Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Ecol Lett ; 27(1): e14351, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38111128

RESUMO

Dominance of neotropical tree communities by a few species is widely documented, but dominant trees show a variety of distributional patterns still poorly understood. Here, we used 503 forest inventory plots (93,719 individuals ≥2.5 cm diameter, 2609 species) to explore the relationships between local abundance, regional frequency and spatial aggregation of dominant species in four main habitat types in western Amazonia. Although the abundance-occupancy relationship is positive for the full dataset, we found that among dominant Amazonian tree species, there is a strong negative relationship between local abundance and regional frequency and/or spatial aggregation across habitat types. Our findings suggest an ecological trade-off whereby dominant species can be locally abundant (local dominants) or regionally widespread (widespread dominants), but rarely both (oligarchs). Given the importance of dominant species as drivers of diversity and ecosystem functioning, unravelling different dominance patterns is a research priority to direct conservation efforts in Amazonian forests.


Assuntos
Ecossistema , Florestas , Humanos , Árvores , Brasil , Biodiversidade
2.
Proc Biol Sci ; 291(2026): 20241214, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38981524

RESUMO

Obligatory ant-plant symbioses often appear to be single evolutionary shifts within particular ant lineages; however, convergence can be revealed once natural history observations are complemented with molecular phylogenetics. Here, we describe a remarkable example of convergent evolution in an ant-plant symbiotic system. Exclusively arboreal, Myrmelachista species can be generalized opportunists nesting in several plant species or obligately symbiotic, live-stem nesters of a narrow set of plant species. Instances of specialization within Myrmelachista are known from northern South America and throughout Middle America. In Middle America, a diverse radiation of specialists occupies understory treelets of lowland rainforests. The morphological and behavioural uniformity of specialists suggests that they form a monophyletic assemblage, diversifying after a single origin of specialization. Using ultraconserved element phylogenomics and ancestral state reconstructions, we show that shifts from opportunistic to obligately symbiotic evolved independently in South and Middle America. Furthermore, our analyses support a remarkable case of convergence within the Middle American radiation, with two independently evolved specialist clades, arising nearly simultaneously from putative opportunistic ancestors during the late Pliocene. This repeated evolution of a complex phenotype suggests similar mechanisms behind trait shifts from opportunists to specialists, generating further questions about the selective forces driving specialization.


Assuntos
Formigas , Evolução Biológica , Filogenia , Simbiose , Formigas/fisiologia , Formigas/genética , Animais , América do Sul , América Central , Mirmecófitas
3.
Syst Biol ; 72(5): 998-1012, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37474131

RESUMO

Natural selection plays a key role in deterministic evolution, as clearly illustrated by the multiple cases of repeated evolution of ecomorphological characters observed in adaptive radiations. Unlike most spiders, Dysdera species display a high variability of cheliceral morphologies, which has been suggested to reflect different levels of specialization to feed on isopods. In this study, we integrate geometric morphometrics and experimental trials with a fully resolved phylogeny of the highly diverse endemic species from the Canary Islands to 1) quantitatively delimit the different cheliceral morphotypes present in the archipelago, 2) test their association with trophic specialization, as reported for continental species, 3) reconstruct the evolution of these ecomorphs throughout the diversification of the group, 4) test the hypothesis of convergent evolution of the different morphotypes, and 5) examine whether specialization constitutes a case of evolutionary irreversibility in this group. We show the existence of 9 cheliceral morphotypes and uncovered their significance for trophic ecology. Further, we demonstrate that similar ecomorphs evolved multiple times in the archipelago, providing a novel study system to explain how convergent evolution and irreversibility due to specialization may be combined to shape phenotypic diversification in adaptive radiations.


Assuntos
Evolução Biológica , Aranhas , Animais , Filogenia , Espanha , Ecologia
4.
J Hered ; 115(4): 458-469, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38381553

RESUMO

RK Wayne has arguably been the most influential geneticist of canids, famously promoting the conservation of wolves in his homeland, the United States. His influence has been felt in other countries and regions outside the contiguous United States, where he inspired others, also including former graduate students and research fellows of his, to use modern molecular techniques to examine the evolutionary biology of canids to inform the conservation and management of wolves. In this review, we focus on the implications of Wayne's work on wolves outside the United States. He envisioned a clear future for wolf conservation research, involving the study of wolves' ecological and genetic diversity, and the description of ecotypes requiring conservation. He also documented widespread hybridization among canids and introgression of DNA from domestic dogs to wolves, a process that started dozens of thousands of years ago. His work therefore calls for innovative studies, such as examining the potential fitness benefits of introgression. Inspired by his results, for example, on the purging of deleterious alleles in small populations, wolf researchers should use novel molecular tools to challenge other conservation genetics paradigms. Overall, RK Wayne's work constitutes a call for answers, which as scientists or citizens concerned with conservation matters, we are obliged to address, as we contribute to monitoring and maintaining biodiversity during our period of dramatic transformations of the biosphere.


Assuntos
Conservação dos Recursos Naturais , Genômica , Lobos , Animais , Lobos/genética , Genômica/métodos , Variação Genética , Hibridização Genética , Cães/genética
5.
Am Nat ; 201(3): 376-388, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36848511

RESUMO

AbstractWhat causes host use specificity in herbivorous insects? Population genetic models predict specialization when habitat preference can evolve and there is antagonistic pleiotropy at a performance-affecting locus. But empirically for herbivorous insects, host use performance is governed by many genetic loci, and antagonistic pleiotropy seems to be rare. Here, we use individual-based quantitative genetic simulation models to investigate the role of pleiotropy in the evolution of sympatric host use specialization when performance and preference are quantitative traits. We look first at pleiotropies affecting only host use performance. We find that when the host environment changes slowly, the evolution of host use specialization requires levels of antagonistic pleiotropy much higher than what has been observed in nature. On the other hand, with rapid environmental change or pronounced asymmetries in productivity across host species, the evolution of host use specialization readily occurs without pleiotropy. When pleiotropies affect preference as well as performance, even with slow environmental change and host species of equal productivity, we observe fluctuations in host use breadth, with mean specificity increasing with the pervasiveness of antagonistic pleiotropy. Thus, our simulations show that pleiotropy is not necessary for specialization, although it can be sufficient, provided it is extensive or multifarious.


Assuntos
Herbivoria , Especificidade de Hospedeiro , Animais , Simulação por Computador , Insetos/genética , Herança Multifatorial
6.
Am J Bot ; 110(5): e16172, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37087740

RESUMO

PREMISE: A central goal of pollination biology is to connect plants with the identity of their pollinator(s). While predictions based on floral syndrome traits are extremely useful, direct observation can reveal further details of a species' pollination biology. The wildflower Phlox drummondii has a floral syndrome consistent with pollination by Lepidoptera. We tested this prediction using empirical data. METHODS: We observed each step of pollination in P. drummondii. First, we observed 55.5 h of floral visitation across the species range. We used temporal pollinator exclusion to determine the contribution of diurnal and nocturnal pollination to reproductive output. We then quantified P. drummondii pollen transfer by the dominant floral visitor, Battus philenor. Finally, we tested the effect of B. philenor visitation on P. drummondii reproduction by quantifying fruit set following single pollinator visits. RESULTS: Battus philenor is the primary pollinator of P. drummondii. Pollination is largely diurnal, and we observed a variety of lepidopteran visitors during the diurnal period. However, B. philenor was the most frequent visitor, representing 88.5% of all observed visits. Our results show that B. philenor is an extremely common visitor and also an effective pollinator by demonstrating that individuals transfer pollen between flowers and that a single visit can elicit fruit set. CONCLUSIONS: Our data are consistent with the prediction of lepidopteran pollination and further reveal a single butterfly species, B. philenor, as the primary pollinator. Our study demonstrates the importance of empirical pollinator observations, adds to our understanding of pollination mechanics, and offers a specific case study of butterfly pollination.


Assuntos
Borboletas , Polinização , Animais , Reprodução , Plantas , Pólen
7.
BMC Genomics ; 23(1): 462, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35733110

RESUMO

BACKGROUND: Allorhizobium vitis (formerly named Agrobacterium vitis or Agrobacterium biovar 3) is the primary causative agent of crown gall disease of grapevine worldwide. We obtained and analyzed whole-genome sequences of diverse All. vitis strains to get insights into their diversification and taxonomy. RESULTS: Pairwise genome comparisons and phylogenomic analysis of various All. vitis strains clearly indicated that All. vitis is not a single species, but represents a species complex composed of several genomic species. Thus, we emended the description of All. vitis, which now refers to a restricted group of strains within the All. vitis species complex (i.e. All. vitis sensu stricto) and proposed a description of a novel species, All. ampelinum sp. nov. The type strain of All. vitis sensu stricto remains the current type strain of All. vitis, K309T. The type strain of All. ampelinum sp. nov. is S4T. We also identified sets of gene clusters specific to the All. vitis species complex, All. vitis sensu stricto and All. ampelinum, respectively, for which we predicted the biological function and infer the role in ecological diversification of these clades, including some we could experimentally validate. All. vitis species complex-specific genes confer tolerance to different stresses, including exposure to aromatic compounds. Similarly, All. vitis sensu stricto-specific genes confer the ability to degrade 4-hydroxyphenylacetate and a putative compound related to gentisic acid. All. ampelinum-specific genes have putative functions related to polyamine metabolism and nickel assimilation. Congruently with the genome-based classification, All. vitis sensu stricto and All. ampelinum were clearly delineated by MALDI-TOF MS analysis. Moreover, our genome-based analysis indicated that Allorhizobium is clearly separated from other genera of the family Rhizobiaceae. CONCLUSIONS: Comparative genomics and phylogenomic analysis provided novel insights into the diversification and taxonomy of Allorhizobium vitis species complex, supporting our redefinition of All. vitis sensu stricto and description of All. ampelinum. Our pan-genome analyses suggest that these species have differentiated ecologies, each relying on specialized nutrient consumption or toxic compound degradation to adapt to their respective niche.


Assuntos
Rhizobiaceae , Vitis , Agrobacterium/genética , Genômica , Filogenia , Tumores de Planta , Rhizobiaceae/genética , Vitis/genética , Vitis/microbiologia
8.
Glob Chang Biol ; 28(20): 5901-5913, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35838418

RESUMO

The resource-use hypothesis, proposed by E.S. Vrba, states that habitat fragmentation caused by climatic oscillations would affect particularly biome specialists (species inhabiting only one biome), which might show higher speciation and extinction rates than biome generalists. If true, lineages would accumulate biome-specialist species. This effect would be particularly exacerbated for biomes located at the periphery of the global climatic conditions, namely, biomes that have high/low precipitation and high/low temperature such as rainforest (warm-humid), desert (warm-dry), steppe (cold-dry) and tundra (cold-humid). Here, we test these hypotheses in swallowtail butterflies, a clade with more than 570 species, covering all the continents but Antarctica, and all climatic conditions. Swallowtail butterflies are among the most studied insects, and they are a model group for evolutionary biology and ecology studies. Continental macroecological rules are normally tested using vertebrates, this means that there are fewer examples exploring terrestrial invertebrate patterns at global scale. Here, we compiled a large Geographic Information System database on swallowtail butterflies' distribution maps and used the most complete time-calibrated phylogeny to quantify diversification rates (DRs). In this paper, we aim to answer the following questions: (1) Are there more biome-specialist swallowtail butterflies than biome generalists? (2) Is DR related to biome specialization? (3) If so, do swallowtail butterflies inhabiting extreme biomes show higher DRs? (4) What is the effect of species distribution area? Our results showed that swallowtail family presents a great number of biome specialists which showed substantially higher DRs compared to generalists. We also found that biome specialists are unevenly distributed across biomes. Overall, our results are consistent with the resource-use hypothesis, species climatic niche and biome fragmentation as key factors promoting isolation.


Assuntos
Borboletas , Animais , Regiões Antárticas , Evolução Biológica , Borboletas/genética , Ecossistema , Filogenia
9.
Conserv Biol ; 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35146809

RESUMO

Genetic mechanisms determining habitat selection and specialization of individuals within species have been hypothesized, but not tested at the appropriate individual level in nature. In this work, we analyzed habitat selection for 139 GPS-collared caribou belonging to three declining ecotypes sampled throughout Northwestern Canada. We used Resource Selection Functions (RSFs) comparing resources at used and available locations. We found that the three caribou ecotypes differed in their use of habitat suggesting specialization. On expected grounds, we also found differences in habitat selection between summer and winter, but also, originally, among the individuals within an ecotype. We next obtained Single Nucleotide Polymorphisms (SNPs) for the same caribou individuals, we detected those associated to habitat selection, and then identified genes linked to these SNPs. These genes had functions related in other organisms to habitat and dietary specializations, and climatic adaptations. We therefore suggest that individual variation in habitat selection was based on genotypic variation in the SNPs of individual caribou, indicating that genetic forces underlie habitat and diet selection in the species. We also suggest that the associations between habitat and genes that we detected may lead to lack of resilience in the species, thus contributing to caribou endangerment. Our work emphasizes that similar mechanisms may exist for other specialized, endangered species. This article is protected by copyright. All rights reserved.

