pose a non-carcinogenic risk according to standard. Peanut kernels had strong enrichment ability for Cd with an average bio-concentration factor (BCF) of 1.62. Soil metals contents and significant soil properties accounted for 35-74% of the variation in the BCF values of metals based on empirical prediction models.


Assuntos
Arachis , Metais Pesados , Poluentes do Solo , Metais Pesados/análise , Arachis/química , Medição de Risco , Poluentes do Solo/análise , Humanos , China , Monitoramento Ambiental , Solo/química , Criança
18.
Environ Res ; 252(Pt 3): 119080, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38714220

RESUMO

Coastal cities are major centers of economic activity, which at the same time has negative consequences for the environment. The present study aimed to determine the concentrations and sources of PTEs in the urban soils of Taganrog, as well as to assess the ecological and human health risks. A total of 47 urban and 5 background topsoils samples were analyzed by ICP-MS and ICP-AES. A significant excess of Cu, Zn, and Sb was noted in urban soils compared to the upper continental crust and average world-soil (1.7-2.9 times). Statistical analysis showed that the elements in soils were of geogenic, mixed and anthropogenic origin. According to the single pollution index (PI), the greatest danger of soil pollution was represented by anthropogenic elements, namely Cu, W, Pb, Zn, Cd, and Sn, the levels of which were increased in residential and industrial areas. The median contents of As, Mn, Cr, Sr, Mo, Sb, Cu, W, Pb, and Zn were 1.1-2.1 times higher, while Cd and Sn were 2.5 folds higher in the urban soils compared to the background ones. The total pollution index (ZC) showed that only 15% of the soils had high level of pollution, which is typical for the industrial areas. Overall ecological risks were negligible or low in 92% of soils, and were mainly due to elevated levels of Cu, Zn, As, and Pb. Non-carcinogenic risks to humans were mainly related to exposure to La and Pb. The hazard index (HI) values for all PTEs were less than ten, indicating that overall non-carcinogenic risk for adults and children was low-to-moderate and, moderate, respectively. The total carcinogenic risk (TCR) exceeded threshold and corresponded to low risk, with Pb, As, and Co being the most important contributors. Thus, the industrial activities of Taganrog is the main source of priority pollutants.


Assuntos
Cidades , Monitoramento Ambiental , Poluentes do Solo , Medição de Risco , Poluentes do Solo/análise , Humanos , Solo/química , Metais Pesados/análise
19.
Environ Res ; 251(Pt 1): 118614, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38462084

RESUMO

Organophosphate esters (OPEs) have been widely used as flame retardants and plasticizers in consumer and industrial products. They have been found to have numerous exposure hazards. Recently, several OPEs have been detected in surface waters around the world, which may pose potential ecological risks to freshwater organisms. In this study, the concentration, spatial variation, and ecological risk of 15 OPEs in the Beiyun and Yongding rivers were unprecedentedly investigated by the ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and risk quotient (RQ) method. The result showed that triethyl phosphate (TEP), tri (2-chloroisopropyl) phosphate (TCPP) were the most abundant OPEs with average concentrations of 55.53 ng/L and 42.29 ng/L, respectively. The concentrations of OPEs in the Beiyun River are higher than in the Yongding River, and their levels were higher in densely populated and industrial areas. The risk assessment showed that there was insignificant from OPEs to freshwater organisms in these rivers (RQs <0.1). The risk was higher downstream than upstream, which was related to human-intensive industrial activities downstream in the Yongding River. The ecological risk of OPEs in surface waters worldwide was estimated by joint probability curves (JPCs), and the result showed that there was a moderate risk for tri (2-chloroethyl) phosphate (TCEP), a low risk for trimethyl phosphate (TMP), and insignificant for other OPEs. In addition, the QSAR-ICE-SSD model was used to calculate the hazardous concentration for 5% (HC5). This result validated the feasibility and accuracy of this model in predicting acute data of OPEs and reducing biological experiments on the toxicity of OPEs. These results revealed the ecological risk of OPEs and provided the scientific basis for environmental managers.


Assuntos
Monitoramento Ambiental , Organofosfatos , Rios , Poluentes Químicos da Água , Medição de Risco , Poluentes Químicos da Água/análise , Organofosfatos/análise , Rios/química , Ésteres/análise , China , Espectrometria de Massas em Tandem , Retardadores de Chama/análise , Cidades
20.
Environ Res ; 251(Pt 1): 118626, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38467358

RESUMO

The research was carried out to examine the pollution characteristics, ecological risk, and origins of seven heavy metals (Hg, As, Pb, Cu, Cd, Zn, and Ni) in 51 sediment samples gathered from 8 rivers located on the Qinghai-Tibet Plateau (QTP) in China. The contents of Hg and Cd were 5.0 and 1.1 times higher than their background values, respectively. The mean levels of other measured heavy metals were below those found naturally in the local soil. The enrichment factor showed that the study area exhibited significantly enriched Hg with 70.6% sampling sites. The Cd contents at 19.6% of sampling sites were moderately enriched. The other sampling sites were at a less enriched level. The sediments of all the rivers had a medium level of potential ecological risk. Hg was the major ecological risk factor in all sampling sites, followed by Cd. The findings from the positive matrix factorization (PMF) analysis shown agricultural activities, industrial activities, traffic emissions, and parent material were the major sources. The upper, middle, and low reaches of the Quanji river had different Hg isotope compositions, while sediments near the middle reaches were similar to the δ202Hg of the industrial source. At the upstream sampling sites, the Hg isotope content was very close to the background level. The results of this research can establish a strong scientific sound to improve the safety of the natural circumstances of rivers on the QTP.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Metais Pesados , Rios , Poluentes Químicos da Água , Metais Pesados/análise , Sedimentos Geológicos/química , Sedimentos Geológicos/análise , Rios/química , Poluentes Químicos da Água/análise , Tibet , Medição de Risco , China , Isótopos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA