RESUMO
Climate change will likely shift plant and microbial distributions, creating geographic mismatches between plant hosts and essential microbial symbionts (e.g., ectomycorrhizal fungi, EMF). The loss of historical interactions, or the gain of novel associations, can have important consequences for biodiversity, ecosystem processes, and plant migration potential, yet few analyses exist that measure where mycorrhizal symbioses could be lost or gained across landscapes. Here, we examine climate change impacts on tree-EMF codistributions at the continent scale. We built species distribution models for 400 EMF species and 50 tree species, integrating fungal sequencing data from North American forest ecosystems with tree species occurrence records and long-term forest inventory data. Our results show the following: 1) tree and EMF climate suitability to shift toward higher latitudes; 2) climate shifts increase the size of shared tree-EMF habitat overall, but 35% of tree-EMF pairs are at risk of declining habitat overlap; 3) climate mismatches between trees and EMF are projected to be greater at northern vs. southern boundaries; and 4) tree migration lag is correlated with lower richness of climatically suitable EMF partners. This work represents a concentrated effort to quantify the spatial extent and location of tree-EMF climate envelope mismatches. Our findings also support a biotic mechanism partially explaining the failure of northward tree species migrations with climate change: reduced diversity of co-occurring and climate-compatible EMF symbionts at higher latitudes. We highlight the conservation implications for identifying areas where tree and EMF responses to climate change may be highly divergent.
Assuntos
Mudança Climática , Micorrizas , Simbiose , Árvores , Micorrizas/fisiologia , Árvores/microbiologia , América do Norte , Florestas , Biodiversidade , EcossistemaRESUMO
Demand for agricultural land is a potent accelerating driver of global deforestation, presenting multiple interacting issues at different spatiotemporal scales. Here we show that inoculating the root system of tree planting stock with edible ectomycorrhizal fungi (EMF) can reduce the food-forestry land-use conflict, enabling appropriately managed forestry plantations to contribute to protein and calorie production and potentially increasing carbon sequestration. Although, when compared to other food groups, we show that EMF cultivation is inefficient in terms of land use with a needed area of ~668 m2 y kg-1 protein, the additional benefits are vast. Depending on the habitat type and tree age, greenhouse gas emissions may range from -858 to 526 kg CO2-eq kg-1 protein and the sequestration potential stands in stark contrast to nine other major food groups. Further, we calculate the missed food production opportunity of not incorporating EMF cultivation into current forestry activities, an approach that could enhance food security for millions of people. Given the additional biodiversity, conservational and rural socioeconomic potential, we call for action and development to realize the sustainable benefits of EMF cultivation.
Assuntos
Agricultura Florestal , Micorrizas , Humanos , Carbono , Mudança Climática , Conservação dos Recursos Naturais , Agricultura , Árvores , Produtos Agrícolas , Sequestro de CarbonoRESUMO
Temperate forests are threatened by urbanization and fragmentation, with over 20% (118,300 km2) of U.S. forest land projected to be subsumed by urban land development. We leveraged a unique, well-characterized urban-to-rural and forest edge-to-interior gradient to identify the combined impact of these two land use changes-urbanization and forest edge creation-on the soil microbial community in native remnant forests. We found evidence of mutualism breakdown between trees and their fungal root mutualists [ectomycorrhizal (ECM) fungi] with urbanization, where ECM fungi colonized fewer tree roots and had less connectivity in soil microbiome networks in urban forests compared to rural forests. However, urbanization did not reduce the relative abundance of ECM fungi in forest soils; instead, forest edges alone led to strong reductions in ECM fungal abundance. At forest edges, ECM fungi were replaced by plant and animal pathogens, as well as copiotrophic, xenobiotic-degrading, and nitrogen-cycling bacteria, including nitrifiers and denitrifiers. Urbanization and forest edges interacted to generate new "suites" of microbes, with urban interior forests harboring highly homogenized microbiomes, while edge forest microbiomes were more heterogeneous and less stable, showing increased vulnerability to low soil moisture. When scaled to the regional level, we found that forest soils are projected to harbor high abundances of fungal pathogens and denitrifying bacteria, even in rural areas, due to the widespread existence of forest edges. Our results highlight the potential for soil microbiome dysfunction-including increased greenhouse gas production-in temperate forest regions that are subsumed by urban expansion, both now and in the future.
Assuntos
Micorrizas , Simbiose , Animais , Urbanização , Florestas , SoloRESUMO
Nitrogen (N) resorption is an important pathway of N conservation, contributing to an important proportion of plant N requirement. However, whether the ratio of N resorption to N requirement may be affected by environmental factors, mycorrhizal types or atmospheric CO2 concentration remains unclear. Here, we conducted a meta-analysis on the impacts of environmental factors and mycorrhizal types on this ratio. We found this ratio in ectomycorrhizal (EM) trees decreased with mean annual precipitation, mean annual temperature, soil total N content and atmospheric CO2 concentration and was significantly lower than that in arbuscular mycorrhizal (AM) trees. An in situ 15 N tracing experiment further confirmed that AM trees have a stronger reliance on N resorption than EM trees. Our study suggests that AM and EM trees potentially have different strategies for alleviation of progressive N limitation, highlighting the necessity of incorporating plant mycorrhizal types into Earth System Models.
Assuntos
Micorrizas , Árvores , Nitrogênio/metabolismo , Dióxido de Carbono/metabolismo , Plantas , Solo , Microbiologia do Solo , Florestas , Raízes de Plantas/metabolismoRESUMO
Colonization by Ectomycorrhizal (EcM) fungi is key for the health and performance of plants under different stress scenarios, such as those faced by trees in urban environments. Because urban environments can be lacking EcM fungi, we here assessed the benefits of inoculating Tilia tomentosa seedlings in a pre-transplantation nursery context with the EcM fungi Lactarius deliciosus and Paxillus involutus, using substrates of different pH and facing water-stress. P. involutus had a more evident positive effect in T. tomentosa seedlings and had a good performance in both acidic and alkaline substrate. In acidic substrate the fungus increased the plant height by 0.91-fold, increased the mycorrhization rate by 3.23-fold, expansion rate by 5.03-fold and formation of secondary roots by 0.46-fold, compared to the non-inoculated control. This species also improved the phosphorus content of leaves, which revealed a promotion of nutrient uptake. In alkaline substrate P. involutus increased root dry weight by 3.92-fold and the mycorrhization parameters. In contrast, L. deliciosus only had a positive effect in the improvement of mycorrhization and expansion rates and phosphorus content in the root, effects visible only in alkaline substrate. When exposed to water-stress the increase of proline content was visible in acidic substrate for both fungi, L. deliciosus and P. involutus, and in alkaline substrate for the fungus P. involutus, a response indicative of the enhancement of defenses in stressing scenarios such as water scarcity. We conclude that fungal inoculation improves the vigour and resilience of Tilia seedlings and that it is of utmost importance to select a suitable EcM fungus and to consider the soil pH of the transplanting site. The inoculation approach can be a valuable tool to produce robust seedlings which may have a better performance when transplanted to the challenging urban environment.
Assuntos
Micorrizas , Plântula , Tilia , Micorrizas/fisiologia , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Concentração de Íons de Hidrogênio , Tilia/microbiologia , Tilia/metabolismo , Basidiomycota/fisiologia , Desidratação , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismoRESUMO
Research on mycorrhizal symbiosis has been slowed by a lack of established study systems. To address this challenge, we have been developing Suillus, a widespread ecologically and economically relevant fungal genus primarily associated with the plant family Pinaceae, into a model system for studying ectomycorrhizal (ECM) associations. Over the last decade, we have compiled extensive genomic resources, culture libraries, a phenotype database, and protocols for manipulating Suillus fungi with and without their tree partners. Our efforts have already resulted in a large number of publicly available genomes, transcriptomes, and respective annotations, as well as advances in our understanding of mycorrhizal partner specificity and host communication, fungal and plant nutrition, environmental adaptation, soil nutrient cycling, interspecific competition, and biological invasions. Here, we highlight the most significant recent findings enabled by Suillus, present a suite of protocols for working with the genus, and discuss how Suillus is emerging as an important model to elucidate the ecology and evolution of ECM interactions.
Assuntos
Evolução Biológica , Modelos Biológicos , Micorrizas , Micorrizas/fisiologia , Micorrizas/genética , Ecologia , Simbiose/genética , Basidiomycota/fisiologia , Basidiomycota/genéticaRESUMO
Mycorrhizal symbiosis, seed dispersal, and pollination are recognized as the most prominent mutualistic interactions in terrestrial ecosystems. However, it remains unclear how these symbiotic relationships have interacted to contribute to current plant diversity. We analyzed evolutionary relationships among mycorrhizal type, seed dispersal mode, and pollination mode in two global databases of 699 (database I) and 10 475 (database II) tree species. Although database II had been estimated from phylogenetic patterns and therefore had lower certainty of the mycorrhizal type than database I, whose mycorrhizal type was determined by direct observation, database II allowed analysis of many more taxa from more regions than database I. We found evidence of joint evolution of all three features in both databases. This result is robust to the effects of both sampling bias and missing taxa. Most arbuscular mycorrhizal-associated trees had endozoochorous (biotic) seed dispersal and biotic pollination, with long dispersal distances, whereas most ectomycorrhizal-associated trees had anemochorous (abiotic) seed dispersal and wind (abiotic) pollination mode, with shorter dispersal distances. These results provide a novel scenario in mutualistic interactions, seed dispersal, pollination, and mycorrhizal symbiosis types, which have jointly evolved and shaped current tree diversity and forest ecosystem world-wide.
Assuntos
Evolução Biológica , Micorrizas , Polinização , Dispersão de Sementes , Simbiose , Árvores , Micorrizas/fisiologia , Simbiose/fisiologia , Polinização/fisiologia , Dispersão de Sementes/fisiologia , Árvores/microbiologia , Árvores/fisiologia , FilogeniaRESUMO
The mutualistic interaction between ectomycorrhizal fungi and trees is characterized by the coordinated exchange of soil nutrients with soluble sugars. Despite the importance of this process, the precise mechanism by which sugars are transported from host roots to colonizing hyphae remains unclear. This study aimed to identify the specific membrane transporters responsible for the unloading of sugars at the symbiotic interface, with a focus on the role of the root Sugars Will Eventually Be Exported Transporter (SWEET) uniporters. Our study used RNA sequencing and quantitative PCR to identify PtaSWEET gene expression in Populus tremula × alba-Laccaria bicolor ectomycorrhizal root tips. Our results suggest that symbiosis-induced PtaSWEET1c is primarily responsible for transporting glucose and sucrose, as demonstrated by the yeast assays. Moreover, we used a promoter-YFP reporter to confirm the localization of the PtaSWEET1c expression in cortical cells of ectomycorrhizal rootlets, supporting its major role in supplying glucose at the symbiotic interface. Furthermore, our observations confirmed the localization of PtaSWEET1c-GFP in the plasma membrane. The inactivation of PtaSWEET1c reduced ectomycorrhizal root formation and 13C translocation to ectomycorrhizal roots. Our findings highlight the crucial role of PtaSWEET1c in facilitating glucose and sucrose transport at the symbiotic interface of Populus-L. bicolor symbiosis.
RESUMO
The development of terrestrial ecosystems depends greatly on plant mutualists such as mycorrhizal fungi. The global retreat of glaciers exposes nutrient-poor substrates in extreme environments and provides a unique opportunity to study early successions of mycorrhizal fungi by assessing their dynamics and drivers. We combined environmental DNA metabarcoding and measurements of local conditions to assess the succession of mycorrhizal communities during soil development in 46 glacier forelands around the globe, testing whether dynamics and drivers differ between mycorrhizal types. Mycorrhizal fungi colonized deglaciated areas very quickly (< 10 yr), with arbuscular mycorrhizal fungi tending to become more diverse through time compared to ectomycorrhizal fungi. Both alpha- and beta-diversity of arbuscular mycorrhizal fungi were significantly related to time since glacier retreat and plant communities, while microclimate and primary productivity were more important for ectomycorrhizal fungi. The richness and composition of mycorrhizal communities were also significantly explained by soil chemistry, highlighting the importance of microhabitat for community dynamics. The acceleration of ice melt and the modifications of microclimate forecasted by climate change scenarios are expected to impact the diversity of mycorrhizal partners. These changes could alter the interactions underlying biotic colonization and belowground-aboveground linkages, with multifaceted impacts on soil development and associated ecological processes.
Assuntos
Biodiversidade , Camada de Gelo , Micorrizas , Micorrizas/fisiologia , Camada de Gelo/microbiologia , Solo/química , Microclima , Microbiologia do SoloRESUMO
Ectomycorrhizal fungi are essential for nitrogen (N) cycling in many temperate forests and responsive to anthropogenic N addition, which generally decreases host carbon (C) allocation to the fungi. In the boreal region, however, ectomycorrhizal fungal biomass has been found to correlate positively with soil N availability. Still, responses to anthropogenic N input, for instance through atmospheric deposition, are commonly negative. To elucidate whether variation in N supply affects ectomycorrhizal fungi differently depending on geographical context, we investigated ectomycorrhizal fungal communities along fertility gradients located in two nemo-boreal forest regions with similar ranges in soil N : C ratios and inorganic N availability but contrasting rates of N deposition. Ectomycorrhizal biomass and community composition remained relatively stable across the N gradient with low atmospheric N deposition, but biomass decreased and the community changed more drastically with increasing N availability in the gradient subjected to higher rates of N deposition. Moreover, potential activities of enzymes involved in ectomycorrhizal mobilisation of organic N decreased as N availability increased. In forests with low external input, we propose that stabilising feedbacks in tree-fungal interactions maintain ectomycorrhizal fungal biomass and communities even in N-rich soils. By contrast, anthropogenic N input seems to impair ectomycorrhizal functions.
Assuntos
Biomassa , Florestas , Micorrizas , Nitrogênio , Solo , Micorrizas/fisiologia , Nitrogênio/metabolismo , Solo/química , Microbiologia do SoloRESUMO
Mycorrhizal symbioses between plants and fungi are vital for the soil structure, nutrient cycling, plant diversity, and ecosystem sustainability. More than 250 000 plant species are associated with mycorrhizal fungi. Recent advances in genomics and related approaches have revolutionized our understanding of the biology and ecology of mycorrhizal associations. The genomes of 250+ mycorrhizal fungi have been released and hundreds of genes that play pivotal roles in regulating symbiosis development and metabolism have been characterized. rDNA metabarcoding and metatranscriptomics provide novel insights into the ecological cues driving mycorrhizal communities and functions expressed by these associations, linking genes to ecological traits such as nutrient acquisition and soil organic matter decomposition. Here, we review genomic studies that have revealed genes involved in nutrient uptake and symbiosis development, and discuss adaptations that are fundamental to the evolution of mycorrhizal lifestyles. We also evaluated the ecosystem services provided by mycorrhizal networks and discuss how mycorrhizal symbioses hold promise for sustainable agriculture and forestry by enhancing nutrient acquisition and stress tolerance. Overall, unraveling the intricate dynamics of mycorrhizal symbioses is paramount for promoting ecological sustainability and addressing current pressing environmental concerns. This review ends with major frontiers for further research.
Assuntos
Agricultura , Ecologia , Genômica , Micorrizas , Simbiose , Micorrizas/fisiologia , Micorrizas/genética , Simbiose/genética , Pesquisa , Plantas/microbiologiaRESUMO
It has been proposed that ectomycorrhizal fungi can reduce decomposition while arbuscular mycorrhizal fungi may enhance it. These phenomena are known as the 'Gadgil effect' and 'priming effect', respectively. However, it is unclear which one predominates globally. We evaluated whether mycorrhizal fungi decrease or increase decomposition, and identified conditions that mediate this effect. We obtained decomposition data from 43 studies (97 trials) conducted in field or laboratory settings that controlled the access of mycorrhizal fungi to substrates colonized by saprotrophs. Across studies, mycorrhizal fungi promoted decomposition of different substrates by 6.7% overall by favoring the priming effect over the Gadgil effect. However, we observed significant variation among studies. The substrate C : N ratio and absolute latitude influenced the effect of mycorrhizal fungi on decomposition and contributed to the variation. Specifically, mycorrhizal fungi increased decomposition at low substrate C : N and absolute latitude, but there was no discernable effect at high values. Unexpectedly, the effect of mycorrhizal fungi was not influenced by the mycorrhizal type. Our findings challenge previous assumptions about the universality of the Gadgil effect but highlight the potential of mycorrhizal fungi to negatively influence soil carbon storage by promoting the priming effect.
Los hongos ectomicorrízicos puden reducir la descomposición mientras que los hongos micorrízicoarbusculares pueden potenciarla. Ambos fenómenos son conocidos como "Gadgil effect" y "priming effect", respectivamente. Sin embargo, no es claro cuál predomina mundialmente. En este trabajo evaluamos si los hongos micorrízicos disminuyen o promueven la descomposición, e identificamos las condiciones que regulan este efecto. Para ello, recopilamos datos de descomposición de 43 estudios (97 observaciones) realizados en condiciones de campo o laboratorio que controlaron el acceso de los hongos micorrízicos a sustratos colonizados por saprótrofos. Los hongos micorrízicos promovieron la descomposición de diferentes sustratos en un 6.7%. Sin embargo, observamos una variación significativa entre estudios. La relación C : N del sustrato y la latitud influyeron en el efecto de los hongos micorrícicos sobre la descomposición y contribuyeron a la variabilidad. Específicamente, los hongos micorrízicos aumentaron la descomposición a valores bajos de C : N del sustrato y latitud, pero no hubo un efecto discernible en valores altos. Inesperadamente, el tipo de micorriza no influyó en el efecto de los hongos micorrízicos. Nuestros hallazgos cuestionan la universalidad del Gadgil effect, y resaltan el potencial de los hongos micorrízicos para influir negativamente en el almacenamiento de carbono del suelo al promover el priming effect.
Assuntos
Micorrizas , Micorrizas/fisiologia , Solo/química , Carbono/metabolismo , Nitrogênio/metabolismoRESUMO
Decades of studies have demonstrated links between biodiversity and ecosystem functioning, yet the generality of the relationships and the underlying mechanisms remain unclear, especially for forest ecosystems. Using 11 tree-diversity experiments, we tested tree species richness-community productivity relationships and the role of arbuscular (AM) or ectomycorrhizal (ECM) fungal-associated tree species in these relationships. Tree species richness had a positive effect on community productivity across experiments, modified by the diversity of tree mycorrhizal associations. In communities with both AM and ECM trees, species richness showed positive effects on community productivity, which could have resulted from complementarity between AM and ECM trees. Moreover, both AM and ECM trees were more productive in mixed communities with both AM and ECM trees than in communities assembled by their own mycorrhizal type of trees. In communities containing only ECM trees, species richness had a significant positive effect on productivity, whereas species richness did not show any significant effects on productivity in communities containing only AM trees. Our study provides novel explanations for variations in diversity-productivity relationships by suggesting that tree-mycorrhiza interactions can shape productivity in mixed-species forest ecosystems.
Assuntos
Biodiversidade , Micorrizas , Árvores , Micorrizas/fisiologia , Árvores/microbiologia , Especificidade da EspécieRESUMO
Forest soils play a pivotal role as global carbon (C) sinks, where the dynamics of soil organic matter (SOM) are significantly influenced by ectomycorrhizal (ECM) fungi. While correlations between ECM fungal community composition and soil C storage have been documented, the underlying mechanisms behind this remain unclear. Here, we conducted controlled experiments using pure cultures growing on naturally complex SOM extracts to test how ECM fungi regulate soil C and nitrogen (N) dynamics in response to varying inorganic N availability, in both monoculture and mixed culture conditions. ECM species dominant in N-poor soils exhibited superior SOM decay capabilities compared with those prevalent in N-rich soils. Inorganic N addition alleviated N limitation for ECM species but exacerbated their C limitation, reflected by reduced N compound decomposition and increased C compound decomposition. In mixed cultures without inorganic N supplementation, ECM species with greater SOM decomposition potential facilitated the persistence of less proficient SOM decomposers. Regardless of inorganic N availability, ECM species in mixed cultures demonstrated a preference for C over N, intensifying relatively labile C compound decomposition. This study highlights the complex interactions between ECM species, their nutritional requirements, the nutritional environment of their habitat, and their role in modifying SOM.
RESUMO
Root-associated fungi (RAF) and root traits regulate plant acquisition of nitrogen (N), which is limiting to growth in Arctic ecosystems. With anthropogenic warming, a new N source from thawing permafrost has the potential to change vegetation composition and increase productivity, influencing climate feedbacks. Yet, the impact of warming on tundra plant root traits, RAF, and access to permafrost N is uncertain. We investigated the relationships between RAF, species-specific root traits, and uptake of N from the permafrost boundary by tundra plants experimentally warmed for nearly three decades at Toolik Lake, Alaska. Warming increased acquisitive root traits of nonmycorrhizal and mycorrhizal plants. RAF community composition of ericoid (ERM) but not ectomycorrhizal (ECM) shrubs was impacted by warming and correlated with root traits. RAF taxa in the dark septate endophyte, ERM, and ECM guilds strongly correlated with permafrost N uptake for ECM and ERM shrubs. Overall, a greater proportion of variation in permafrost N uptake was related to root traits than RAF. Our findings suggest that warming Arctic ecosystems will result in interactions between roots, RAF, and newly thawed permafrost that may strongly impact feedbacks to the climate system through mechanisms of carbon and N cycling.
Assuntos
Micorrizas , Nitrogênio , Pergelissolo , Raízes de Plantas , Tundra , Nitrogênio/metabolismo , Raízes de Plantas/microbiologia , Pergelissolo/microbiologia , Micorrizas/fisiologia , Fungos/fisiologia , Característica Quantitativa Herdável , Temperatura , Especificidade da EspécieRESUMO
Inbreeding, the mating of individuals that are related through common ancestry, is of central importance in evolutionary and conservation biology due to its impacts on individual fitness and population dynamics. However, while advanced genomic approaches have revolutionised the study of inbreeding in animals, genomic studies of inbreeding are rare in plants and lacking in fungi. We investigated global patterns of inbreeding in the prized edible porcini mushroom Boletus edulis using 225 whole genomes from seven lineages distributed across the northern hemisphere. Genomic inbreeding was quantified using runs of homozygosity (ROHs). We found appreciable variation both among and within lineages, with some individuals having over 20% of their genomes in ROHs. Much of this variation could be explained by a combination of elevation and latitude, and to a lesser extent by predicted habitat suitability during the last glacial maximum. In line with this, the majority of ROHs were short, reflecting ancient common ancestry dating back approximately 200-1700 generations ago, while longer ROHs indicative of recent common ancestry (less than approximately 50 generations ago) were infrequent. Our study reveals the inbreeding legacy of major climatic events in a widely distributed forest mutualist, aligning with prevailing theories and empirical studies of the impacts of historical glaciation events on the dominant forest tree species of the northern hemisphere.
Assuntos
Genética Populacional , Homozigoto , Endogamia , Agaricales/genéticaRESUMO
Ectomycorrhizal fungi (ECMFs) that are involved in phosphorus mobilisation and turnover have limited ability to mineralise phytate alone. The endofungal bacteria in the ectomycorrhizal fruiting body may contribute to achieving this ecological function of ECMFs. We investigated the synergistic effect and mechanisms of endofungal bacteria and ECMF Suillus grevillea on phytate mineralisation. The results showed that soluble phosphorus content in the combined system of endofungal bacterium Cedecea lapagei and S. grevillea was 1.8 times higher than the sum of C. lapagei and S. grevillea alone treatment under the phytate mineralisation experiment. The S. grevillea could first chemotactically assist C. lapagei in adhering to the surface of S. grevillea. Then, the mineralisation of phytate was synergistically promoted by increasing the biomass of C. lapagei and the phosphatase and phytase activities of S. grevillea. The expression of genes related to chemotaxis, colonisation, and proliferation of C. lapagei and genes related to phosphatase and phytase activity of S. grevillea was also significantly upregulated. Furthermore, in the pot experiment, we verified that there might exist a ternary symbiotic system in the natural forest in which endofungal bacteria and ECMFs could synergistically promote phytate uptake in the plant Pinus massoniana via the ectomycorrhizal system.
Assuntos
6-Fitase , Micorrizas , Pinus , Micorrizas/metabolismo , Pinus/metabolismo , Fósforo/metabolismo , 6-Fitase/metabolismo , Ácido Fítico/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Bactérias/metabolismoRESUMO
Nitrogen (N) immobilization (Nim, including microbial N assimilation) and plant N uptake (PNU) are the two most important pathways of N retention in soils. The ratio of Nim to PNU (hereafter Nim:PNU ratio) generally reflects the degree of N limitation for plant growth in terrestrial ecosystems. However, the key factors driving the pattern of Nim:PNU ratio across global ecosystems remain unclear. Here, using a global data set of 1018 observations from 184 studies, we examined the relative importance of mycorrhizal associations, climate, plant, and soil properties on the Nim:PNU ratio across terrestrial ecosystems. Our results show that mycorrhizal fungi type (arbuscular mycorrhizal (AM) or ectomycorrhizal (EM) fungi) in combination with soil inorganic N mainly explain the global variation in the Nim:PNU ratio in terrestrial ecosystems. In AM fungi-associated ecosystems, the relationship between Nim and PNU displays a weaker negative correlation (r = -.06, p < .001), whereas there is a stronger positive correlation (r = .25, p < .001) in EM fungi-associated ecosystems. Our meta-analysis thus suggests that the AM-associated plants display a weak interaction with soil microorganisms for N absorption, while EM-associated plants cooperate with soil microorganisms. Furthermore, we find that the Nim:PNU ratio for both AM- and EM-associated ecosystems gradually converge around a stable value (13.8 ± 0.5 for AM- and 12.1 ± 1.2 for EM-associated ecosystems) under high soil inorganic N conditions. Our findings highlight the dependence of plant-microbial interaction for N absorption on both plant mycorrhizal association and soil inorganic N, with the stable convergence of the Nim:PNU ratio under high soil N conditions.
Assuntos
Micorrizas , Nitrogênio , Microbiologia do Solo , Solo , Micorrizas/fisiologia , Micorrizas/metabolismo , Nitrogênio/metabolismo , Solo/química , Plantas/metabolismo , Plantas/microbiologia , EcossistemaRESUMO
In the midwestern United States, models predict extended summer heatwaves and increasingly frequent and prolonged drought conditions. In the Chicago region, the potential for large-scale mortality of white oak trees (Quercus alba) coupled with the ongoing decline of white oak sapling recruitment are major concerns for researchers and practitioners. In this study, we determined the sources of water used by mature white oak trees and saplings in three qualitatively different sites within a remnant oak forest in Chicago during the 2021 drought. We investigated soil moisture dynamics (volumetric water content, VWC) and water isotope composition of leaf tissues (δD, δ18O), rainwater, and groundwater. These data were linked to sapling height (proxy for biomass) and ectomycorrhizal (ECM) functional types. We predicted that: (i) mature oak trees use deeper water sources and conducted hydraulic redistribution (HR), and (ii) mature trees shared water with saplings during dry periods via long-distance ECM functional types. Soil moisture decreased progressively from June to October (spring to fall), with August and September having the lowest moisture (<20 % VWC). Following rainfall recharge, temporal patterns of soil moisture showed gravity drainage and then ongoing stair-stepwise drawdown consistent with plant evapotranspiration. Leaf δD and δ18O values in mature trees and saplings were consistent with water uptake from rainfall and subsequent enrichment via evapotranspiration. In two sites, mature trees and saplings demonstrated distinct δD: δ18O slopes, with mature trees more enriched than saplings. In the third site, mature trees and saplings δD: δ18O slopes overlapped but here, the ECM community was dominated by contact-type ECM and sapling height increased with distance from the mature oak. Our findings indicate that HR was not a component of site ecohydrology, and future climate conditions may present increasing challenges for white oak recruitment as both mature trees and saplings compete for limited rainfall-derived soil moisture.
RESUMO
Terrestrial plants form primarily mutualistic symbiosis with mycorrhizal fungi based on a compatible exchange of solutes between plant and fungal partners. A key attribute of this symbiosis is the acquisition of soil nutrients by the fungus for the benefit of the plant in exchange for a carbon supply to the fungus. The interaction can range from mutualistic to parasitic depending on environmental and physiological contexts. This review considers current knowledge of the functionality of ectomycorrhizal (EM) symbiosis in the mobilisation and acquisition of soil nitrogen (N) in northern hemisphere forest ecosystems, highlighting the functional diversity of the fungi and the variation of symbiotic benefits, including the dynamics of N transfer to the plant. It provides an overview of recent advances in understanding 'mycorrhizal decomposition' for N release from organic or mineral-organic forms. Additionally, it emphasises the taxon-specific traits of EM fungi in soil N uptake. While the effects of EM communities on tree N are likely consistent across different communities regardless of species composition, the sink activities of various fungal taxa for tree carbon and N resources drive the dynamic continuum of mutualistic interactions. We posit that ectomycorrhizas contribute in a species-specific but complementary manner to benefit tree N nutrition. Therefore, alterations in diversity may impact fungal-plant resource exchange and, ultimately, the role of ectomycorrhizas in tree N nutrition. Understanding the dynamics of EM functions along the mutualism-parasitism continuum in forest ecosystems is essential for the effective management of ecosystem restoration and resilience amidst climate change. KEY POINTS: ⢠Mycorrhizal symbiosis spans a continuum from invested to appropriated benefits. ⢠Ectomycorrhizal fungal communities exhibit a high functional diversity. ⢠Tree nitrogen nutrition benefits from the diversity of ectomycorrhizal fungi.