10.
Mol Ecol ; 30(21): 5551-5571, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34418206

RESUMO

Adaptive radiations have proven important for understanding the mechanisms and processes underlying biological diversity. The convergence of form and function, as well as admixture and adaptive introgression, are common in adaptive radiations. However, distinguishing between these two scenarios remains a challenge for evolutionary research. The Midas cichlid species complex (Amphilophus spp.) is a prime example of adaptive radiation, with phenotypic diversification occurring at various stages of genetic differentiation. One species, A. labiatus, has large fleshy lips, is associated with rocky lake substrates, and occurs patchily within Lakes Nicaragua and Managua. By contrast, the similar, but thin-lipped, congener, A. citrinellus, is more common and widespread. We investigated the evolutionary history of the large-lipped form, specifically regarding whether the trait has evolved independently in both lakes from ancestral thin-lipped populations, or via dispersal and/or admixture events. We collected samples from distinct locations in both lakes, and assessed differences in morphology and ecology. Using RAD-seq, we genotyped thousands of SNPs to measure population structure and divergence, demographic history, and admixture. We found significant between-species differences in ecology and morphology, local intraspecific differences in body shape and trophic traits, but only limited intraspecific variation in lip shape. Despite clear ecological differences, our genomic approach uncovered pervasive admixture between the species and low genomic differentiation, with species within lakes being genetically more similar than species between lakes. Taken together, our results suggest a single origin of large-lips, followed by pervasive admixture and adaptive introgression, with morphology being driven by local ecological opportunities, despite ongoing gene-flow.


Las radiaciones adaptativas han demostrado ser clave para entender los mecanismos y procesos responsables de la diversidad biológica. La convergencia en forma y función, así como la mezcla genética y la introgresión adaptativa, son algo común en las radiaciones adaptativas. Sin embargo, distinguir entre estos dos escenarios sigue siendo un desafío para la biología evolutiva. El complejo de especies del cíclido de Midas (Amphilophus spp.) es un ejemplo paradigmático de radiación adaptativa, con diversidad fenotípica en varias etapas de diferenciación genética. Una de las especies, A. labiatus, que tiene labios grandes y carnosos, se asocia a zonas rocosas de los lagos, y tiene una distribución irregular en los lagos Nicaragua y Managua. En cambio, A. citrinellus, es una especie similar pero con labios finos, más común y con una distribución más amplia. Investigamos la historia evolutiva de la especie de labios grandes y, en concreto, si este rasgo ha evolucionado de forma independiente en los dos grandes lagos nicaragüenses a partir de poblaciones ancestrales de labios finos, o si por el contrario se ha dispersado mediante migración y/o mezcla genética. Colectamos muestras de distintas localidades en ambos lagos y evaluamos las diferencias en morfología y ecología. Genotipamos miles de SNPs utilizando RAD-seq para medir la estructura genética, la divergencia, la historia demográfica y la mezcla genética de las poblaciones. Encontramos diferencias significativas entre especies en ecología y morfología, diferencias intraespecíficas locales en la forma del cuerpo y rasgos tróficos, pero sólo una limitada variación intraespecífica en la forma de los labios. A pesar de las claras diferencias ecológicas, el análisis genómico desveló una intensa mezcla genética entre especies, y una limitada diferenciación genómica, encontrando mayor semejanza genética entre especies dentro de un mismo lago, que entre especies de distintos lagos. Nuestros resultados sugieren un origen único de la especie de labios gruesos seguido de mezcla genética e introgresión adaptativa, e indican que la morfología habría sido modelada por las oportunidades ecológicas locales, a pesar del flujo génico.


Assuntos
Ciclídeos , Animais , Evolução Biológica , Ciclídeos/genética , Especiação Genética , Lagos , Nicarágua , Fenótipo
11.
J Evol Biol ; 34(1): 16-32, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31808214

RESUMO

Coastal and offshore ecotypes of common bottlenose dolphins have been recognized in the western South Atlantic, and it is possible that trophic niche divergence associated with social interactions is leading them to genetic and phenotypic differentiation. The significant morphological differentiation observed between these ecotypes suggests they represent two different subspecies. However, there is still a need to investigate whether there is congruence between morphological and genetic data to rule out the possibility of ecophenotypic variation accompanied by gene flow. Mitochondrial DNA (mtDNA) control region sequence data and 10 microsatellite loci collected from stranded and biopsied dolphins sampled in coastal and offshore waters of Brazil as well as 106 skulls for morphological analyses were used to determine whether the morphological differentiation was supported by genetic differentiation. There was congruence among the data sets, reinforcing the presence of two distinct ecotypes. The divergence may be relatively recent, however, given the moderate values of mtDNA nucleotide divergence (dA = 0.008), presence of one shared mtDNA haplotype and possibly low levels of gene flow (around 1% of migrants per generation). Results suggest the ecotypes may be in the process of speciation and reinforce they are best described as two different subspecies until the degree of nuclear genetic divergence is thoroughly evaluated: Tursiops truncatus gephyreus (coastal ecotype) and T. t. truncatus (offshore ecotype). The endemic distribution of T. t. gephyreus in the western South Atlantic and number of anthropogenic threats in the area reinforces the importance of protecting this ecotype and its habitat.


Assuntos
Golfinho Nariz-de-Garrafa/genética , Ecótipo , Especiação Genética , Animais , Oceano Atlântico , Golfinho Nariz-de-Garrafa/anatomia & histologia , Feminino , Masculino
12.
J Evol Biol ; 33(12): 1704-1714, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33040426

RESUMO

It is often difficult to determine why parasites do not evolve broader niches, especially when there are closely related and ecologically similar hosts available. We used an experimental evolution approach to test whether source-sink demography or trade-offs drive specialization, and its underlying traits, in two microsporidian parasites infecting two brine shrimp species. In the field, both parasites regularly infect both hosts, but experiments have shown that they are partially specialized. We serially passaged the parasites on one, the other, or an alternation of the two hosts; after 10 passages, we assayed the infectivity, virulence, and spore production of the evolved lines. Our results indicated a weak between-host trade-off acting on infectivity, but a strong trade-off acting on spore production. Consequently, spore production maintained both parasites' overall pattern of specialization. This study highlights that when trade-off shapes differ among traits, one key trait can prevent the evolution of generalism.


Assuntos
Artemia/parasitologia , Evolução Biológica , Interações Hospedeiro-Parasita , Microsporídios/genética , Animais , Feminino , Interação Gene-Ambiente , Masculino , Microsporídios/patogenicidade , Esporos Fúngicos/crescimento & desenvolvimento
13.
Biol Lett ; 16(9): 20200307, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32871089

RESUMO

Botanists have long identified bilaterally symmetrical (zygomorphic) flowers with more specialized pollination interactions than radially symmetrical (actinomorphic) flowers. Zygomorphic flowers facilitate more precise contact with pollinators, guide pollinator behaviour and exclude less effective pollinators. However, whether zygomorphic flowers are actually visited by a smaller subset of available pollinator species has not been broadly evaluated. We compiled 53 609 floral visitation records in 159 communities and classified the plants' floral symmetry. Globally and within individual communities, plants with zygomorphic flowers are indeed visited by fewer species. At the same time, zygomorphic flowers share a somewhat larger proportion of their visitor species with other co-occurring plants and have particularly high sharing with co-occurring plants that also have zygomorphic flowers. Visitation sub-networks for zygomorphic species also show differences that may arise from reduced visitor diversity, including greater connectance, greater web asymmetry and lower coextinction robustness of both plants and visitor species-but these changes do not necessarily translate to whole plant-visitor communities. These results provide context for widely documented associations between zygomorphy and diversification and imply that species with zygomorphic flowers may face a greater risk of extinction due to pollinator loss.


Assuntos
Flores , Polinização , Plantas
14.
J Insect Sci ; 20(5)2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32948873

RESUMO

Long-term data are important to understand the changes in ecological communities over time but are quite rare for insects. We analyzed such changes using historic museum collections. For our study area, an isolated forest reserve in North-East Italy, data from the past 80 yr were available. We used records of 300 moth species to analyze whether extinction risk was linked to their body size or to their degree of ecological specialization. Specialization was scored 1) by classifying larval food affiliations, habitat preferences, and the northern distributional limit and 2) by analyzing functional dispersion (FDis) within species assemblages over time. Our results show that locally extinct species (mean wingspan: 37.0 mm) were larger than persistent (33.2 mm) or previously unrecorded ones (30.7 mm), leading to a smaller mean wingspan of the moth community over time. Some ecological filters appear to have selected against bigger species. By using coarse specialization categories, we did not observe any relationship with local extinction risk. However, FDis, calculated across 12 species traits, significantly decreased over time. We conclude that simple classification systems might fail in reflecting changes in community-wide specialization. Multivariate approaches such as FDis may provide deeper insight, as they reflect a variety of ecological niche dimensions. With the abandonment of extensive land use practices, natural succession seems to have shifted the moth community toward a preponderance of forest-affiliated species, leading to decreased FDis values. Multivariate analyses of species composition also confirmed that the moth community has significantly changed during the last 80 yr.


Assuntos
Biota , Conservação dos Recursos Naturais , Florestas , Mariposas , Animais , Itália , Parques Recreativos
15.
Proc Biol Sci ; 286(1906): 20190810, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31266424

RESUMO

Traits can evolve rapidly through changes in gene expression or protein-coding sequences. However, these forms of genetic variation can be correlated and changes to one can influence the other. As a result, we might expect traits lacking differential expression to preferentially evolve through changes in protein sequences or morphological adaptation. Given the lack of differential expression across the distribution of sidewinder rattlesnakes ( Crotalus cerastes), we tested this hypothesis by comparing the coding regions of genes expressed in the venom gland transcriptomes and fang morphology. We calculated Tajima's D and FST across four populations comparing toxin and nontoxin loci. Overall, we found little evidence of directional selection or differentiation between populations, suggesting that changes to protein sequences do not underlie the evolution of sidewinder venom or that toxins are under extremely variant selection pressures. Although low-expression toxins do not have higher sequence divergence between populations, they do have more standing variation on which selection can act. Additionally, we found significant differences in fang length among populations. The lack of differential expression and sequence divergence suggests sidewinders-given their generalist diet, moderate gene flow and environmental variation-are under stabilizing selection which functions to maintain a generalist phenotype. Overall, we demonstrate the importance of examining the relationship between gene expression and protein-coding changes to understand the evolution of complex traits.


Assuntos
Venenos de Crotalídeos/química , Crotalus/genética , Expressão Gênica , Sequência de Aminoácidos , Animais , Venenos de Crotalídeos/genética , Crotalus/anatomia & histologia , Crotalus/metabolismo , Fenótipo , Filogeografia , Dente/anatomia & histologia , Transcriptoma
16.
Mol Phylogenet Evol ; 141: 106608, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31493464

RESUMO

We tested the hypothesis that ecological specialization that affects dispersal promotes diversification by a comparison of the genetic structure of two sister species of door snails across their broadly overlapping ranges in the Crimean Mountains. The hypothesized effect of ecological specialization on diversification is supported by STRUCTURE analyses that showed that Mentissa gracilicosta that is restricted to limestone rocks, is subdivided into several distinct clusters, whereas all populations of the species adapted to more continuous habitat, the forests-dwelling Mentissa canalifera, were assigned to a single cluster. Furthermore, it is supported by AMOVAs that showed that a larger part of the genetic variation of M. gracilicosta is apportioned among populations than in M. canalifera. The stronger genetic differentiation of the M. gracilicosta populations corresponds to their more distinct morphological differentiation that resulted in the classification of M. gracilicosta into several geographical subspecies, whereas the more continuously distributed M. canalifera was not subdivided into subspecies. The stronger differentiation of populations of M. gracilicosta compared to M. canalifera can be ascribed to reduced gene flow between the isolated populations of M. gracilicosta and to founder events associated with the long distance dispersal events that are necessary for the colonization of isolated rocks by M. gracilicosta. In Central Europe, the Pleistocene climatic oscillations selected for species with high dispersal abilities, whereas the more stable climate in southern Europe facilitated the non-adaptive radiation of rock-dwelling door snails. Thus, the intrinsic ecological properties of these species groups contributed to the latitudinal diversity gradient.


Assuntos
Ecossistema , Fluxo Gênico , Caramujos/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Animais , Teorema de Bayes , DNA Mitocondrial/genética , DNA Ribossômico/genética , Europa (Continente) , Variação Genética , Genética Populacional , Geografia , Haplótipos/genética , Filogenia , Filogeografia
17.
J Eukaryot Microbiol ; 66(3): 469-482, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30281867

RESUMO

Symbiotic dinoflagellates in the genus Breviolum (formerly Symbiodinium Clade B) dominate coral communities in shallow waters across the Greater Caribbean. While some formally described species exist, mounting genetic, and ecological evidence indicate that numerous more comprise this genus, many of which are closely related. To test this, colonies of common reef-building corals were sampled across a large geographical range. Phylogenetic and population genetic markers then used to examine evolutionary divergence and delineate boundaries of genetic recombination. Three new candidate species were distinguished by fixed differences in nucleotide sequences from nuclear and chloroplast DNA. Population connectivity was evident within each lineage over thousands of kilometers, however, substantial genetic structure persisted between lineages co-occurring within sampling locations, signifying reproductive isolation. While geographically widespread with overlapping distributions, each species is ecologically distinct, exhibiting specific mutualisms with phylogenetically distinct coral hosts. Moreover, significant differences in mean cell sizes provide some morphological evidence substantiating formal species distinctions. In providing evidence that satisfies the biological, phylogenetic, ecological, and morphological species concepts, we classify and formally name Breviolum faviinorum n. sp., primarily associated with Caribbean corals belonging to the Caribbean subfamily Faviinae; B. meandrinium n. sp., associated with corals belonging to the family Meandrinidae; and B. dendrogyrum n. sp., a symbiont harbored exclusively by the threatened coral Dendrogyra cylindrus. These findings support the primary importance of niche diversification (i.e. host habitat) in the speciation of symbiotic dinoflagellates.


Assuntos
Antozoários/parasitologia , Recifes de Corais , Dinoflagellida/classificação , Simbiose , Animais , Região do Caribe , DNA de Protozoário/análise , Dinoflagellida/fisiologia , Florida , Golfo do México , Filogenia
18.
Am J Bot ; 106(5): 633-642, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31021395

RESUMO

PREMISE: Closely related plant species with overlapping ranges often experience competition for pollination services. Such competition can select for divergence in floral traits that attract pollinators or determine pollen placement. While most species in Centropogon (Campanulaceae: Lobelioideae) have flowers that suggest adaptation to bat or hummingbird pollination, actual pollinators are rarely documented, and a few species have a mix of traits from both pollination syndromes. We studied the pollination biology of a "mixed-syndrome" species and its co-occurring congeners to examine the relationship between floral traits and visitation patterns for Centropogon. METHODS: Fieldwork at two sites in Bolivian cloud forests involved filming floral visitors, quantifying pollen transfer, and measuring floral traits. Stamen exsertion, which determines pollen placement, was measured from herbarium specimens across the geographic range of these species to test for character displacement. RESULTS: Results show a generalization gradient, from primarily bat pollination in white-flowered Centropogon incanus, to bat pollination with secondary hummingbird pollination in the cream-flowered C. brittonianus, to equal reliance on both pollinators in the red-flowered, mixed-syndrome C. mandonis. Pollen transfer between these species is further reduced by differences in stamen exsertion that are accentuated in zones of sympatry, a pattern consistent with character displacement. CONCLUSIONS: Our results demonstrate that key differences in floral color and shape mediate a gradient of specialization in Bolivian Centropogon. Interspecific pollen transfer is further reduced by potential character displacement of a key trait. Broadly, our results have implications for understanding the hyper-diversity of Andean cloud forests, in which multiple species of the same genus frequently co-occur.


Assuntos
Evolução Biológica , Campanulaceae/anatomia & histologia , Campanulaceae/fisiologia , Flores/anatomia & histologia , Polinização , Animais , Aves , Bolívia , Quirópteros , Cadeia Alimentar , Características de História de Vida , Especificidade da Espécie
19.
BMC Evol Biol ; 18(1): 99, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29921216

RESUMO

BACKGROUND: In host-parasite systems, relative dispersal rates condition genetic novelty within populations and thus their adaptive potential. Knowledge of host and parasite dispersal rates can therefore help us to understand current interaction patterns in wild populations and why these patterns shift over time and space. For generalist parasites however, estimates of dispersal rates depend on both host range and the considered spatial scale. Here, we assess the relative contribution of these factors by studying the population genetic structure of a common avian ectoparasite, the hen flea Ceratophyllus gallinae, exploiting two hosts that are sympatric in our study population, the great tit Parus major and the collared flycatcher Ficedula albicollis. Previous experimental studies have indicated that the hen flea is both locally maladapted to great tit populations and composed of subpopulations specialized on the two host species, suggesting limited parasite dispersal in space and among hosts, and a potential interaction between these two structuring factors. RESULTS: C. gallinae fleas were sampled from old nests of the two passerine species in three replicate wood patches and were genotyped at microsatellite markers to assess population genetic structure at different scales (among individuals within a nest, among nests and between host species within a patch and among patches). As expected, significant structure was found at all spatial scales and between host species, supporting the hypothesis of limited dispersal in this parasite. Clustering analyses and estimates of relatedness further suggested that inbreeding regularly occurs within nests. Patterns of isolation by distance within wood patches indicated that flea dispersal likely occurs in a stepwise manner among neighboring nests. From these data, we estimated that gene flow in the hen flea is approximately half that previously described for its great tit hosts. CONCLUSION: Our results fall in line with predictions based on observed patterns of adaptation in this host-parasite system, suggesting that parasite dispersal is limited and impacts its adaptive potential with respect to its hosts. More generally, this study sheds light on the complex interaction between parasite gene flow, local adaptation and host specialization within a single host-parasite system.


Assuntos
Adaptação Fisiológica , Fluxo Gênico , Parasitos/genética , Parasitos/fisiologia , Sifonápteros/genética , Sifonápteros/fisiologia , Animais , Galinhas , Análise Discriminante , Loci Gênicos , Marcadores Genéticos , Variação Genética , Genética Populacional , Geografia , Especificidade de Hospedeiro/genética , Interações Hospedeiro-Parasita/genética , Repetições de Microssatélites , Análise de Componente Principal , Aves Canoras/parasitologia
20.
Mol Biol Evol ; 34(9): 2173-2186, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28482005

RESUMO

Identifying the molecular changes that lead to ecological specialization during speciation is one of the major goals of molecular evolution. One question that remains to be thoroughly investigated is whether ecological specialization derives strictly from adaptive changes and their associated trade-offs, or from conditionally neutral mutations that accumulate under relaxed selection. We used whole-genome sequencing, genome annotation and computational analyses to identify genes that have rapidly diverged between two incipient species of Saccharomyces paradoxus that occupy different climatic regions along a south-west to north-east gradient. As candidate loci for ecological specialization, we identified genes that show signatures of adaptation and accelerated rates of amino acid substitutions, causing asymmetric evolution between lineages. This set of genes includes a glycyl-tRNA-synthetase, GRS2, which is known to be transcriptionally induced under heat stress in the model and sister species S. cerevisiae. Molecular modelling, expression analysis and fitness assays suggest that the accelerated evolution of this gene in the Northern lineage may be caused by relaxed selection. GRS2 arose during the whole-genome duplication (WGD) that occurred 100 million years ago in the yeast lineage. While its ohnolog GRS1 has been preserved in all post-WGD species, GRS2 has frequently been lost and is evolving rapidly, suggesting that the fate of this ohnolog is still to be resolved. Our results suggest that the asymmetric evolution of GRS2 between the two incipient S. paradoxus species contributes to their restricted climatic distributions and thus that ecological specialization derives at least partly from relaxed selection rather than a molecular trade-off resulting from adaptive evolution.


Assuntos
Especiação Genética , Filogeografia/métodos , Saccharomyces/genética , Ecologia , Evolução Molecular , Duplicação Gênica/genética , Genes Fúngicos/genética , Genoma Fúngico/genética , Filogenia , Saccharomyces cerevisiae/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA