Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(15): 3196-3207.e17, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37369204

RESUMO

Pathogens produce diverse effector proteins to manipulate host cellular processes. However, how functional diversity is generated in an effector repertoire is poorly understood. Many effectors in the devastating plant pathogen Phytophthora contain tandem repeats of the "(L)WY" motif, which are structurally conserved but variable in sequences. Here, we discovered a functional module formed by a specific (L)WY-LWY combination in multiple Phytophthora effectors, which efficiently recruits the serine/threonine protein phosphatase 2A (PP2A) core enzyme in plant hosts. Crystal structure of an effector-PP2A complex shows that the (L)WY-LWY module enables hijacking of the host PP2A core enzyme to form functional holoenzymes. While sharing the PP2A-interacting module at the amino terminus, these effectors possess divergent C-terminal LWY units and regulate distinct sets of phosphoproteins in the host. Our results highlight the appropriation of an essential host phosphatase through molecular mimicry by pathogens and diversification promoted by protein modularity in an effector repertoire.


Assuntos
Monoéster Fosfórico Hidrolases , Phytophthora , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas/metabolismo , Phytophthora/química , Phytophthora/metabolismo , Plantas/metabolismo , Processamento de Proteína Pós-Traducional , Proteína Fosfatase 2/metabolismo , Doenças das Plantas
2.
Phytopathology ; 112(7): 1513-1523, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35050679

RESUMO

The facultative biotrophic basidiomycete Sporisorium scitamineum causes smut disease in sugarcane. This study applied an assay to identify S. scitamineum candidate effectors (CEs) with plant immunity suppression activities by delivering them into Nicotiana benthamiana cells via the type-three secretion system of Pseudomonas fluorescens EtHAn. Six CEs were individually cloned into the pEDV6 vector and expressed by P. fluorescens EtHAn for translocation into the plant cells. Three CEs (g1052, g3890, and g5159) could suppress pattern-triggered immunity (PTI) responses with high reproducibility in different coinfiltration experiments with P. syringae pv. tomato DC3000. In addition, three CEs (g1052, g4549, and g5159) were also found to be AvrB-induced suppressors of effector-triggered immunity (ETI), demonstrating for the first time that S. scitamineum can defeat both PTI and ETI responses. A transcriptomic analysis at different stages of infection by the smut fungus of three sugarcane cultivars with contrasting responses to the pathogen revealed that suppressors g1052, g3890, g4549, and g5159 were induced at the early stage of infection. By contrast, the two CEs (g2666 and g6610) that did not exhibit suppression activities expressed only at the late stage of infection. Moreover, genomic structures of the CEs and searches for orthologs in other smut species suggested duplication events and further divergence in CEs evolution of S. scitamineum. Thus, the transient assay applied here demonstrated the potential of pEDV6 and P. fluorescens EtHAn as biological tools for identifying plant immune suppressors from S. scitamineum.


Assuntos
Basidiomycota , Saccharum , Ustilaginales , Proteínas de Bactérias/genética , Sistemas de Secreção Bacterianos/metabolismo , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reprodutibilidade dos Testes , Saccharum/genética , Ustilaginales/metabolismo
3.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36362218

RESUMO

Effectors are small, secreted molecules that mediate the establishment of interactions in nature. While some concepts of effector biology have stood the test of time, this area of study is ever-evolving as new effectors and associated characteristics are being revealed. In the present review, the different characteristics that underly effector classifications are discussed, contrasting past and present knowledge regarding these molecules to foster a more comprehensive understanding of effectors for the reader. Research gaps in effector identification and perspectives for effector application in plant disease management are also presented, with a focus on fungal effectors in the plant-microbe interaction and interactions beyond the plant host. In summary, the review provides an amenable yet thorough introduction to fungal effector biology, presenting noteworthy examples of effectors and effector studies that have shaped our present understanding of the field.


Assuntos
Proteínas Fúngicas , Doenças das Plantas , Doenças das Plantas/microbiologia , Plantas/microbiologia , Interações Hospedeiro-Patógeno
4.
Mol Plant Microbe Interact ; 33(2): 173-188, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31502507

RESUMO

Pyrenophora teres f. teres causes net form net blotch of barley and is an economically important pathogen throughout the world. However, P. teres f. teres is lacking in the genomic resources necessary to characterize the mechanisms of virulence. Recently a high-quality reference genome was generated for P. teres f. teres isolate 0-1. Here, we present the reference quality sequence and annotation of four new isolates and we use the five available P. teres f. teres genomes for an in-depth comparison, resulting in the generation of hypotheses pertaining to the potential mechanisms and evolution of virulence. Comparative analyses were performed between all five P. teres f. teres genomes, examining genomic organization, structural variations, and core and accessory genomic content, specifically focusing on the genomic characterization of known virulence loci and the localization of genes predicted to encode secreted and effector proteins. We showed that 14 of 15 currently published virulence quantitative trait loci (QTL) span accessory genomic regions, consistent with these accessory regions being important drivers of host adaptation. Additionally, these accessory genomic regions were frequently found in subtelomeric regions of chromosomes, with 10 of the 14 accessory region QTL localizing to subtelomeric regions. Comparative analysis of the subtelomeric regions of P. teres f. teres chromosomes revealed translocation events in which homology was detected between nonhomologous chromosomes at a significantly higher rate than the rest of the genome. These results indicate that the subtelomeric accessory genomic compartments not only harbor most of the known virulence loci but, also, that these regions have the capacity to rapidly evolve.


Assuntos
Ascomicetos , Genoma Fúngico , Hordeum , Ascomicetos/genética , Ascomicetos/patogenicidade , Genoma Fúngico/genética , Genômica , Hordeum/microbiologia , Doenças das Plantas/microbiologia , Virulência/genética
5.
Appl Microbiol Biotechnol ; 103(5): 2295-2309, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30685810

RESUMO

The fungus Colletotrichum lindemuthianum is the causal agent of anthracnose in the common bean (Phaseolus vulgaris), and anthracnose is one of the most devastating diseases of this plant species. However, little is known about the proteins that are essential for the fungus-plant interactions. Knowledge of the fungus' arsenal of effector proteins is of great importance for understanding this pathosystem. In this work, we analyzed for the first time the arsenal of Colletotrichum lindemuthianum effector candidates (ClECs) and compared them with effector proteins from other species of the genus Colletotrichum, providing a valuable resource for studying the infection mechanisms of these pathogens in their hosts. Isolates of two physiological races (83.501 and 89 A2 2-3) of C. lindemuthianum were used to predict 353 and 349 ClECs, respectively. Of these ClECs, 63% were found to be rich in cysteine, have repetitive sequences of amino acids, and/or possess nuclear localization sequences. Several conserved domains were found between the ClECs. We also applied the effector prediction to nine species in the genus Colletotrichum, and the results ranged from 247 predicted effectors in Colletotrichum graminicola to 446 in Colletotrichum orbiculare. Twelve conserved domains were predicted in the effector candidates of all analyzed species of Colletotrichum. An expression analysis of the eight genes encoding the effector candidates in C. lindemuthianum revealed their induction during the biotrophic phase of the fungus on the bean.


Assuntos
Colletotrichum/genética , Colletotrichum/fisiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Phaseolus/microbiologia , Doenças das Plantas/microbiologia , Sequência de Aminoácidos/genética , Sequência de Bases , Colletotrichum/isolamento & purificação , Expressão Gênica/genética , Perfilação da Expressão Gênica , Domínios Proteicos/genética , Análise de Sequência de DNA
6.
Ann Bot ; 119(5): 869-884, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28069632

RESUMO

Background and Aims: Maize bushy stunt phytoplasma (MBSP) is a bacterial pathogen of maize ( Zea mays L.) across Latin America. MBSP belongs to the 16SrI-B sub-group within the genus ' Candidatus Phytoplasma'. MBSP and its insect vector Dalbulus maidis (Hemiptera: Cicadellidae) are restricted to maize; both are thought to have coevolved with maize during its domestication from a teosinte-like ancestor. MBSP-infected maize plants show a diversity of symptoms. and it is likely that MBSP is under strong selection for increased virulence and insect transmission on maize hybrids that are widely grown in Brazil. In this study it was investigated whether the differences in genome sequences of MBSP isolates from two maize-growing regions in South-east Brazil explain variations in symptom severity of the MBSP isolates on various maize genotypes. Methods: MBSP isolates were collected from maize production fields in Guaíra and Piracicaba in South-east Brazil for infection assays. One representative isolate was chosen for de novo whole-genome assembly and for the alignment of sequence reads from the genomes of other phytoplasma isolates to detect polymorphisms. Statistical methods were applied to investigate the correlation between variations in disease symptoms of infected maize plants and MBSP sequence polymorphisms. Key Results: MBSP isolates contributed consistently to organ proliferation symptoms and maize genotype to leaf necrosis, reddening and yellowing of infected maize plants. The symptom differences are associated with polymorphisms in a phase-variable lipoprotein, which is a candidate effector, and an ATP-dependent lipoprotein ABC export protein, whereas no polymorphisms were observed in other candidate effector genes. Lipoproteins and ABC export proteins activate host defence responses, regulate pathogen attachment to host cells and activate effector secretion systems in other pathogens. Conclusions: Polymorphisms in two putative virulence genes among MBSP isolates from maize-growing regions in South-east Brazil are associated with variations in organ proliferation symptoms of MBSP-infected maize plants.


Assuntos
Genoma Bacteriano , Phytoplasma/fisiologia , Doenças das Plantas/microbiologia , Polimorfismo Genético , Zea mays/microbiologia , Brasil , Phytoplasma/genética , Análise de Sequência de DNA
7.
Mol Plant Pathol ; 25(1): e13401, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37991155

RESUMO

Plasmopara viticola is geographically widespread in grapevine-growing regions. Grapevine downy mildew disease, caused by this biotrophic pathogen, leads to considerable yield losses in viticulture annually. Because of the great significance of grapevine production and wine quality, research on this disease has been widely performed since its emergence in the 19th century. Here, we review and discuss recent understanding of this pathogen from multiple aspects, including its infection cycle, disease symptoms, genome decoding, effector biology, and management and control strategies. We highlight the identification and characterization of effector proteins with their biological roles in host-pathogen interaction, with a focus on sustainable control methods against P. viticola, especially the use of biocontrol agents and environmentally friendly compounds.


Assuntos
Oomicetos , Peronospora , Vitis , Vitis/metabolismo , Doenças das Plantas/genética , Oomicetos/genética , Gerenciamento Clínico
8.
Microorganisms ; 9(5)2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-34063040

RESUMO

Rust fungi cause epidemics that threaten the production of important plant species, such as wheat and soy. Melampsora larici-populina (Mlp) causes the poplar rust and encodes at least 1184 candidate effectors (CEs) whose functions are poorly known. In this study, we sequenced the transcriptome and used mass spectrometry to analyze the metabolome of Arabidopsis plants constitutively expressing 14 Mlp CEs and of a control line to discover alterations leading to plant susceptibility. We found 2299 deregulated genes across the experiment. Genes involved in pattern-triggered immunity, such as FRK1, PR1, RBOHD, and WRKY33, as well as AUX/IAA genes were down-regulated. We further observed that 680 metabolites were deregulated in at least one CE-expressing transgenic line, with "highly unsaturated and phenolic compounds" and "peptides" enriched among down- and up-regulated metabolites. Interestingly, transgenic lines expressing unrelated CEs had correlated patterns of gene and metabolite deregulation, while expression of CEs belonging to the same family deregulated different genes and metabolites. Thus, our results uncouple effector sequence similarity and function. This supports that effector functional investigation in the context of their virulence activity and effect on plant susceptibility requires the investigation of the individual effector and precludes generalization based on sequence similarity.

9.
Bio Protoc ; 10(8): e3588, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33659555

RESUMO

Plants recognize a wide variety of microbial molecules to detect and respond to potential invaders. Recognition of Microbe-Associated Molecular Patterns (MAMPs) by cell surface receptors initiate a cascade of biochemical responses that include, among others, ion fluxes across the plasma membrane. A consequence of such event is a decrease in the concentration of extracellular H+ ions, which can be experimentally detected in plant cell suspensions as a shift in the pH of the medium. Thus, similarly to reactive oxygen species (ROS) accumulation, phosphorylation of MAP kinases and induction of defense-related genes, MAMP-induced medium alkalinization can be used as a proxy for the activation of plant immune responses. Here, we describe a detailed protocol for the measurement of medium alkalinization of tobacco BY-2 cell suspensions upon treatment with two different MAMPs: chitohexamers derived from fungal cell walls (NAG6; N-acetylglucosamine) and the flagellin epitope flg22, found in the bacterial flagellum. This method provides a reliable and fast platform to access MAMP-Triggered Immunity (MTI) in tobacco cell suspensions and can be easily adapted to other plant species as well as to other MAMPs.

10.
Elife ; 72018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29932422

RESUMO

During plant cell invasion, the oomycete Phytophthora infestans remains enveloped by host-derived membranes whose functional properties are poorly understood. P. infestans secretes a myriad of effector proteins through these interfaces for plant colonization. Recently we showed that the effector protein PexRD54 reprograms host-selective autophagy by antagonising antimicrobial-autophagy receptor Joka2/NBR1 for ATG8CL binding (Dagdas et al., 2016). Here, we show that during infection, ATG8CL/Joka2 labelled defense-related autophagosomes are diverted toward the perimicrobial host membrane to restrict pathogen growth. PexRD54 also localizes to autophagosomes across the perimicrobial membrane, consistent with the view that the pathogen remodels host-microbe interface by co-opting the host autophagy machinery. Furthermore, we show that the host-pathogen interface is a hotspot for autophagosome biogenesis. Notably, overexpression of the early autophagosome biogenesis protein ATG9 enhances plant immunity. Our results implicate selective autophagy in polarized immune responses of plants and point to more complex functions for autophagy than the widely known degradative roles.


Assuntos
Autofagia/genética , Interações Hospedeiro-Patógeno , Phytophthora infestans/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Solanum tuberosum/genética , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/imunologia , Autofagossomos/imunologia , Autofagossomos/parasitologia , Autofagia/imunologia , Família da Proteína 8 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/imunologia , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Regulação da Expressão Gênica , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Phytophthora infestans/crescimento & desenvolvimento , Phytophthora infestans/patogenicidade , Células Vegetais/imunologia , Células Vegetais/parasitologia , Doenças das Plantas/imunologia , Doenças das Plantas/parasitologia , Imunidade Vegetal/genética , Proteínas de Plantas/imunologia , Ligação Proteica , Transdução de Sinais , Solanum tuberosum/imunologia , Solanum tuberosum/parasitologia
12.
Front Plant Sci ; 7: 885, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27446117

RESUMO

Parasites can take over their hosts and trigger dramatic changes in host appearance and behavior that are typically interpreted as extended phenotypes that promote parasite survival and fitness. For example, Toxoplasma gondii is thought to manipulate the behaviors of infected rodents to aid transmission to cats and parasitic trematodes of the genus Ribeiroia alter limb development in their amphibian hosts to facilitate predation of the latter by birds. Plant parasites and pathogens also reprogram host development and morphology. However, whereas some parasite-induced morphological alterations may have a direct benefit to the fitness of the parasite and may therefore be adaptive, other host alterations may be side effects of parasite infections having no adaptive effects on parasite fitness. Phytoplasma parasites of plants often induce the development of leaf-like flowers (phyllody) in their host plants, and we previously found that the phytoplasma effector SAP54 generates these leaf-like flowers via the degradation of plant MADS-box transcription factors (MTFs), which regulate all major aspects of development in plants. Leafhoppers prefer to reproduce on phytoplasma-infected and SAP54-trangenic plants leading to the hypothesis that leafhopper vectors are attracted to plants with leaf-like flowers. Surprisingly, here we show that leafhopper attraction occurs independently of the presence of leaf-like flowers. First, the leafhoppers were also attracted to SAP54 transgenic plants without leaf-like flowers and to single leaves of these plants. Moreover, leafhoppers were not attracted to leaf-like flowers of MTF-mutant plants without the presence of SAP54. Thus, the primary role of SAP54 is to attract leafhopper vectors, which spread the phytoplasmas, and the generation of leaf-like flowers may be secondary or a side effect of the SAP54-mediated degradation of MTFs.

13.
Front Plant Sci ; 4: 228, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874344

RESUMO

One of the emerging systems in plant-microbe interaction is the study of proteins, referred to as effectors, secreted by microbes in order to modulate host cells function and structure and to promote microbial growth on plant tissue. Current knowledge on fungal effectors derives mainly from biotrophic and hemibiotrophic plant fungal pathogens that have a limited host range. Here, we focus on effectors of Piriformospora indica, a soil borne endophyte forming intimate associations with roots of a wide range of plant species. Complete genome sequencing provides an opportunity to investigate the role of effectors during the interaction of this mutualistic fungus with plants. We describe in silico analyses to predict effectors of P. indica and we explore effector features considered here to mine a high priority protein list for functional analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA