Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.029
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(37): e2405236121, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39226362

RESUMO

Electrochemical ammonia (NH3) synthesis from nitrate reduction (NITRR) offers an appealing solution for addressing environmental concerns and the energy crisis. However, most of the developed electrocatalysts reduce NO3- to NH3 via a hydrogen (H*)-mediated reduction mechanism, which suffers from undesired H*-H* dimerization to H2, resulting in unsatisfactory NH3 yields. Herein, we demonstrate that reversed I1Cu4 single-atom sites, prepared by anchoring iodine single atoms on the Cu surface, realized superior NITRR with a superior ammonia yield rate of 4.36 mg h-1 cm-2 and a Faradaic efficiency of 98.5% under neutral conditions via a proton-coupled electron transfer (PCET) mechanism, far beyond those of traditional Cu sites (NH3 yield rate of 0.082 mg h-1 cm-2 and Faradaic efficiency of 36.5%) and most of H*-mediated NITRR electrocatalysts. Theoretical calculations revealed that I single atoms can regulate the local electronic structures of adjacent Cu sites in favor of stronger O-end-bidentate NO3- adsorption with dual electron transfer channels and suppress the H* formation from the H2O dissociation, thus switching the NITRR mechanism from H*-mediated reduction to PCET. By integrating the monolithic I1Cu4 single-atom electrode into a flow-through device for continuous NITRR and in situ ammonia recovery, an industrial-level current density of 1 A cm-2 was achieved along with a NH3 yield rate of 69.4 mg h-1 cm-2. This study offers reversed single-atom sites for electrochemical ammonia synthesis with nitrate wastewater and sheds light on the importance of switching catalytic mechanisms in improving the performance of electrochemical reactions.

2.
Proc Natl Acad Sci U S A ; 120(50): e2311149120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38064508

RESUMO

Zinc-nitrate batteries can integrate energy supply, ammonia electrosynthesis, and sewage disposal into one electrochemical device. However, current zinc-nitrate batteries still severely suffer from the limited energy density and poor rechargeability. Here, we report the synthesis of tetraphenylporphyrin (tpp)-modified heterophase (amorphous/crystalline) rhodium-copper alloy metallenes (RhCu M-tpp). Using RhCu M-tpp as a bifunctional catalyst for nitrate reduction reaction (NO3RR) and ethanol oxidation reaction in neutral solution, a highly rechargeable and low-overpotential zinc-nitrate/ethanol battery is successfully constructed, which exhibits outstanding energy density of 117364.6 Wh kg-1cat, superior rate capability, excellent cycling stability of ~400 cycles, and potential ammonium acetate production. Ex/in situ experimental studies and theoretical calculations reveal that there is a molecule-metal relay catalysis in NO3RR over RhCu M-tpp that significantly facilitates the ammonia selectivity and reaction kinetics via a low energy barrier pathway. This work provides an effective design strategy of multifunctional metal-based catalysts toward the high-performance zinc-based hybrid energy systems.

3.
Nano Lett ; 24(29): 8964-8972, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38985521

RESUMO

The electrochemical nitrate reduction reaction (NO3RR) is considered a sustainable technology to convert the nitrate pollutants to ammonia. However, developing highly efficient electrocatalysts is necessary and challenging given the slow kinetics of the NO3RR with an eight-electron transfer process. Here, a Cu1.5Mn1.5O4 (CMO)/CeO2 heterostructure with rich interfaces is designed and fabricated through an electrospinning and postprocessing technique. Benefiting from the strong coupling between CMO and CeO2, the optimized CMO/CeO2-2 catalyst presents excellent NO3RR performance, with NH3 Faraday efficiency (FE) up to 93.07 ± 1.45% at -0.481 V vs reversible hydrogen electrode (RHE) and NH3 yield rate up to 48.06 ± 1.32 mg cm-2 h-1 at -0.681 V vs RHE. Theoretical calculations demonstrate that the integration of CeO2 with CMO modulates the adsorption/desorption process of the reactants and intermediates, showing a reduced energy barrier in the rate determination step of NO* to N* and achieving an outstanding NO3RR performance.

4.
Nano Lett ; 24(33): 10297-10304, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39133240

RESUMO

In this paper, Ti3C2Tx MXene/Cu-Bi bimetallic sulfide (Ti3C2Tx/BiCuS2.5) composites were prepared by a simple in situ deposition method for electrocatalytic nitrogen reduction reaction (eNRR). Compared to Ti3C2Tx/Bi2S3 and Ti3C2Tx/CuS, the eNRR performance of Ti3C2Tx/BiCuS2.5 is significantly improved. The results show that Ti3C2Tx/BiCuS2.5 exhibits a NH3 yield of 62.57 µg h-1 mg-1cat. in 0.1 M Na2SO4 at -0.6 V vs reversible hydrogen electrode, and the Faradaic efficiency (FE) reaches 67.69%, which is better than that of Ti3C2Tx/CuS (NH3 yield: 52.26 µg h-1 mg-1cat., FE: 34.15%) and Ti3C2Tx/Bi2S3 (NH3 yield: 54.04 µg h-1 mg-1cat., FE: 37.38%). According to density functional theory calculations, the eNRR at the Ti3C2Tx/BiCuS2.5 surface is the alternating pathway. The 1H NMR experiment of 15N proves that the N of NH3 generated in the experiment originates from N2 passed during the experiment.

5.
Small ; 20(7): e2306221, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37803408

RESUMO

Direct ethanol fuel cells hold great promise as a power source. However, their commercialization is limited by anode catalysts with insufficient selectivity toward a complete oxidation of ethanol for a high energy density, as well as sluggish catalytic kinetics and low stability. To optimize the catalytic performance, rationally tuning surface structure or interface structure is highly desired. Herein, a facile route is reported to the synthesis of Rh nanosheets-supported tetrahedral Rh nanocrystals (Rh THs/NSs), which possess self-supporting homogeneous interface between Rh tetrahedrons and Rh nanosheets. Due to full leverage of the structural advantages within the given structure and construction of interfaces, the Rh THs/NSs can serve as highly active electro-catalysts with excellent mass activity and selectivity toward ethanol electro-oxidation. The in situ Fourier transform infrared reflection spectroscopy showed the Rh THs/NSs exhibit the highest C1 pathway selectivity of 23.2%, far exceeding that of Rh nanotetrahedra and Rh nanosheets. Density function theory calculations further demonstrated that self-interface between Rh nanosheets and tetrahedra is beneficial for C-C bond cleavage of ethanol. Meanwhile, the self-supporting of 2D nanosheets greatly enhance the stability of tetrahedra, which improves the catalytic stability.

6.
Small ; 20(31): e2311627, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38462958

RESUMO

For a carbon-neutral society, the production of hydrogen as a clean fuel through water electrolysis is currently of great interest. Since water electrolysis is a laborious energetic reaction, it requires high energy to maintain efficient and sustainable production of hydrogen. Catalytic electrodes can reduce the required energy and minimize production costs. In this context, herein, a bifunctional electrocatalyst made from iron nickel sulfide (FeNi2S4 [FNS]) for the overall electrochemical water splitting is introduced. Compared to Fe2NiO4 (FNO), FNS shows a significantly improved performance toward both OER and HER in alkaline electrolytes. At the same time, the FNS electrode exhibits high activity toward the overall electrochemical water splitting, achieving a current density of 10 mA cm-2 at 1.63 V, which is favourable compared to previously published nonprecious electrocatalysts for overall water splitting. The long-term chronopotentiometry test reveals an activation followed by a subsequent stable overall cell potential at around 2.12 V for 20 h at 100 mA cm-2.

7.
Small ; 20(34): e2400978, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38593307

RESUMO

Lead (Pb) poisoning and CO2-induced global warming represent two exemplary environmental and energy issues threatening humanity. Various biomass-derived materials are reported to take up Pb and convert CO2 electrochemically into low-valent carbon species, but these works address the problems separately rather than settle the issues simultaneously. In this work, cheap, natural ellagic acid (EA) extracted from common plants is adopted to assemble a stable metal-organic framework (MOF), EA-Pb, by effective capture of Pb2+ ions in an aqueous medium (removal rate close to 99%). EA-Pb represents the first structurally well-defined Pb-based MOF showing selective electrocatalytic CO2-to-HCOO- conversion with Faradaic efficiency (FE) of 95.37% at -1.08 V versus RHE. The catalytic mechanism is studied by 13CO2 labeling, in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and theoretical calculation. The use of EA-Pb as an electrocatalyst for CO2 reduction represents a 2-in-1 solution of converting detrimental wastes (Pb2+) as well as natural resources (EA) into wealth (electrocatalytic EA-Pb) for addressing the global warming issue.

8.
Small ; 20(37): e2401530, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38751307

RESUMO

The unavoidable and unpredictable surface reconstruction of metallic copper (Cu) during the electrocatalytic carbon dioxide (CO2) reduction process is a double-edged sword affecting the production of high-value-added hydrocarbon products. It is crucial to control the surface facet reconstruction and regulate the targeted facets/facet interfaces, and further understand the mechanism between activity/selectivity and the reconstructed structure of Cu for CO2 reduction. Based on the current catalyst design methods, a facile strategy combining chemical reduction and electro-reduction is proposed to achieve specified Cu(111) facets and the Cu(110)/(111) interfaces in reconstructed Cu derived from cuprous oxide (Cu2O). The surface facet reconstruction significantly boosted the electrocatalytic conversion of CO2 into multi-carbon (C2+) products comparing to the unmodified catalyst. Theoretical and experimental analyses show that the Cu(110)/(111)s interface between Cu(110) and a small amount of Cu(111) can tailor the reaction routes and lower the reaction energy barrier of C-C coupling to ethylene (C2H4). The work will guide the surface facets reconstruction strategy for Cu-based CO2 electrocatalysts, providing a promising paradigm to understand the structural variation in catalysts.

9.
Small ; : e2403427, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39076054

RESUMO

The development of highly efficient electrocatalysts for the sluggish anodic oxygen evolution reaction (OER) is crucial to meet the practical demand for water splitting. In this study, an effective approach is proposed that simultaneously enhances interfacial interaction and catalytic activity by modifying Fe2O3/CoS heterojunction using Ru doping strategy to construct an efficient electrocatalytic oxygen evolution catalyst. The unique morphology of Ru doped Fe2O3 (Ru-Fe2O3) nanoring decorated by CoS nanoparticles ensures a large active surface area and a high number of active sites. The designed Ru-Fe2O3/CoS catalyst achieves a low OER overpotential (264 mV) at 10 mA cm-2 and demonstrates exceptional stability even at high current density of 100 mA cm-2, maintaining its performance for an impressive duration of 90 h. The catalytic performance of this Ru-Fe2O3/CoS catalyst surpasses that of other iron-based oxide catalysts and even outperforms the state-of-the-art RuO2. Density functional theory (DFT) calculation as well as experimental in situ characterization confirm that the introduction of Ru atoms can enhance the interfacial electron interaction, accelerating the electron transfer, and serve as highly active sites reducing the energy barrier for rate determination step. This work provides an efficient strategy to reveal the enhancement of electrocatalytic oxygen evolution activity of heterojunction catalysts by doping engineering.

10.
Small ; 20(10): e2306085, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37875668

RESUMO

Bimetallic metal-organic framework (BMOF) exhibits better electrocatalytic performance than mono-MOF, but deciphering the precise anchoring of foreign atoms and revealing the underlying mechanisms at the atomic level remains a major challenge. Herein, a novel binuclear NiFe-MOF with precise anchoring of Fe sites is synthesized. The low-crystallinity (LC)-NiFe0.33 -MOF exhibited abundant unsaturated active sites and demonstrated excellent electrocatalytic oxygen evolution reaction (OER) performance. It achieved an ultralow overpotential of 230 mV at 10 mA cm-2 and a Tafel slope of 41 mV dec-1 . Using a combination of modulating crystallinity, X-ray absorption spectroscopy, and theoretical calculations, the accurate metal sequence of BMOF and the synergistic effect of the active sites are identified, revealing that the adjacent active site plays a significant role in regulating the catalytic performance of the endmost active site. The proposed model of BMOF electrocatalysts facilitates the investigation of efficient OER electrocatalysts and the related catalytic mechanisms.

11.
Small ; 20(9): e2304390, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37845029

RESUMO

Exploring and developing novel strategies for constructing heterostructure electrocatalysts is still challenging for water electrolysis. Herein, a creative etching treatment strategy is adopted to construct NiSe2 /Ni0.85 Se heterostructure. The rich heterointerfaces between NiSe2 and Ni0.85 Se emerge strong electronic interaction, which easily induces the electron transfer from NiSe2 to Ni0.85 Se, and tunes the charge-state of NiSe2 and Ni0.85 Se. In the NiSe2 /Ni0.85 Se heterojunction nanomaterial, the higher charge-state Ni0.85 Se is capable of affording partial electrons to combine with hydrogen protons, inducing the rapid formation of H2 molecule. Accordingly, the lower charge-state NiSe2 in the NiSe2 /Ni0.85 Se heterojunction nanomaterial is more easily oxidized into high valence state Ni3+ during the oxygen evolution reaction (OER) process, which is beneficial to accelerate the mass/charge transfer and enhance the electrocatalytic activities towards OER. Theoretical calculations indicate that the heterointerfaces are conducive to modulating the electronic structure and optimizing the adsorption energy toward intermediate H* during the hydrogen evolution reaction (HER) process, leading to superior electrocatalytic activities. To expand the application of the NiSe2 /Ni0.85 Se-2h electrocatalyst, urea is served as the adjuvant to proceed with the energy-saving hydrogen production and pollutant degradation, and it is proven to be a brilliant strategy.

12.
Small ; 20(14): e2309344, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37990354

RESUMO

Electrocatalytic nitrogen reduction reaction (eNRR) is a promising method for sustainable ammonia production. Although the majority of studies on the eNRR are devoted to developing efficient electrocatalysts, it is critical to study the influence of mass transfer because of the poor N2 transfer efficiency. Herein, a novel bubble-based microreactor (BBMR) is proposed that efficiently promotes the mass transfer behavior during the eNRR using microfluidic strategies. The BBMR possesses abundant triphasic interfaces and provides spatial confinement and accurate potential control, ensuring rapid mass transfer dynamics and improved eNRR performance, as confirmed by experimental and simulation studies. The ammonia yield of the reaction over Ag nanoparticles can be enhanced to 31.35 µg h-1 mgcat. -1, which is twice that of the H-cell. Excellent improvements are also achieved using Ru/C and Fe/g-CN catalysts, with 5.0 and 8.5 times increase in ammonia yield, respectively. This work further demonstrates the significant effect of mass transfer on the eNRR performance and provides an effective strategy for process enhancement through electrode design.

13.
Small ; 20(5): e2306274, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37759380

RESUMO

Efficient electrocatalysts capable of operating continuously at industrial ampere-level current densities are crucial for large-scale applications of electrocatalytic water decomposition for hydrogen production. However, long-term industrial overall water splitting using a single electrocatalyst remains a major challenge. Here, bimetallic polyphthalocyanine (FeCoPPc)-anchored Ru nanoclusters, an innovative electrocatalyst comprising the hydrogen evolution reaction (HER) active Ru and the oxygen evolution reaction (OER) active FeCoPPc, engineered for efficient overall water splitting are demonstrated. By density functional theory calculations and systematic experiments, the electrocatalytic coenhancement effect resulting from unique charge redistribution, which synergistically boosts the HER activity of Ru and the OER activity of FeCoPPc by optimizing the adsorption energy of intermediates, is unveiled. As a result, even at a large current density of 2.0 A cm-2 , the catalyst exhibits low overpotentials of 220 and 308 mV, respectively, for HER and OER. It exhibits excellent stability, requiring only 1.88 V of cell voltage to achieve a current density of 2.0 A cm-2 in a 6.0 m KOH electrolyte at 70 °C, with a remarkable operational stability of over 100 h. This work provides a new electrocatalytic coenhancement strategy for the design and synthesis of electrocatalyst, paving the way for industrial-scale overall water splitting applications.

14.
Small ; 20(30): e2312168, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38377284

RESUMO

Hydroxides are the archetype of layered crystals with metal-oxygen (M-O) octahedron units, which have been widely investigated as oxygen evolution reaction (OER) catalysts. However, the better crystallinity of hydroxide materials, the more perfect octahedral symmetry and atomic ordering, resulting in the less exposed metal sites and limited electrocatalytic activity. Herein, a glassy state hydroxide material featuring with short-range order and long-range disorder structure is developed to achieve high intrinsic activity for OER. Specifically, a rapid freezing point precipitation method is utilized to fabricate amorphous multi-component hydroxide. Owing to the freezing-point crystallization environment and chaotic M-O (M = Ni/Fe/Co/Mn/Cr etc.) structures, the as-fabricated NiFeCoMnCr hydroxide exhibit a highly-disordered glassy structure, as-confirmed by X-ray/electron diffraction, enthalpic response, and pair distribution function analysis. The as-achieved glassy-state hydroxide materials display a low OER overpotential of 269 mV at 20 mA cm-2 with a small Tafel slope of 33.3 mV dec-1, outperform the benchmark noble-metal RuO2 catalyst (341 mV, 84.9 mV dec-1) . Operando Raman and density functional theory studies reveal that the glassy state hydroxide converted into disordered active oxyhydroxide phase with optimized oxygen intermediates adsorption under low OER overpotentials, thus boosting the intrinsic electrocatalytic activity.

15.
Small ; 20(33): e2400505, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38477685

RESUMO

Ammonia production by electrocatalytic nitrate reduction reaction (NO3RR) in water streams is anticipated as a zero-carbon route. Limited by dilute nitrate in natural sewage and the electrostatic repulsion between NO3 - and cathode, NO3RR can hardly be achieved energy-efficiently. The hydrophilic Cu@CuCoO2 nano-island dispersed on support can enrich NO3 - and produce a sensitive current response, followed by electrosynthesis of ammonia through atomic hydrogen (*H) is reported. The accumulated NO3 - can be partially converted to NO2 - without external electric field input, confirming that the Cu@CuCoO2 nano-island can strongly bind NO3 - and then trigger the reduction via dynamic evolution between Cu-Co redox sites. Through the identification of intermediates and theoretical computation. it is found that the N-side hydrogenation of *NO is the optimal reaction step, and the formation of N─N dimer may be prevented. An NH3 product selectivity of 93.5%, a nitrate conversion of 96.1%, and an energy consumption of 0.079 kWh gNH3 -1 is obtained in 48.9 mg-N L-1 naturally nitrate-polluted streams, which outperforms many works using such dilute nitrate influent. Conclusively, the electrocatalytic system provides a platform to guarantee the self-sufficiency of dispersed ammonia production in agricultural regions.

16.
Small ; 20(43): e2402447, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38940363

RESUMO

Lithium-carbon dioxide (Li-CO2) battery represents a high-energy density energy storage with excellent real-time CO2 enrichment and conversion, but its practical utilization is hampered by the development of an excellent catalytic cathode. Here, the synergistic catalytic strategy of designing CoRu bimetallic active sites achieves the electrocatalytic conversion of CO2 and the efficient decomposition of the discharge products, which in turn realizes the smooth operation of the Li-CO2 battery. Moreover, obtained support based on metal-organic frameworks precursors facilitates the convenient diffusion and adsorption of CO2, resulting in higher reaction concentration and lower mass transfer resistance. Meanwhile, the optimization of the interfacial electronic structure and the effective transfer of electrons are achieved by virtue of the strong interaction of CoRu at the support interface. As a result, the Li-CO2 cell assembled based on bimetallic CoRu active sites achieved a discharge capacity of 19,111 mA h g-1 and a steady-state discharge voltage of 2.58 V as well as a cycle life of >175 cycles at a rate of 100 mA g-1. Further experiments combined with density-functional theory calculations achieve a deeply view of the connection between cathode and electrochemical performance and pave a way for the subsequent development of advanced Li-CO2 catalytic cathodes.

17.
Small ; 20(43): e2403778, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38948957

RESUMO

Bismuth-based catalysts are effective in converting carbon dioxide into formate via electrocatalysis. Precise control of the morphology, size, and facets of bismuth-based catalysts is crucial for achieving high selectivity and activity. In this work, an efficient, large-scale continuous production strategy is developed for achieving a porous nanospheres Bi2O3-FDCA material. First-principles simulations conducted in advance indicate that the Bi2O3 (111)/(200) facets help reduce the overpotential for formate production in electrocatalytic carbon dioxide reduction reaction (ECO2RR). Subsequently, using microfluidic technology and molecular control to precisely adjust the amount of 2, 5-furandicarboxylic acid, nanomaterials rich in (111)/(200) facets are successfully synthesized. Additionally, the morphology of the porous nanospheres significantly increases the adsorption capacity and active sites for carbon dioxide. These synergistic effects allow the porous Bi2O3-FDCA nanospheres to stably operate for 90 h in a flow cell at a current density of ≈250 mA cm- 2, with an average Faradaic efficiency for formate exceeding 90%. The approach of theoretically guided microfluidic technology for the large-scale synthesis of finely structured, efficient bismuth-based materials for ECO2RR may provide valuable references for the chemical engineering of intelligent nanocatalysts.

18.
Small ; 20(43): e2404249, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38953366

RESUMO

The photoelectrochemical (PEC) method has the potential to be an attractive route for converting and storing solar energy as chemical bonds. In this study, a maximum NH3 production yield of 1.01 g L-1 with a solar-to-ammonia conversion efficiency of 8.17% through the photovoltaic electrocatalytic (PV-EC) nitrate (NO3 -) reduction reaction (NO3 -RR) is achieved, using silicon heterojunction solar cell technology. Additionally, the effect of tuning the operation potential of the PV-EC system and its influence on product selectivity are systematically investigated. By using this unique external resistance tuning approach in the PV-EC system, ammonia production through nitrate reduction performance from 96 to 360 mg L-1 is enhanced, a four-fold increase. Furthermore, the NH3 is extracted as NH4Cl powder using acid stripping, which is essential for storing chemical energy. This work demonstrates the possibility of tuning product selectivity in PV-EC systems, with prospects toward pilot scale on value-added product synthesis.

19.
Small ; 20(43): e2403908, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38970558

RESUMO

Hydrogen is a fuel of the future that has the potential to replace conventional fossil fuels in several applications. The quickest and most effective method of producing pure hydrogen with no carbon emissions is water electrolysis. Developing highly active electrocatalysts is crucial due to the slow kinetics of oxygen and hydrogen evolution, which limit the usage of precious metals in water splitting. Interfacial engineering of heterostructures has sparked widespread interest in improving charge transfer efficiency and optimizing adsorption/desorption energetics. The emergence of a built-in-electric field between RuO2 and MgFe-LDH improves the catalytic efficiency toward water splitting reaction. However, LDH-based materials suffer from poor conductivity, necessitating the design of 1D materials by integration of RuO2/ MgFe-LDH to enhance catalytic properties through large surface areas and high electronic conductivity. Experimental results demonstrate lower overpotentials (273 and 122 mV at 10 mA cm-2) and remarkable stability (60 h) for the RuO2/MgFe-LDH/Fiber heterostructure in OER (1 m KOH) and HER (0.5 m H2SO4) reactions. Density functional theory (DFT) unveils a synergistic mechanism at the RuO2/MgFe-LDH interface, leading to enhanced catalytic activity in OER and improved adsorption energy for hydrogen atoms, thereby facilitating HER catalysis.

20.
Small ; 20(38): e2401900, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38798155

RESUMO

Efficient and sustainable energy development is a powerful tool for addressing the energy and environmental crises. Single-atom catalysts (SACs) have received high attention for their extremely high atom utilization efficiency and excellent catalytic activity, and have broad application prospects in energy development and chemical production. M-N4 is an active center model with clear catalytic activity, but its catalytic properties such as catalytic activity, selectivity, and durability need to be further improved. Adjustment of the coordination environment of the central metal by incorporating heteroatoms (e.g., sulfur) is an effective and feasible modification method. This paper describes the precise synthetic methods for introducing sulfur atoms into M-N4 and controlling whether they are directly coordinated with the central metal to form a specific coordination configuration, the application of sulfur-doped carbon-based single-atom catalysts in electrocatalytic reactions such as ORR, CO2RR, HER, OER, and other electrocatalytic reaction are systematically reviewed. Meanwhile, the effect of the tuning of the electronic structure and ligand configuration parameters of the active center due to doped sulfur atoms with the improvement of catalytic performance is introduced by combining different characterization and testing methods. Finally, several opinions on development of sulfur-doped carbon-based SACs are put forward.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA