Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Neuroimage ; 276: 120197, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37245558

RESUMO

Tactile and movement-related somatosensory perceptions are crucial for our daily lives and survival. Although the primary somatosensory cortex is thought to be the key structure of somatosensory perception, various cortical downstream areas are also involved in somatosensory perceptual processing. However, little is known about whether cortical networks of these downstream areas can be dissociated depending on each perception, especially in human. We address this issue by combining data from direct cortical stimulation (DCS) for eliciting somatosensation and data from high-gamma band (HG) elicited during tactile stimulation and movement tasks. We found that artificial somatosensory perception is elicited not only from conventional somatosensory-related areas such as the primary and secondary somatosensory cortices but also from a widespread network including superior/inferior parietal lobules and premotor cortex. Interestingly, DCS on the dorsal part of the fronto-parietal area including superior parietal lobule and dorsal premotor cortex often induces movement-related somatosensations, whereas that on the ventral one including inferior parietal lobule and ventral premotor cortex generally elicits tactile sensations. Furthermore, the HG mapping results of the movement and passive tactile stimulation tasks revealed considerable similarity in the spatial distribution between the HG and DCS functional maps. Our findings showed that macroscopic neural processing for tactile and movement-related perceptions could be segregated.


Assuntos
Mapeamento Encefálico , Córtex Cerebral , Percepção de Movimento , Percepção do Tato , Córtex Cerebral/fisiologia , Córtex Somatossensorial/fisiologia , Humanos , Masculino , Feminino , Adolescente , Adulto Jovem , Adulto , Estimulação Transcraniana por Corrente Contínua , Epilepsia Resistente a Medicamentos/fisiopatologia
2.
Neuroimage ; 270: 119954, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36828156

RESUMO

We built normative brain atlases that animate millisecond-scale intra- and inter-hemispheric white matter-level connectivity dynamics supporting object recognition and speech production. We quantified electrocorticographic modulations during three naming tasks using event-related high-gamma activity from 1,114 nonepileptogenic intracranial electrodes (i.e., non-lesional areas unaffected by epileptiform discharges). Using this electrocorticography data, we visualized functional connectivity modulations defined as significant naming-related high-gamma modulations occurring simultaneously at two sites connected by direct white matter streamlines on diffusion-weighted imaging tractography. Immediately after stimulus onset, intra- and inter-hemispheric functional connectivity enhancements were confined mainly across modality-specific perceptual regions. During response preparation, left intra-hemispheric connectivity enhancements propagated in a posterior-to-anterior direction, involving the left precentral and prefrontal areas. After overt response onset, inter- and intra-hemispheric connectivity enhancements mainly encompassed precentral, postcentral, and superior-temporal (STG) gyri. We found task-specific connectivity enhancements during response preparation as follows. Picture naming enhanced activity along the left arcuate fasciculus between the inferior-temporal and precentral/posterior inferior-frontal (pIFG) gyri. Nonspeech environmental sound naming augmented functional connectivity via the left inferior longitudinal and fronto-occipital fasciculi between the medial-occipital and STG/pIFG. Auditory descriptive naming task enhanced usage of the left frontal U-fibers, involving the middle-frontal gyrus. Taken together, the commonly observed network enhancements include inter-hemispheric connectivity optimizing perceptual processing exerted in each hemisphere, left intra-hemispheric connectivity supporting semantic and lexical processing, and inter-hemispheric connectivity for symmetric oral movements during overt speech. Our atlases improve the currently available models of object recognition and speech production by adding neural dynamics via direct intra- and inter-hemispheric white matter tracts.


Assuntos
Idioma , Fala , Humanos , Fala/fisiologia , Mapeamento Encefálico/métodos , Encéfalo , Percepção Visual/fisiologia
3.
Neuroimage ; 258: 119342, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35654375

RESUMO

PURPOSE: A prominent view of language acquisition involves learning to ignore irrelevant auditory signals through functional reorganization, enabling more efficient processing of relevant information. Yet, few studies have characterized the neural spatiotemporal dynamics supporting rapid detection and subsequent disregard of irrelevant auditory information, in the developing brain. To address this unknown, the present study modeled the developmental acquisition of cost-efficient neural dynamics for auditory processing, using intracranial electrocorticographic responses measured in individuals receiving standard-of-care treatment for drug-resistant, focal epilepsy. We also provided evidence demonstrating the maturation of an anterior-to-posterior functional division within the superior-temporal gyrus (STG), which is known to exist in the adult STG. METHODS: We studied 32 patients undergoing extraoperative electrocorticography (age range: eight months to 28 years) and analyzed 2,039 intracranial electrode sites outside the seizure onset zone, interictal spike-generating areas, and MRI lesions. Patients were given forward (normal) speech sounds, backward-played speech sounds, and signal-correlated noises during a task-free condition. We then quantified sound processing-related neural costs at given time windows using high-gamma amplitude at 70-110 Hz and animated the group-level high-gamma dynamics on a spatially normalized three-dimensional brain surface. Finally, we determined if age independently contributed to high-gamma dynamics across brain regions and time windows. RESULTS: Group-level analysis of noise-related neural costs in the STG revealed developmental enhancement of early high-gamma augmentation and diminution of delayed augmentation. Analysis of speech-related high-gamma activity demonstrated an anterior-to-posterior functional parcellation in the STG. The left anterior STG showed sustained augmentation throughout stimulus presentation, whereas the left posterior STG showed transient augmentation after stimulus onset. We found a double dissociation between the locations and developmental changes in speech sound-related high-gamma dynamics. Early left anterior STG high-gamma augmentation (i.e., within 200 ms post-stimulus onset) showed developmental enhancement, whereas delayed left posterior STG high-gamma augmentation declined with development. CONCLUSIONS: Our observations support the model that, with age, the human STG refines neural dynamics to rapidly detect and subsequently disregard uninformative acoustic noises. Our study also supports the notion that the anterior-to-posterior functional division within the left STG is gradually strengthened for efficient speech-sound perception after birth.


Assuntos
Córtex Auditivo , Epilepsia Resistente a Medicamentos , Percepção da Fala , Estimulação Acústica/métodos , Adulto , Córtex Auditivo/diagnóstico por imagem , Percepção Auditiva/fisiologia , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Eletrocorticografia/métodos , Humanos , Lactente , Idioma
4.
Cereb Cortex ; 31(2): 949-960, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33026425

RESUMO

Living in rapidly changing environments has shaped the mammalian brain toward high sensitivity to abrupt and intense sensory events-often signaling threats or affordances requiring swift reactions. Unsurprisingly, such events elicit a widespread electrocortical response (the vertex potential, VP), likely related to the preparation of appropriate behavioral reactions. Although the VP magnitude is largely determined by stimulus intensity, the relative contribution of the differential and absolute components of intensity remains unknown. Here, we dissociated the effects of these two components. We systematically varied the size of abrupt intensity increases embedded within continuous stimulation at different absolute intensities, while recording brain activity in humans (with scalp electroencephalography) and rats (with epidural electrocorticography). We obtained three main results. 1) VP magnitude largely depends on differential, and not absolute, stimulus intensity. This result held true, 2) for both auditory and somatosensory stimuli, indicating that sensitivity to differential intensity is supramodal, and 3) in both humans and rats, suggesting that sensitivity to abrupt intensity differentials is phylogenetically well-conserved. Altogether, the current results show that these large electrocortical responses are most sensitive to the detection of sensory changes that more likely signal the sudden appearance of novel objects or events in the environment.


Assuntos
Encéfalo/fisiologia , Estimulação Acústica , Adulto , Idoso , Animais , Comportamento/fisiologia , Comportamento Animal/fisiologia , Eletrocorticografia , Eletroencefalografia , Potenciais Evocados/fisiologia , Potenciais Evocados Auditivos/fisiologia , Potenciais Somatossensoriais Evocados/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie , Adulto Jovem
5.
Cereb Cortex ; 31(10): 4518-4532, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-33907804

RESUMO

Gamma oscillations are physiological phenomena that reflect perception and cognition, and involve parvalbumin-positive γ-aminobutyric acid-ergic interneuron function. The auditory steady-state response (ASSR) is the most robust index for gamma oscillations, and it is impaired in patients with neuropsychiatric disorders such as schizophrenia and autism. Although ASSR reduction is known to vary in terms of frequency and time, the neural mechanisms are poorly understood. We obtained high-density electrocorticography recordings from a wide area of the cortex in 8 patients with refractory epilepsy. In an ASSR paradigm, click sounds were presented at frequencies of 20, 30, 40, 60, 80, 120, and 160 Hz. We performed time-frequency analyses and analyzed intertrial coherence, event-related spectral perturbation, and high-gamma oscillations. We demonstrate that the ASSR is globally distributed among the temporal, parietal, and frontal cortices. The ASSR was composed of time-dependent neural subcircuits differing in frequency tuning. Importantly, the frequency tuning characteristics of the late-latency ASSR varied between the temporal/frontal and parietal cortex, suggestive of differentiation along parallel auditory pathways. This large-scale survey of the cortical ASSR could serve as a foundation for future studies of the ASSR in patients with neuropsychiatric disorders.


Assuntos
Córtex Cerebral/fisiopatologia , Eletrocorticografia/métodos , Ritmo Gama/fisiologia , Estimulação Acústica , Adolescente , Adulto , Córtex Cerebral/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/fisiopatologia , Eletrocorticografia/instrumentação , Potenciais Evocados/fisiologia , Potenciais Evocados Auditivos , Feminino , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/fisiopatologia , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiopatologia , Adulto Jovem
6.
Neuroimage ; 243: 118498, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34428572

RESUMO

Despite significant interest in the neural underpinnings of behavioral variability, little light has been shed on the cortical mechanism underlying the failure to respond to perceptual-level stimuli. We hypothesized that cortical activity resulting from perceptual-level stimuli is sensitive to the moment-to-moment fluctuations in cortical excitability, and thus may not suffice to produce a behavioral response. We tested this hypothesis using electrocorticographic recordings to follow the propagation of cortical activity in six human subjects that responded to perceptual-level auditory stimuli. Here we show that for presentations that did not result in a behavioral response, the likelihood of cortical activity decreased from auditory cortex to motor cortex, and was related to reduced local cortical excitability. Cortical excitability was quantified using instantaneous voltage during a short window prior to cortical activity onset. Therefore, when humans are presented with an auditory stimulus close to perceptual-level threshold, moment-by-moment fluctuations in cortical excitability determine whether cortical responses to sensory stimulation successfully connect auditory input to a resultant behavioral response.


Assuntos
Excitabilidade Cortical/fisiologia , Estimulação Acústica , Adulto , Idoso , Ritmo alfa/fisiologia , Córtex Auditivo/fisiologia , Mapeamento Encefálico/métodos , Eletrocorticografia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
7.
Epilepsia ; 62(4): 947-959, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33634855

RESUMO

OBJECTIVE: Intracranial electroencephalography (ICEEG) recordings are performed for seizure localization in medically refractory epilepsy. Signal quantifications such as frequency power can be projected as heatmaps on personalized three-dimensional (3D) reconstructed cortical surfaces to distill these complex recordings into intuitive cinematic visualizations. However, simultaneously reconciling deep recording locations and reliably tracking evolving ictal patterns remain significant challenges. METHODS: We fused oblique magnetic resonance imaging (MRI) slices along depth probe trajectories with cortical surface reconstructions and projected dynamic heatmaps using a simple mathematical metric of epileptiform activity (line-length). This omni-planar and surface casting of epileptiform activity approach (OPSCEA) thus illustrated seizure onset and spread among both deep and superficial locations simultaneously with minimal need for signal processing supervision. We utilized the approach on 41 patients at our center implanted with grid, strip, and/or depth electrodes for localizing medically refractory seizures. Peri-ictal data were converted into OPSCEA videos with multiple 3D brain views illustrating all electrode locations. Five people of varying expertise in epilepsy (medical student through epilepsy attending level) attempted to localize the seizure-onset zones. RESULTS: We retrospectively compared this approach with the original ICEEG study reports for validation. Accuracy ranged from 73.2% to 97.6% for complete or overlapping onset lobe(s), respectively, and ~56.1% to 95.1% for the specific focus (or foci). Higher answer certainty for a given case predicted better accuracy, and scorers had similar accuracy across different training levels. SIGNIFICANCE: In an era of increasing stereo-EEG use, cinematic visualizations fusing omni-planar and surface functional projections appear to provide a useful adjunct for interpreting complex intracranial recordings and subsequent surgery planning.


Assuntos
Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/fisiopatologia , Eletrocorticografia/normas , Imageamento por Ressonância Magnética/normas , Convulsões/diagnóstico por imagem , Convulsões/fisiopatologia , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Criança , Pré-Escolar , Eletrocorticografia/métodos , Feminino , Seguimentos , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
8.
Cereb Cortex ; 30(10): 5333-5345, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32495832

RESUMO

We present a model-based method for inferring full-brain neural activity at millimeter-scale spatial resolutions and millisecond-scale temporal resolutions using standard human intracranial recordings. Our approach makes the simplifying assumptions that different people's brains exhibit similar correlational structure, and that activity and correlation patterns vary smoothly over space. One can then ask, for an arbitrary individual's brain: given recordings from a limited set of locations in that individual's brain, along with the observed spatial correlations learned from other people's recordings, how much can be inferred about ongoing activity at other locations throughout that individual's brain? We show that our approach generalizes across people and tasks, thereby providing a person- and task-general means of inferring high spatiotemporal resolution full-brain neural dynamics from standard low-density intracranial recordings.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Eletrocorticografia , Processamento de Imagem Assistida por Computador/métodos , Modelos Neurológicos , Humanos , Funções Verossimilhança , Distribuição Normal
9.
J Neurolinguistics ; 602021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34305315

RESUMO

Many language functions are traditionally assigned to cortical brain areas, leaving the contributions of subcortical structures to language processing largely unspecified. The present study examines a potential role of the subthalamic nucleus (STN) in lexical processing, specifically, reading aloud of words (e.g., 'fate') and pseudowords (e.g., 'fape'). We recorded local field potentials simultaneously from the STN and the cortex (precentral, postcentral, and superior temporal gyri) of 13 people with Parkinson's disease undergoing awake deep brain stimulation and compared STN's lexicality-related neural activity with that of the cortex. Both STN and cortical activity demonstrated significant task-related modulations, but the lexicality effects were different in the two brain structures. In the STN, an increase in gamma band activity (31-70 Hz) was present in pseudoword trials compared to word trials during subjects' spoken response. In the cortex, a greater decrease in beta band activity (12-30 Hz) was observed for pseudowords in the precentral gyrus. Additionally, 11 individual cortical sites showed lexicality effects with varying temporal and topographic characteristics in the alpha and beta frequency bands. These findings suggest that the STN and the sampled cortical regions are involved differently in the processing of lexical distinctions.

10.
Acta Neurochir (Wien) ; 163(5): 1299-1309, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33222010

RESUMO

BACKGROUND: Intraoperative functional mapping with direct electrical stimulation during awake surgery for patients with diffuse low-grade glioma has been used in recent years to optimize the balance between surgical resection and quality of life following surgery. Mapping of executive functions is particularly challenging because of their complex nature, with only a handful of reports published so far. Here, we propose the recording of neural activity directly from the surface of the brain using electrocorticography to map executive functions and demonstrate its feasibility and potential utility. METHODS: To track a neural signature of executive function, we recorded neural activity using electrocorticography during awake surgery from the frontal cortex of three patients judged to have an appearance of diffuse low-grade glioma. Based on existing functional magnetic resonance imaging (fMRI) evidence from healthy participants for the recruitment of areas associated with executive function with increased task demands, we employed a task difficulty manipulation in two counting tasks performed intraoperatively. Following surgery, the data were extracted and analyzed offline to identify increases in broadband high-gamma power with increased task difficulty, equivalent to fMRI findings, as a signature of activity related to executive function. RESULTS: All three patients performed the tasks well. Data were recorded from five electrode strips, resulting in data from 15 channels overall. Eleven out of the 15 channels (73.3%) showed significant increases in high-gamma power with increased task difficulty, 26.6% of the channels (4/15) showed no change in power, and none of the channels showed power decrease. High-gamma power increases with increased task difficulty were more likely in areas that are within the canonical frontoparietal network template. CONCLUSIONS: These results are the first step toward developing electrocorticography as a tool for mapping of executive function complementarily to direct electrical stimulation to guide resection. Further studies are required to establish this approach for clinical use.


Assuntos
Mapeamento Encefálico , Neoplasias Encefálicas/fisiopatologia , Neoplasias Encefálicas/cirurgia , Eletrocorticografia , Função Executiva , Glioma/fisiopatologia , Glioma/cirurgia , Cuidados Intraoperatórios , Adulto , Neoplasias Encefálicas/diagnóstico por imagem , Cognição/fisiologia , Estimulação Elétrica , Feminino , Ritmo Gama/fisiologia , Glioma/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Qualidade de Vida
11.
Neuroimage ; 219: 117051, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32540356

RESUMO

Functional connectivity (FC), thought to provide a window into neural communication, has become a core focus in the study of brain function and cognition. However, there is no consensus on how to conceptualize large-scale FC in electrophysiology. Phase coupling (PhC), defined as coupling between the phases of two signals, reflects the synchronization of rhythmic oscillation cycles. Conversely, amplitude coupling (AmpC), defined as coupling between the envelopes of two signals, reflects correlation of activation amplitude. Despite quantifying different electrophysiological properties, the relationship between PhC and AmpC remains largely unknown. We assessed spatial and temporal correspondence between PhC and AmpC over 5 canonical frequency bands during a cue-based motor task using electrocorticography (ECoG) in 18 patients (8 females) undergoing presurgical monitoring. Significant correspondence between the spatial pattern of PhC and AmpC was detected during stimulus processing across all subjects and frequency bands (R â€‹≈ â€‹0.50 for theta, decreasing with increasing frequency). The cross-measure spatial correlation vanished almost entirely when accounting for the portion of FC equally present during pre- and post-stimulus intervals, suggesting that the spatial correlations reflect intrinsic FC independent of stimulus processing. Stimulus-related processing modulated both PhC and AmpC, however in a spatially independent manner. Examining the linear temporal correlation, we found no evidence for linear dependence between PhC and AmpC. Supporting the robustness of our findings, results extended to a verb generation task in a second ECoG dataset of 6 subjects. We conclude that PhC and AmpC reflect intrinsic FC similarly across space, but exhibit divergent stimulus-related FC changes over space and time.


Assuntos
Encéfalo/fisiologia , Cognição/fisiologia , Rede Nervosa/fisiologia , Desempenho Psicomotor/fisiologia , Eletrocorticografia , Feminino , Humanos , Masculino
12.
Hum Brain Mapp ; 41(18): 5341-5355, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-32885895

RESUMO

The robust steady-state cortical activation elicited by flickering visual stimulation has been exploited by a wide range of scientific studies. As the fundamental neural response inherits the spectral properties of the gazed flickering, the paradigm has been used to chart cortical characteristics and their relation to pathologies. However, despite its widespread adoption, the underlying neural mechanisms are not well understood. Here, we show that the fundamental response is preceded by high-gamma (55-125 Hz) oscillations which are also synchronised to the gazed frequency. Using a subdural recording of the primary and associative visual cortices of one human subject, we demonstrate that the latencies of the high-gamma and fundamental components are highly correlated on a single-trial basis albeit that the latter is consistently delayed by approximately 55 ms. These results corroborate previous reports that top-down feedback projections are involved in the generation of the fundamental response, but, in addition, we show that trial-to-trial variability in fundamental latency is paralleled by a highly similar variability in high-gamma latency. Pathology- or paradigm-induced alterations in steady-state responses could thus originate either from deviating visual gamma responses or from aberrations in the neural feedback mechanism. Experiments designed to tease apart the two processes are expected to provide deeper insights into the studied paradigm.


Assuntos
Sincronização Cortical/fisiologia , Eletrocorticografia , Ritmo Gama/fisiologia , Percepção Visual/fisiologia , Epilepsia Resistente a Medicamentos/fisiopatologia , Fixação Ocular/fisiologia , Humanos , Estimulação Luminosa
13.
Cereb Cortex ; 29(7): 3059-3073, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-30060105

RESUMO

After spinal cord injury (SCI), the motor-related cortical areas can be a potential substrate for functional recovery in addition to the spinal cord. However, a dynamic description of how motor cortical circuits reorganize after SCI is lacking. Here, we captured the comprehensive dynamics of motor networks across SCI in a nonhuman primate model. Using electrocorticography over the sensorimotor areas in monkeys, we collected broadband neuronal signals during a reaching-and-grasping task at different stages of recovery of dexterous finger movements after a partial SCI at the cervical levels. We identified two distinct network dynamics: grasping-related intrahemispheric interactions from the contralesional premotor cortex (PM) to the contralesional primary motor cortex (M1) in the high-γ band (>70 Hz), and motor-preparation-related interhemispheric interactions from the contralesional to ipsilesional PM in the α and low-ß bands (10-15 Hz). The strengths of these networks correlated to the time course of behavioral recovery. The grasping-related network showed enhanced activation immediately after the injury, but gradually returned to normal while the strength of the motor-preparation-related network gradually increased. Our findings suggest a cortical compensatory mechanism after SCI, where two interdependent motor networks redirect activity from the contralesional hemisphere to the other hemisphere to facilitate functional recovery.


Assuntos
Vias Eferentes/fisiopatologia , Lateralidade Funcional/fisiologia , Córtex Motor/fisiopatologia , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Macaca
14.
Entropy (Basel) ; 22(12)2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33333814

RESUMO

Completely locked-in state (CLIS) patients are unable to speak and have lost all muscle movement. From the external view, the internal brain activity of such patients cannot be easily perceived, but CLIS patients are considered to still be conscious and cognitively active. Detecting the current state of consciousness of CLIS patients is non-trivial, and it is difficult to ascertain whether CLIS patients are conscious or not. Thus, it is important to find alternative ways to re-establish communication with these patients during periods of awareness, and one such alternative is through a brain-computer interface (BCI). In this study, multiscale-based methods (multiscale sample entropy, multiscale permutation entropy and multiscale Poincaré plots) were applied to analyze electrocorticogram signals from a CLIS patient to detect the underlying consciousness level. Results from these different methods converge to a specific period of awareness of the CLIS patient in question, coinciding with the period during which the CLIS patient is recorded to have communicated with an experimenter. The aim of the investigation is to propose a methodology that could be used to create reliable communication with CLIS patients.

15.
J Neurosci ; 38(24): 5538-5550, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29899034

RESUMO

There is now compelling evidence that selective stimulation of Aδ nociceptors eliciting first pain evokes robust responses in the primary somatosensory cortex (S1). In contrast, whether the C-fiber nociceptive input eliciting second pain has an organized projection to S1 remains an open question. Here, we recorded the electrocortical responses elicited by nociceptive-specific laser stimulation of the four limbs in 202 humans (both males and females, using EEG) and 12 freely moving rats (all males, using ECoG). Topographical analysis and source modeling revealed in both species, a clear gross somatotopy of the unmyelinated C-fiber input within the S1 contralateral to the stimulated side. In the human EEG, S1 activity could be isolated as an early-latency negative deflection (C-N1 wave peaking at 710-730 ms) after hand stimulation, but not after foot stimulation because of the spatiotemporal overlap with the subsequent large-amplitude supramodal vertex waves (C-N2/P2). In contrast, because of the across-species difference in the representation of the body surface within S1, S1 activity could be isolated in rat ECoG as a C-N1 after both forepaw and hindpaw stimulation. Finally, we observed a functional dissociation between the generators of the somatosensory-specific lateralized waves (C-N1) and those of the supramodal vertex waves (C-N2/P2), indicating that C-fiber unmyelinated input is processed in functionally distinct somatosensory and multimodal cortical areas. These findings demonstrated that C-fiber input conveys information about the spatial location of noxious stimulation across the body surface, a prerequisite for deploying an appropriate defensive motor repertoire.SIGNIFICANCE STATEMENT Unmyelinated C-fibers are the evolutionarily oldest peripheral afferents responding to noxious environmental stimuli. Whether C-fiber input conveys information about the spatial location of the noxious stimulation to the primary somatosensory cortex (S1) remains an open issue. In this study, C-fibers were activated by radiant heat stimuli delivered to different parts of the body in both humans and rodents while electrical brain activity was recorded. In both species, the C-fiber peripheral input projects to different parts of the contralateral S1, coherently with the representation of the body surface within this brain region. These findings demonstrate that C-fiber input conveys information about the spatial location of noxious stimulation across the body surface, a prerequisite for deploying an appropriate defensive motor repertoire.


Assuntos
Vias Aferentes/fisiologia , Fibras Nervosas Amielínicas/fisiologia , Neurônios Aferentes/fisiologia , Dor/fisiopatologia , Córtex Somatossensorial/fisiopatologia , Adolescente , Adulto , Animais , Mapeamento Encefálico , Potenciais Somatossensoriais Evocados/fisiologia , Feminino , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Adulto Jovem
16.
Neuroimage ; 200: 635-643, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31247299

RESUMO

Many studies have reported visual cortical gamma-band activity related to stimulus processing and cognition. Most respective studies used artificial stimuli, and the few studies that used natural stimuli disagree. Electrocorticographic (ECoG) recordings from awake macaque areas V1 and V4 found gamma to be abundant during free viewing of natural images. In contrast, a study using ECoG recordings from V1 of human patients reported that many natural images induce no gamma and concluded that it is not necessary for seeing. To reconcile these apparently disparate findings, we reanalyzed those same human ECoG data recorded during presentation of natural images. We find that the strength of gamma is positively correlated with different image-computable metrics of image structure. This holds independently of the precise metric used to quantify gamma. In fact, an average of previously used gamma metrics reflects image structure most robustly. Gamma was sufficiently diagnostic of image structure to differentiate between any possible pair of images with >70% accuracy. Thus, while gamma might be weak for some natural images, the graded strength of gamma reflects the graded degree of image structure, and thereby conveys functionally relevant stimulus properties.


Assuntos
Eletrocorticografia/métodos , Neuroimagem Funcional/métodos , Ritmo Gama/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Máquina de Vetores de Suporte , Córtex Visual/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade
17.
Brain Topogr ; 32(5): 882-896, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31129754

RESUMO

Statistical significance testing is a necessary step in connectivity analysis. Several statistical test methods have been employed to assess the significance of functional connectivity, but the performance of these methods has not been thoroughly evaluated. In addition, the effects of the intrinsic brain connectivity and background couplings on performance of statistical test methods in task-based studies have not been investigated yet. The background couplings may exist independent of cognitive state and can be observed on both pre- and post-stimulus time intervals. The background couplings may be falsely detected by a statistical test as task-related connections, which can mislead interpretations of the task-related functional networks. The aim of this study was to investigate the relative performance of four commonly used non-parametric statistical test methods-surrogate, demeaned surrogate, bootstrap resampling, and Monte Carlo permutation methods-in the presence of background couplings and noise, with different signal-to-noise ratios (SNRs). Using simulated electrocorticographic (ECoG) datasets and phase locking value (PLV) as a measure of functional connectivity, we evaluated the performances of the statistical test methods utilizing sensitivity, specificity, accuracy, and receiver operating curve (ROC) analysis. Furthermore, we calculated optimal p values for each statistical test method using the ROC analysis, and found that the optimal p values were increased by decreasing the SNR. We also found that the optimal p value of the bootstrap resampling was greater than that of other methods. Our results from the simulation datasets and a real ECoG dataset, as an illustrative case report, revealed that the bootstrap resampling is the most efficient non-parametric statistical test for identifying the significant PLV of ECoG data, especially in the presence of background couplings.


Assuntos
Mapeamento Encefálico/métodos , Razão Sinal-Ruído , Estatística como Assunto , Algoritmos , Encéfalo , Eletrocorticografia/métodos , Humanos , Método de Monte Carlo , Adulto Jovem
18.
Neuroimage ; 180(Pt A): 147-159, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28823828

RESUMO

The majority of visual recognition studies have focused on the neural responses to repeated presentations of static stimuli with abrupt and well-defined onset and offset times. In contrast, natural vision involves unique renderings of visual inputs that are continuously changing without explicitly defined temporal transitions. Here we considered commercial movies as a coarse proxy to natural vision. We recorded intracranial field potential signals from 1,284 electrodes implanted in 15 patients with epilepsy while the subjects passively viewed commercial movies. We could rapidly detect large changes in the visual inputs within approximately 100 ms of their occurrence, using exclusively field potential signals from ventral visual cortical areas including the inferior temporal gyrus and inferior occipital gyrus. Furthermore, we could decode the content of those visual changes even in a single movie presentation, generalizing across the wide range of transformations present in a movie. These results present a methodological framework for studying cognition during dynamic and natural vision.


Assuntos
Córtex Visual/fisiologia , Percepção Visual/fisiologia , Adolescente , Adulto , Mapeamento Encefálico/métodos , Criança , Pré-Escolar , Epilepsia Resistente a Medicamentos/terapia , Terapia por Estimulação Elétrica , Eletrodos Implantados , Potenciais Evocados Visuais/fisiologia , Feminino , Humanos , Masculino , Filmes Cinematográficos , Estimulação Luminosa , Processamento de Sinais Assistido por Computador , Adulto Jovem
19.
Brain ; 140(5): 1351-1370, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334963

RESUMO

We have provided 3-D and 4D mapping of speech and language function based upon the results of direct cortical stimulation and event-related modulation of electrocorticography signals. Patients estimated to have right-hemispheric language dominance were excluded. Thus, 100 patients who underwent two-stage epilepsy surgery with chronic electrocorticography recording were studied. An older group consisted of 84 patients at least 10 years of age (7367 artefact-free non-epileptic electrodes), whereas a younger group included 16 children younger than age 10 (1438 electrodes). The probability of symptoms transiently induced by electrical stimulation was delineated on a 3D average surface image. The electrocorticography amplitude changes of high-gamma (70-110 Hz) and beta (15-30 Hz) activities during an auditory-naming task were animated on the average surface image in a 4D manner. Thereby, high-gamma augmentation and beta attenuation were treated as summary measures of cortical activation. Stimulation data indicated the causal relationship between (i) superior-temporal gyrus of either hemisphere and auditory hallucination; (ii) left superior-/middle-temporal gyri and receptive aphasia; (iii) widespread temporal/frontal lobe regions of the left hemisphere and expressive aphasia; and (iv) bilateral precentral/left posterior superior-frontal regions and speech arrest. On electrocorticography analysis, high-gamma augmentation involved the bilateral superior-temporal and precentral gyri immediately following question onset; at the same time, high-gamma activity was attenuated in the left orbitofrontal gyrus. High-gamma activity was augmented in the left temporal/frontal lobe regions, as well as left inferior-parietal and cingulate regions, maximally around question offset, with high-gamma augmentation in the left pars orbitalis inferior-frontal, middle-frontal, and inferior-parietal regions preceded by high-gamma attenuation in the contralateral homotopic regions. Immediately before verbal response, high-gamma augmentation involved the posterior superior-frontal and pre/postcentral regions, bilaterally. Beta-attenuation was spatially and temporally correlated with high-gamma augmentation in general but with exceptions. The younger and older groups shared similar spatial-temporal profiles of high-gamma and beta modulation; except, the younger group failed to show left-dominant activation in the rostral middle-frontal and pars orbitalis inferior-frontal regions around stimulus offset. The human brain may rapidly and alternately activate and deactivate cortical areas advantageous or obtrusive to function directed toward speech and language at a given moment. Increased left-dominant activation in the anterior frontal structures in the older age group may reflect developmental consolidation of the language system. The results of our functional mapping may be useful in predicting, across not only space but also time and patient age, sites specific to language function for presurgical evaluation of focal epilepsy.


Assuntos
Mapeamento Encefálico/métodos , Córtex Cerebelar/fisiologia , Eletrocorticografia/métodos , Epilepsia/fisiopatologia , Imageamento Tridimensional/métodos , Idioma , Fala/fisiologia , Adolescente , Adulto , Fatores Etários , Ondas Encefálicas/fisiologia , Criança , Pré-Escolar , Estimulação Elétrica , Eletrodos Implantados , Humanos , Adulto Jovem
20.
J Physiol ; 595(23): 7203-7221, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28791721

RESUMO

KEY POINTS: The cortical mechanisms of grasping have been extensively studied in macaques and humans; here, we investigated whether common marmosets could rely on similar mechanisms despite strong differences in hand morphology and grip diversity. We recorded electrocorticographic activity over the sensorimotor cortex of two common marmosets during the execution of different grip types, which allowed us to study cortical activity (power spectrum) and physiologically inferred connectivity (phase-slope index). Analyses were performed in beta (16-35 Hz) and gamma (75-100 Hz) frequency bands and our results showed that beta power varied depending on grip type, whereas gamma power displayed clear epoch-related modulation. Strength and direction of inter-area connectivity varied depending on grip type and epoch. These findings suggest that fundamental control mechanisms are conserved across primates and, in future research, marmosets could represent an adequate model to investigate primate brain mechanisms. ABSTRACT: The cortical mechanisms of grasping have been extensively studied in macaques and humans. Here, we investigated whether common marmosets could rely on similar mechanisms despite striking differences in manual dexterity. Two common marmosets were trained to grasp-and-pull three objects eliciting different hand configurations: whole-hand, finger and scissor grips. The animals were then chronically implanted with 64-channel electrocorticogram arrays positioned over the left premotor, primary motor and somatosensory cortex. Power spectra, reflecting predominantly cortical activity, and phase-slope index, reflecting the direction of information flux, were studied in beta (16-35 Hz) and gamma (75-100 Hz) bands. Differences related to grip type, epoch (reach, grasp) and cortical area were statistically assessed. Results showed that whole-hand and scissor grips triggered stronger beta desynchronization than finger grip. Task epochs clearly modulated gamma power, especially for finger and scissor grips. Considering effective connectivity, finger and scissor grips evoked stronger outflow from primary motor to premotor cortex, whereas whole-hand grip displayed the opposite pattern. These findings suggest that fundamental control mechanisms, relying on adjustments of cortical activity and connectivity, are conserved across primates. Consistently, marmosets could represent a good model to investigate primate brain mechanisms.


Assuntos
Força da Mão , Desempenho Psicomotor , Córtex Sensório-Motor/fisiologia , Animais , Ritmo beta , Callithrix , Conectoma , Potenciais Somatossensoriais Evocados , Ritmo Gama , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA