Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mater Sci Eng C Mater Biol Appl ; 101: 596-613, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31029353

RESUMO

Multidrug resistance (MDR) is one of the key barriers in chemotherapy, leading to the generation of insensitive cancer cells towards administered therapy. Genetic and epigenetic alterations of the cells are the consequences of MDR, resulted in drug resistivity, which reflects in impaired delivery of cytotoxic agents to the cancer site. Nanotechnology-based nanocarriers have shown immense shreds of evidence in overcoming these problems, where these promising tools handle desired dosage load of hydrophobic chemotherapeutics to facilitate designing of safe, controlled and effective delivery to specifically at tumor microenvironment. Therefore, encapsulating drugs within the nano-architecture have shown to enhance solubility, bioavailability, drug targeting, where co-administered P-gp inhibitors have additionally combat against developed MDR. Moreover, recent advancement in the stimuli-sensitive delivery of nanocarriers facilitates a tumor-targeted release of the chemotherapeutics to reduce the associated toxicities of chemotherapeutic agents in normal cells. The present article is focused on MDR development strategies in the cancer cell and different nanocarrier-based approaches in circumventing this hurdle to establish an effective therapy against deadliest cancer disease.


Assuntos
Nanotecnologia/métodos , Antineoplásicos , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Interações Hidrofóbicas e Hidrofílicas
2.
ACS Appl Mater Interfaces ; 9(34): 28180-28184, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28792728

RESUMO

Remedial cancer therapy deals with a large number of theranostic applications. However, systems, so far known, are only capable of single surveillance for both diagnostic and therapeutic modes of action. A nanosystem, which can be localized to the cancer and deliver the chemotherapeutic agent on demand, will provide effective therapeutic activity. Herein, we designed a single component nanoprodrug ANPD-X (Activatable Nano Pro-Drug-X) which indentified the tumor sites by fluorescent color change (signal 1, blue to green fluorescence) using H2O2-mediated oxidation of boronate fluorophore. In the next step, precise spatiotemporal irradiation of light only on identified tumor sites resulted in the release of anticancer drug chlorambucil. The real time information on drug release was achieved by a second fluorescence color change (signal 2, green to blue fluorescence). Thus, nanoprodrug ANPD-X provided overall two-step surveillance in the anticancer drug delivery. Activation of the ANPD-X after addition of H2O2 and drug release upon photoirradiation was investigated in vitro by monitoring its fluorescence in the HeLa cell line.


Assuntos
Antineoplásicos/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Células HeLa , Humanos , Peróxido de Hidrogênio , Pró-Fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA