Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Genomics ; 116(3): 110834, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38527595

RESUMO

The edgeR (Robust) is a popular approach for identifying differentially expressed genes (DEGs) from RNA-Seq profiles. However, it shows weak performance against gene-specific outliers and is unable to handle missing observations. To address these issues, we proposed a pre-processing approach of RNA-Seq count data by combining the iLOO-based outlier detection and random forest-based missing imputation approach for boosting the performance of edgeR (Robust). Both simulation and real RNA-Seq count data analysis results showed that the proposed edgeR (Robust) outperformed than the conventional edgeR (Robust). To investigate the effectiveness of identified DEGs for diagnosis, and therapies of ovarian cancer (OC), we selected top-ranked 12 DEGs (IL6, XCL1, CXCL8, C1QC, C1QB, SNAI2, TYROBP, COL1A2, SNAP25, NTS, CXCL2, and AGT) and suggested hub-DEGs guided top-ranked 10 candidate drug-molecules for the treatment against OC. Hence, our proposed procedure might be an effective computational tool for exploring potential DEGs from RNA-Seq profiles for diagnosis and therapies of any disease.


Assuntos
Biomarcadores Tumorais , Neoplasias Ovarianas , RNA-Seq , Humanos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/terapia , Feminino , Biomarcadores Tumorais/genética , Software , Transcriptoma , Perfilação da Expressão Gênica
2.
BMC Genomics ; 20(1): 364, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31077153

RESUMO

BACKGROUND: Data normalization and identification of significant differential expression represent crucial steps in RNA-Seq analysis. Many available tools rely on assumptions that are often not met by real data, including the common assumption of symmetrical distribution of up- and down-regulated genes, the presence of only few differentially expressed genes and/or few outliers. Moreover, the cut-off for selecting significantly differentially expressed genes for further downstream analysis often depend on arbitrary choices. RESULTS: We here introduce a new tool for estimating differential expression in noisy real-life data. It employs a novel normalization procedure (qtotal), which takes account of the overall distribution of read counts for data standardization enhancing reliable identification of differential gene expression, especially in case of asymmetrical distributions of up- and downregulated genes. The tool then introduces a polynomial algorithm (aFold) to model the uncertainty of read counts across treatments and genes. We extensively benchmark aFold on a variety of simulated and validated real-life data sets (e.g. ABRF, SEQC and MAQC-II) and show a higher ability to correctly identify differentially expressed genes under most tested conditions. aFold infers fold change values that are comparable across experiments, thereby facilitating data clustering, visualization, and other downstream applications. CONCLUSIONS: We here present a new transcriptomics analysis tool that includes both a data normalization method and a differential expression analysis approach. The new tool is shown to enhance reliable identification of significant differential expression across distinct data distributions. It outcompetes alternative procedures in case of asymmetrical distributions of up- versus down-regulated genes and also the presence of outliers, all common to real data sets.


Assuntos
Encéfalo/metabolismo , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Modelos Estatísticos , Análise de Sequência de RNA/métodos , Software , Incerteza , Humanos
3.
J Dairy Sci ; 102(2): 1761-1767, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30594374

RESUMO

The aim of this study was to elucidate the differential gene expression in the RNA sequencing transcriptome of isolated perfused udders collected from 4 slaughtered Holstein × Zebu crossbred dairy cows experimentally inoculated with Streptococcus agalactiae. We studied 3 different statistical tools (edgeR, baySeq, and Cuffdiff 2). In summary, 2 quarters of each udder were experimentally inoculated with Strep. agalactiae and the other 2 were used as a control. Mammary tissue biopsies were collected at times 0 and 3 h after infection. The total RNA was extracted and sequenced on an Illumina HiSeq 2000 (Illumina Inc., San Diego, CA). Transcripts were assembled from the reads aligned to the bovine UMD 3.1 reference genome, and the statistical analyses were performed using the previously mentioned tools (edgeR, baySeq, and Cuffdiff 2). Finally, the identified genes were submitted to pathway enrichment analysis. A total of 1,756, 1,161, and 3,389 genes with differential gene expression were identified when using edgeR, baySeq, and Cuffdiff 2, respectively. A total of 122 genes were identified by the overlapping of the 3 methods; however, only the platelet activation presented a significantly enriched pathway. From the results, we suggest the FCER1G, GNAI2, ORAI1, and VASP genes shared among the 3 methods in this pathway for posterior biological validation.


Assuntos
Glândulas Mamárias Animais/microbiologia , Mastite Bovina/genética , RNA/genética , Infecções Estreptocócicas/veterinária , Streptococcus agalactiae/fisiologia , Animais , Bovinos , Feminino , Genoma , Glândulas Mamárias Animais/metabolismo , Mastite Bovina/metabolismo , Mastite Bovina/microbiologia , RNA/metabolismo , Análise de Sequência de RNA , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/metabolismo , Infecções Estreptocócicas/microbiologia , Transcriptoma
4.
J Occup Environ Hyg ; 16(2): 101-108, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30427286

RESUMO

Air quality is a common concern among indoor ice rink facilities due to the use of gasoline/propane ice resurfacing equipment. Although previous studies have investigated spectator, guest, and skater exposures, a review of the literature revealed little published research regarding ice maintenance employees' exposures. Ice maintenance includes edging and resurfacing. The resurfacer is commonly referred to as a Zamboni®. Edging is almost always followed by resurfacing, but resurfacing frequently happens independently of edging. The purpose of this study was to characterize ice rink maintenance employees' exposures to CO and NO2. Employees from four ice rinks in Salt Lake County, Utah were sampled using direct reading instruments during routine ice maintenance activities. Maintenance was divided into four activities: 1) Edging only, 2) Resurfacing after edging (not including edging), 3) Edging and resurfacing (Activities 1 and 2 combined), and 4) Resurfacing only (independent of edging). Activities 1, 2 and 3 were sampled twenty-four (n = 24) times. Activity 4 was sampled eight times. Sampling results were graphed and summarized using descriptive statistics. The highest measured CO concentration was 202 ppm, which occurred during edging. Average CO concentrations for all activities ranged from 0 ppm to 60.4 ppm. Minimal CO exposure was observed when resurfacing occurred without edging, which implies that elevated CO exposure measured while using the resurfacer may be residual CO from prior edging activities. NO2 concentrations were negligible for all rinks and all activities. Results confirmed that gasoline edgers significantly contribute to indoor CO levels, with peak levels exceeding some recommended exposure levels. Indoor ice rink facilities should monitor employees' CO exposures and implement procedures to limit exposures. This may be achieved by limiting the number of laps taken with the edger or replacing gasoline powered edgers with electric edgers.


Assuntos
Monóxido de Carbono/análise , Manutenção , Dióxido de Nitrogênio/análise , Exposição Ocupacional/análise , Poluição do Ar em Ambientes Fechados/análise , Humanos , Patinação , Utah
5.
BMC Bioinformatics ; 19(1): 236, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29929481

RESUMO

BACKGROUND: Current normalization methods for RNA-sequencing data allow either for intersample comparison to identify differentially expressed (DE) genes or for intrasample comparison for the discovery and validation of gene signatures. Most studies on optimization of normalization methods typically use simulated data to validate methodologies. We describe a new method, GeTMM, which allows for both inter- and intrasample analyses with the same normalized data set. We used actual (i.e. not simulated) RNA-seq data from 263 colon cancers (no biological replicates) and used the same read count data to compare GeTMM with the most commonly used normalization methods (i.e. TMM (used by edgeR), RLE (used by DESeq2) and TPM) with respect to distributions, effect of RNA quality, subtype-classification, recurrence score, recall of DE genes and correlation to RT-qPCR data. RESULTS: We observed a clear benefit for GeTMM and TPM with regard to intrasample comparison while GeTMM performed similar to TMM and RLE normalized data in intersample comparisons. Regarding DE genes, recall was found comparable among the normalization methods, while GeTMM showed the lowest number of false-positive DE genes. Remarkably, we observed limited detrimental effects in samples with low RNA quality. CONCLUSIONS: We show that GeTMM outperforms established methods with regard to intrasample comparison while performing equivalent with regard to intersample normalization using the same normalized data. These combined properties enhance the general usefulness of RNA-seq but also the comparability to the many array-based gene expression data in the public domain.


Assuntos
Perfilação da Expressão Gênica/métodos , RNA/genética , Análise de Sequência de RNA/métodos , Humanos
6.
J Proteome Res ; 15(12): 4742-4746, 2016 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-27797532

RESUMO

Label-free quantitative methods are advantageous in bottom-up (shotgun) proteomics because they are robust and can easily be applied to different workflows without additional cost. Both label-based and label-free approaches are routinely applied to discovery-based proteomics experiments and are widely accepted as semiquantitative. Label-free quantitation approaches are segregated into two distinct approaches: peak-abundance-based approaches and spectral counting (SpC). Peak abundance approaches like MaxLFQ, which is integrated into the MaxQuant environment, require precursor peak alignment that is computationally intensive and cannot be routinely applied to low-resolution data. Not limited by these constraints, SpC approaches simply use the number of peptide identifications corresponding to a given protein as a measurement of protein abundance. We show here that spectral counts from multidimensional proteomic data sets have a mean-dispersion relationship that can be modeled in edgeR. Furthermore, by simulating spectral counts, we show that this approach can routinely be applied to large-scale discovery proteomics data sets to determine differential protein expression.


Assuntos
Proteômica/métodos , Fluxo de Trabalho , Bases de Dados de Proteínas , Perfilação da Expressão Gênica , Peptídeos/análise , Proteínas/análise
7.
Methods Mol Biol ; 2526: 277-288, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35657527

RESUMO

RNA sequencing is routinely used for determining transcriptome-wide expression changes during various conditions, including oxidative stress conditions. In this chapter, a basic workflow to determine differentially expressed genes between two conditions of interest is provided. After providing brief guidelines for experimental design, we provide step-by-step instructions for genome alignment of reads and differential expression analysis.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Espécies Reativas de Oxigênio/metabolismo , Análise de Sequência de RNA
8.
PeerJ ; 10: e14344, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389403

RESUMO

Background: Differential gene expression analysis using RNA sequencing technology (RNA-Seq) has become the most popular technique in transcriptome research. Although many R packages have been developed to analyze differentially expressed genes (DEGs), several evaluations have shown that no single DEG analysis method outperforms all others. The validity of DEG identification could be increased by using multiple methods and producing the consensus results. However, DEG analysis methods are complex and most of them require prior knowledge of a programming language or command-line shell. Users who do not have this knowledge need to invest time and effort to acquire it. Methods: We developed a novel web application called "bestDEG" to automatically analyze DEGs with different tools and compare the results. A differential expression (DE) analysis pipeline was created combining the edgeR, DESeq2, NOISeq, and EBSeq packages; selected because they use different statistical methods to identify DEGs. bestDEG was evaluated on human datasets from the MicroArray Quality Control (MAQC) project. Results: The performance of the bestDEG web application with the human datasets showed excellent results, and the consensus method outperformed the other DE analysis methods in terms of precision (94.71%) and specificity (97.01%). bestDEG is a rapid and efficient tool to analyze DEGs. With bestDEG, users can select DE analysis methods and parameters in the user-friendly web interface. bestDEG also provides a Venn diagram and a table of results. Moreover, the consensus method of this tool can maximize the precision or minimize the false discovery rate (FDR), which reduces the cost of gene expression validation by minimizing wet-lab experiments.


Assuntos
Perfilação da Expressão Gênica , Software , Humanos , RNA-Seq , Perfilação da Expressão Gênica/métodos , Transcriptoma , Internet
9.
Methods Mol Biol ; 2096: 89-112, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32720149

RESUMO

RNA-Seq examines global gene expression to provide insights into cellular processes, and it can be particularly informative when comparing contrasting physiological states or strains. Although relatively routine in many laboratories, there are many steps involved in performing a transcriptomics experiment to ensure representative and high-quality results are generated for analysis. In this chapter, we present the application of widely used bioinformatic methodologies to assess, trim, and filter RNA-seq reads for quality using FastQC and Trim Galore, respectively. High-quality reads are mapped using Bowtie2 and differentially expressed genes across different groups were estimated using the DEseq2 R-Bioconductor package. In addition, we describe the various steps to perform the sample-wise data quality assessment by generating exploratory plots through the DESeq2 package. Simple steps to calculate the significant differentially expressed genes, up- and down-regulated genes, and exporting the data and images are also included. A Venn diagram is a useful method to compare the differentially expressed genes across various comparisons and steps to generate the Venn diagram from DESeq2 results are provided. Finally, the output from DESeq2 is compared to published results from EdgeR. The Clostridium autoethanogenum data are published and publicly available.


Assuntos
Perfilação da Expressão Gênica/métodos , Regulação Bacteriana da Expressão Gênica , Análise por Conglomerados , Confiabilidade dos Dados , Genoma Bacteriano , Análise de Componente Principal , Controle de Qualidade , RNA-Seq , Padrões de Referência , Software
10.
Methods Mol Biol ; 1979: 425-432, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31028652

RESUMO

Differential expression analysis is an important aspect of bulk RNA sequencing (RNAseq). A lot of tools are available, and among them DESeq2 and edgeR are widely used. Since single-cell RNA sequencing (scRNAseq) expression data are zero inflated, single-cell data are quite different from those generated by conventional bulk RNA sequencing. Comparative analysis of tools used to detect differentially expressed genes between two groups of single cells showed that edgeR with quasi-likelihood F-test (QLF) outperforms other methods.In bulk RNAseq, differential expression is mainly used to compare limited number of replicates of two or more biological conditions. However, scRNAseq differential expression analysis might be also instrumental to identify the main players of cells subpopulation organization, thus requiring the use of multiple comparisons tools. Nowadays, edgeR is one of the few tools that are able to handle both zero inflated matrices and multiple comparisons. Here, we provide a guide to the use of edgeR as a tool to detect differential expression in single-cell data.


Assuntos
Perfilação da Expressão Gênica/métodos , Genômica/métodos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Software , Animais , Humanos , Transcriptoma
11.
PeerJ ; 7: e8206, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31844586

RESUMO

Extensive evaluation of RNA-seq methods have demonstrated that no single algorithm consistently outperforms all others. Removal of unwanted variation (RUV) has also been proposed as a method for stabilizing differential expression (DE) results. Despite this, it remains a challenge to run multiple RNA-seq algorithms to identify significant differences common to multiple algorithms, whilst also integrating and assessing the impact of RUV into all algorithms. consensusDE was developed to automate the process of identifying significant DE by combining the results from multiple algorithms with minimal user input and with the option to automatically integrate RUV. consensusDE only requires a table describing the sample groups, a directory containing BAM files or preprocessed count tables and an optional transcript database for annotation. It supports merging of technical replicates, paired analyses and outputs a compendium of plots to guide the user in subsequent analyses. Herein, we assess the ability of RUV to improve DE stability when combined with multiple algorithms and between algorithms, through application to real and simulated data. We find that, although RUV increased fold change stability between algorithms, it demonstrated improved FDR in a setting of low replication for the intersect, the effect was algorithm specific and diminished with increased replication, reinforcing increased replication for recovery of true DE genes. We finish by offering some rules and considerations for the application of RUV in a consensus-based setting. consensusDE is freely available, implemented in R and available as a Bioconductor package, under the GPL-3 license, along with a comprehensive vignette describing functionality: http://bioconductor.org/packages/consensusDE/.

12.
Front Genet ; 10: 356, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31139204

RESUMO

One of the key challenges for transcriptomics-based research is not only the processing of large data but also modeling the complexity of features that are sources of variation across samples, which is required for an accurate statistical analysis. Therefore, our goal is to foster access for wet lab researchers to bioinformatics tools, in order to enhance their ability to explore biological aspects and validate hypotheses with robust analysis. In this context, user-friendly interfaces can enable researchers to apply computational biology methods without requiring bioinformatics expertise. Such bespoke platforms can improve the quality of the findings by allowing the researcher to freely explore the data and test a new hypothesis with independence. Simplicity DiffExpress is a data-driven software platform dedicated to enabling non-bioinformaticians to take ownership of the differential expression analysis (DEA) step in a transcriptomics experiment while presenting the results in a comprehensible layout, which supports an efficient results exploration, information storage, and reproducibility. Simplicity DiffExpress' key component is the bespoke statistical model validation that guides the user through any necessary alteration in the dataset or model, tackling the challenges behind complex data analysis. The software utilizes edgeR, and it is implemented as part of the SimplicityTM platform, providing a dynamic interface, with well-organized results that are easy to navigate and are shareable. Computational biologists and bioinformaticians can also benefit from its use since the data validation is more informative than the usual DEA resources. Wet-lab collaborators can benefit from receiving their results in an organized interface. Simplicity DiffExpress is freely available for academic use, and it is cloud-based (https://simplicity.nsilico.com/dea).

13.
Front Physiol ; 9: 532, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29881354

RESUMO

Physical exercise stimulates organs, mainly the skeletal muscle, to release a broad range of molecules, recently dubbed exerkines. Among them, RNAs, such as miRNAs, piRNAs, and tRNAs loaded in extracellular vesicles (EVs) have the potential to play a significant role in the way muscle and other organs communicate to translate exercise into health. Low, moderate and high intensity treadmill protocols were applied to rat groups, aiming to investigate the impact of exercise on serum EVs and their associated small RNA molecules. Transmission electron microscopy, resistive pulse sensing, and western blotting were used to investigate EVs morphology, size distribution, concentration and EVs marker proteins. Small RNA libraries from EVs RNA were sequenced. Exercise did not change EVs size, while increased EVs concentration. Twelve miRNAs were found differentially expressed after exercise: rno-miR-128-3p, 103-3p, 330-5p, 148a-3p, 191a-5p, 10b-5p, 93-5p, 25-3p, 142-5p, 3068-3p, 142-3p, and 410-3p. No piRNA was found differentially expressed, and one tRNA, trna8336, was found down-regulated after exercise. The differentially expressed miRNAs were predicted to target genes involved in the MAPK pathway. A single bout of exercise impacts EVs and their small RNA load, reinforcing the need for a more detailed investigation into EVs and their load as mediators of health-promoting exercise.

14.
Methods Mol Biol ; 1709: 233-252, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29177664

RESUMO

RNA sequencing (RNA-seq) is a powerful method of transcript analysis that allows for the sequence identification and quantification of cellular transcripts. RNA-seq has many applications including differential gene expression (DE) analysis, gene fusion detection, allele-specific expression, isoform and splice variant quantification, and identification of novel genes. These applications can be used for downstream systems biology analyses such as gene ontology analysis to provide insights into cellular processes altered between biological conditions. Given the wide range of signaling pathways subject to chaperone activity as well as numerous chaperone functions in RNA metabolism, RNA-seq may provide a valuable tool for the study of chaperone proteins in biology and disease. This chapter outlines an example RNA-seq workflow to determine differentially expressed (DE) genes between two or more sample conditions and provides some considerations for RNA-seq experimental design.


Assuntos
Proteínas de Choque Térmico/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Chaperonas Moleculares/metabolismo , Análise de Sequência de RNA/métodos , Fluxo de Trabalho , Alelos , Animais , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Proteínas de Choque Térmico/genética , Humanos , Chaperonas Moleculares/genética , Splicing de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
15.
Methods Mol Biol ; 1467: 211-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27417972

RESUMO

Differential gene expression analysis has been conventionally performed by microarray techniques; however with the recent advent of next-generation sequencing (NGS) approaches, it has become easier to analyze the coding as well as the noncoding components. Additionally, NGS data analysis also provides information regarding the expression changes of specific isoforms. There are several bioinformatics tools available to analyze NGS data but with different parameters. This chapter provides a comparative insight into these tools by utilizing NGS datasets available from Wt1 knockout and embryonic stem cell line model.


Assuntos
Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Células-Tronco Embrionárias Murinas/citologia , Proteínas Repressoras/genética , Animais , Células Cultivadas , Técnicas de Inativação de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Isoformas de Proteínas/genética , Análise de Sequência de RNA , Proteínas WT1
16.
J Proteomics ; 144: 23-32, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27260494

RESUMO

UNLABELLED: The rapid development of mass spectrometry (MS) technologies has solidified shotgun proteomics as the most powerful analytical platform for large-scale proteome interrogation. The ability to map and determine differential expression profiles of the entire proteome is the ultimate goal of shotgun proteomics. Label-free quantitation has proven to be a valid approach for discovery shotgun proteomics, especially when sample is limited. Label-free spectral count quantitation is an approach analogous to RNA sequencing whereby count data is used to determine differential expression. Here we show that statistical approaches developed to evaluate differential expression in RNA sequencing experiments can be applied to detect differential protein expression in label-free discovery proteomics. This approach, termed MultiSpec, utilizes open-source statistical platforms; namely edgeR, DESeq and baySeq, to statistically select protein candidates for further investigation. Furthermore, to remove bias associated with a single statistical approach a single ranked list of differentially expressed proteins is assembled by comparing edgeR and DESeq q-values directly with the false discovery rate (FDR) calculated by baySeq. This statistical approach is then extended when applied to spectral count data derived from multiple proteomic pipelines. The individual statistical results from multiple proteomic pipelines are integrated and cross-validated by means of collapsing protein groups. BIOLOGICAL SIGNIFICANCE: Spectral count data from shotgun proteomics experiments is semi-quantitative and semi-random, yet a robust way to estimate protein concentration. Tag-count approaches are routinely used to analyze RNA sequencing data sets. This approach, termed MultiSpec, utilizes multiple tag-count based statistical tests to determine differential protein expression from spectral counts. The statistical results from these tag-count approaches are combined in order to reach a final MultiSpec q-value to re-rank protein candidates. This re-ranking procedure is completed to remove bias associated with a single approach in order to better understand the true proteomic differences driving the biology in question. The MultiSpec approach can be extended to multiple proteomic pipelines. In such an instance, MultiSpec statistical results are integrated by collapsing protein groups across proteomic pipelines to provide a single ranked list of differentially expressed proteins. This integration mechanism is seamlessly integrated with the statistical analysis and provides the means to cross-validate protein inferences from multiple proteomic pipelines.


Assuntos
Perfilação da Expressão Gênica/métodos , Espectrometria de Massas/métodos , Modelos Estatísticos , Proteoma/análise , Proteômica/métodos , Teorema de Bayes , Perfilação da Expressão Gênica/estatística & dados numéricos , Funções Verossimilhança , Espectrometria de Massas/estatística & dados numéricos , Proteômica/estatística & dados numéricos , Reprodutibilidade dos Testes , Ferramenta de Busca , Software , Coloração e Rotulagem
17.
Front Genet ; 7: 164, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27695478

RESUMO

In the past 5 years, RNA-Seq has become a powerful tool in transcriptome analysis even though computational methods dedicated to the analysis of high-throughput sequencing data are yet to be standardized. It is, however, now commonly accepted that the choice of a normalization procedure is an important step in such a process, for example in differential gene expression analysis. The present article highlights the similarities between three normalization methods: TMM from edgeR R package, RLE from DESeq2 R package, and MRN. Both TMM and DESeq2 are widely used for differential gene expression analysis. This paper introduces properties that show when these three methods will give exactly the same results. These properties are proven mathematically and illustrated by performing in silico calculations on a given RNA-Seq data set.

18.
Genes Brain Behav ; 15(5): 474-90, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27063791

RESUMO

Hedonic substitution, where wheel running reduces voluntary ethanol consumption, has been observed in prior studies. Here, we replicate and expand on previous work showing that mice decrease voluntary ethanol consumption and preference when given access to a running wheel. While earlier work has been limited mainly to behavioral studies, here we assess the underlying molecular mechanisms that may account for this interaction. From four groups of female C57BL/6J mice (control, access to two-bottle choice ethanol, access to a running wheel, and access to both two-bottle choice ethanol and a running wheel), mRNA-sequencing of the striatum identified differential gene expression. Many genes in ethanol preference quantitative trait loci were differentially expressed due to running. Furthermore, we conducted Weighted Gene Co-expression Network Analysis and identified gene networks corresponding to each effect behavioral group. Candidate genes for mediating the behavioral interaction between ethanol consumption and wheel running include multiple potassium channel genes, Oprm1, Prkcg, Stxbp1, Crhr1, Gabra3, Slc6a13, Stx1b, Pomc, Rassf5 and Camta2. After observing an overlap of many genes and functional groups previously identified in studies of initial sensitivity to ethanol, we hypothesized that wheel running may induce a change in sensitivity, thereby affecting ethanol consumption. A behavioral study examining Loss of Righting Reflex to ethanol following exercise trended toward supporting this hypothesis. These data provide a rich resource for future studies that may better characterize the observed transcriptional changes in gene networks in response to ethanol consumption and wheel running.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Corpo Estriado/metabolismo , Redes Reguladoras de Genes , Esforço Físico/genética , Transcriptoma , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas Reguladoras de Apoptose , Proteínas de Ligação a Calmodulina/metabolismo , Corpo Estriado/fisiologia , Feminino , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Canais de Potássio/genética , Canais de Potássio/metabolismo , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/metabolismo , Receptores de Hormônio Liberador da Corticotropina/genética , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Corrida , Sintaxina 1/genética , Sintaxina 1/metabolismo , Transativadores/metabolismo
19.
J Comp Neurol ; 523(4): 649-68, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25349106

RESUMO

Avian photoreceptors are a diverse class of neurons, comprised of four single cones, the two members of the double cone, and rods. The signaling events and transcriptional regulators driving the differentiation of these diverse photoreceptors are largely unknown. In addition, many distinctive features of photoreceptor subtypes, including spectral tuning, oil droplet size and pigmentation, synaptic targets, and spatial patterning, have been well characterized, but the molecular mechanisms underlying these attributes have not been explored. To identify genes specifically expressed in distinct chicken (Gallus gallus) photoreceptor subtypes, we developed fluorescent reporters that label photoreceptor subpopulations, isolated these subpopulations by using fluorescence-activated cell sorting, and subjected them to next-generation sequencing. By comparing the expression profiles of photoreceptors labeled with rhodopsin, red opsin, green opsin, and violet opsin reporters, we have identified hundreds of differentially expressed genes that may underlie the distinctive features of these photoreceptor subtypes. These genes are involved in a variety of processes, including phototransduction, transcriptional regulation, cell adhesion, maintenance of intra- and extracellular structure, and metabolism. Of particular note are a variety of differentially expressed transcription factors, which may drive and maintain photoreceptor diversity, and cell adhesion molecules, which may mediate spatial patterning of photoreceptors and act to establish retinal circuitry. These analyses provide a framework for future studies that will dissect the role of these various factors in the differentiation of avian photoreceptor subtypes.


Assuntos
Células Fotorreceptoras de Vertebrados/metabolismo , Retina/crescimento & desenvolvimento , Retina/metabolismo , Animais , Diferenciação Celular/genética , Embrião de Galinha , Galinhas , Eletroporação , Citometria de Fluxo , Perfilação da Expressão Gênica , Hibridização In Situ , Opsinas/genética , Opsinas/metabolismo , Células Fotorreceptoras de Vertebrados/citologia
20.
J Proteomics ; 95: 55-65, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-23770383

RESUMO

The microarray community has shown that the low reproducibility observed in gene expression-based biomarker discovery studies is partially due to relying solely on p-values to get the lists of differentially expressed genes. Their conclusions recommended complementing the p-value cutoff with the use of effect-size criteria. The aim of this work was to evaluate the influence of such an effect-size filter on spectral counting-based comparative proteomic analysis. The results proved that the filter increased the number of true positives and decreased the number of false positives and the false discovery rate of the dataset. These results were confirmed by simulation experiments where the effect size filter was used to evaluate systematically variable fractions of differentially expressed proteins. Our results suggest that relaxing the p-value cut-off followed by a post-test filter based on effect size and signal level thresholds can increase the reproducibility of statistical results obtained in comparative proteomic analysis. Based on our work, we recommend using a filter consisting of a minimum absolute log2 fold change of 0.8 and a minimum signal of 2-4 SpC on the most abundant condition for the general practice of comparative proteomics. The implementation of feature filtering approaches could improve proteomic biomarker discovery initiatives by increasing the reproducibility of the results obtained among independent laboratories and MS platforms. BIOLOGICAL SIGNIFICANCE: Quality control analysis of microarray-based gene expression studies pointed out that the low reproducibility observed in the lists of differentially expressed genes could be partially attributed to the fact that these lists are generated relying solely on p-values. Our study has established that the implementation of an effect size post-test filter improves the statistical results of spectral count-based quantitative proteomics. The results proved that the filter increased the number of true positives whereas decreased the false positives and the false discovery rate of the datasets. The results presented here prove that a post-test filter applying a reasonable effect size and signal level thresholds helps to increase the reproducibility of statistical results in comparative proteomic analysis. Furthermore, the implementation of feature filtering approaches could improve proteomic biomarker discovery initiatives by increasing the reproducibility of results obtained among independent laboratories and MS platforms. This article is part of a Special Issue entitled: Standardization and Quality Control in Proteomics.


Assuntos
Proteômica/instrumentação , Proteômica/métodos , Proteínas de Saccharomyces cerevisiae/análise , Saccharomyces cerevisiae/química , Proteômica/normas , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA