Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(1): e17152, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273532

RESUMO

Biodiversity loss can have significant consequences for human well-being, as it can affect multiple ecosystem properties and processes (MEPP) that drive ecosystem services. However, a comprehensive understanding of the link between environmental factors, biodiversity, and MEPP remains elusive, especially in mangrove ecosystems that millions of people along tropical coastlines worldwide depend upon. Here, we collated a comprehensive dataset on forest inventory, plant traits, and environmental factors across 93 plots in the Sundarbans Reserved Forests, Bangladesh. The functional composition (FC) of leaf area showed a stronger positive association with MEPP, being determined by total biomass and productivity of the mangroves, sediment organic carbon, and ammonium, phosphorus, and potassium contents of the sediment, than species richness (SR) or functional diversity (FD). Further, FC mediated a strong negative association of sediment salinity, and a positive association of SR, with MEPP. The similar but opposite total associations of SR and sediment salinity with MEPP suggest that species-rich mangroves could offset the negative impacts of rising salinity on MEPP. When focusing on a single aspect of MEPP, both FD and FC mattered, with the FD of leaf area showing a strong association with mangrove productivity and sediment potassium content, while the FC of leaf litter nitrogen showed the strongest associations with sediment ammonium and phosphorus contents. Therefore, to sustain mangrove ecosystems as a reliable nature-based solution for climate change mitigation, conservation and (re-)establishment projects should prioritize regionally dominant species with high leaf area and nitrogen content, plus functionally different species to support the ecosystem processes and services provided by mangroves.


Assuntos
Compostos de Amônio , Ecossistema , Humanos , Áreas Alagadas , Florestas , Nitrogênio , Fósforo , Potássio
2.
New Phytol ; 232(3): 1123-1158, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33159479

RESUMO

The effects of plants on the biosphere, atmosphere and geosphere are key determinants of terrestrial ecosystem functioning. However, despite substantial progress made regarding plant belowground components, we are still only beginning to explore the complex relationships between root traits and functions. Drawing on the literature in plant physiology, ecophysiology, ecology, agronomy and soil science, we reviewed 24 aspects of plant and ecosystem functioning and their relationships with a number of root system traits, including aspects of architecture, physiology, morphology, anatomy, chemistry, biomechanics and biotic interactions. Based on this assessment, we critically evaluated the current strengths and gaps in our knowledge, and identify future research challenges in the field of root ecology. Most importantly, we found that belowground traits with the broadest importance in plant and ecosystem functioning are not those most commonly measured. Also, the estimation of trait relative importance for functioning requires us to consider a more comprehensive range of functionally relevant traits from a diverse range of species, across environments and over time series. We also advocate that establishing causal hierarchical links among root traits will provide a hypothesis-based framework to identify the most parsimonious sets of traits with the strongest links on functions, and to link genotypes to plant and ecosystem functioning.


Assuntos
Ecossistema , Plantas , Atmosfera , Ecologia , Fenótipo
3.
Ecol Lett ; 22(10): 1587-1598, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31347258

RESUMO

Although spatial and temporal variation in ecological properties has been well-studied, crucial knowledge gaps remain for studies conducted at macroscales and for ecosystem properties related to material and energy. We test four propositions of spatial and temporal variation in ecosystem properties within a macroscale (1000 km's) extent. We fit Bayesian hierarchical models to thousands of observations from over two decades to quantify four components of variation - spatial (local and regional) and temporal (local and coherent); and to model their drivers. We found strong support for three propositions: (1) spatial variation at local and regional scales are large and roughly equal, (2) annual temporal variation is mostly local rather than coherent, and, (3) spatial variation exceeds temporal variation. Our findings imply that predicting ecosystem responses to environmental changes at macroscales requires consideration of the dominant spatial signals at both local and regional scales that may overwhelm temporal signals.


Assuntos
Ecossistema , Modelos Biológicos , Análise Espaço-Temporal , Teorema de Bayes
4.
Ecol Lett ; 16(12): 1455-62, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24118657

RESUMO

An increase in biological diversity leads to a greater stability of ecosystem properties. For host-parasite interactions, this is illustrated by the 'dilution effect': a negative correlation between host biodiversity and disease risk. We show that a similar mechanism might stabilise host-parasite dynamics at a lower level of diversity, i.e. at the level of genetic diversity within host species. A long-term time shift experiment, based on a historical reconstruction of a Daphnia-parasite coevolution, reveals infectivity cycles with more stable amplitude in experienced than in naive hosts. Coevolutionary models incorporating an increase in host allelic diversity over time explain the detected asymmetry. The accumulation of resistance alleles creates an opportunity for the host to stabilise Red Queen dynamics. It leads to a larger arsenal enhancing the host performance in its coevolution with the parasite in which 'it takes all the running both antagonists can do to keep in the same place'.


Assuntos
Evolução Biológica , Daphnia/genética , Interações Hospedeiro-Patógeno/genética , Modelos Genéticos , Animais , Daphnia/microbiologia , Variação Genética , Modelos Logísticos , Pasteuria
5.
Sci Total Environ ; 780: 146670, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34030324

RESUMO

It is increasingly clear that increases in dissolved organic carbon in upland waters in recent decades have often been dominated by acid deposition, but reasons for substantial variation in rates of change remain unclear. This paper focuses on the extent to which spatial properties, such as variation in soil properties, atmospheric deposition and climate, affect the sensitivity of DOC concentrations in soil water. The purpose is to i) examine evidence for differences in site average concentrations and trends in soil water DOC between sites with contrasting ecosystem properties, i.e. vegetation cover and soil type, and ii) identify the wider combination of site characteristics that best explain variation in these DOC metrics between sites. We collated soil water and deposition chemistry, soil chemistry and meteorological data from 15 long-term UK monitoring sites (1992-2010) covering a range of soils, vegetation, climate and acid deposition levels. Mineral soils under forests showed the greatest range of long-term mean DOC concentrations and trends. Regression analysis indicated that acid and sea-salt deposition, and soil sensitivity to acidification were the factors most strongly associated with spatial variation in mean DOC concentrations. Spatial variation in DOC trends were best explained by Al saturation and water flux. Overall, the sensitivity of DOC release from soil to changes in pollutant deposition could be related to the type of vegetation cover and soils chemistry properties, such as Al saturation, divalent base cation content and hydrological regime. The identification of the ecosystem properties that appear most influential in modifying DOC production and responses to long-term drivers, helps elucidate potential mechanistic explanations for differences in DOC dynamics across seemingly similar ecosystems, and points to the importance of DOC mobility in regulating its dynamics.

6.
Ecol Evol ; 6(1): 318-28, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26811795

RESUMO

The trait-based approach shows that plant functional diversity strongly affects ecosystem properties. However, few empirical studies show the relationship between soil fungal diversity and plant functional diversity in natural ecosystems. We investigated soil fungal diversity along a restoration gradient of sandy grassland (mobile dune, semifixed dune, fixed dune, and grassland) in Horqin Sand Land, northern China, using the denaturing gradient gel electrophoresis of 18S rRNA and gene sequencing. We also examined associations of soil fungal diversity with plant functional diversity reflected by the dominant species' traits in community (community-weighted mean, CWM) and the dispersion of functional trait values (FD is). We further used the structure equation model (SEM) to evaluate how plant richness, biomass, functional diversity, and soil properties affect soil fungal diversity in sandy grassland restoration. Soil fungal richness in mobile dune and semifixed dune was markedly lower than those of fixed dune and grassland (P < 0.05). Soil fungal richness was positively associated with plant richness, biomass, CWM plant height, and soil gradient aggregated from the principal component analysis, but SEM results showed that plant richness and CWM plant height determined by soil properties were the main factors exerting direct effects. Soil gradient increased fungal richness through indirect effect on vegetation rather than direct effect. The negative indirect effect of FDis on soil fungal richness was through its effect on plant biomass. Our final SEM model based on plant functional diversity explained nearly 70% variances of soil fungal richness. Strong association of soil fungal richness with the dominant species in the community supported the mass ratio hypothesis. Our results clearly highlight the role of plant functional diversity in enhancing associations of soil fungal diversity with community structure and soil properties in sandy grassland ecosystems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA