Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
BMC Plant Biol ; 24(1): 85, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38308226

RESUMO

BACKGROUND: Onion seeds have limited storage capacity compared to other vegetable seeds. It is crucial to identify the mechanisms that induce tolerance to storage conditions and reduce seed deterioration. To address this goal, an experiment was conducted to evaluate changes in germination, biochemical, physiological, and molecular characteristics of onion seed landraces (Horand, Kazerun landraces and Zargan cultivar) at different aging levels (control, three-days and six-days accelerated aging, and natural aging for one year). RESULTS: The findings suggest that there was an increase in glucose, fructose, total sugar, and electrolyte leakage in the Horand (HOR), Kazerun (KAZ) landraces, and Zarghan (ZAR) cultivar, with Kazerun exhibiting the greatest increase. The percentage and rate of germination of Kazerun decreased by 54% and 33%, respectively, in six-day accelerated aging compared to the control, while it decreased by 12% and 14%, respectively, in Horand. Protein content decreased with increasing levels of aging, with a decrease of 26% in Kazerun landrace at six days of aging, while it was 16% in Horand landrace. The antioxidant activities of catalase, superoxide dismutase, and glutathione peroxidase decreased more intensively in Kazerun. The expression of AMY1, BMY1, CTR1, and NPR1 genes were lower in Kazerun landraces than in Horand and Zargan at different aging levels. CONCLUSIONS: The AMY1, BMY1, CTR1, and NPR1 genes play a pivotal role in onion seed germination, and their downregulation under stressful conditions has been shown to decrease germination rates. In addition, the activity of CAT, SOD, and GPx enzymes decreased by seed aging, and the amount of glucose, fructose, total sugar and electrolyte leakage increased, which ultimately led to seed deterioration. Based on the results of this experiment, it is recommended to conduct further studies into the molecular aspects involved in onion seed deterioration. More research on the genes related to this process is suggested, as well as investigating the impact of different priming treatments on the genes expression involved in the onion seed aging process.


Assuntos
Germinação , Cebolas , Cebolas/genética , Germinação/genética , Sementes/metabolismo , Eletrólitos/análise , Eletrólitos/metabolismo , Frutose/análise , Frutose/metabolismo , Glucose/metabolismo , Açúcares/metabolismo
2.
J Exp Bot ; 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066622

RESUMO

Frost tolerance has evolved many times independently across flowering plants. However, conservation of several frost tolerance mechanisms among distant relatives suggests that apparently independent entries into freezing climates may have been facilitated by repeated modification of existing traits ('precursor traits'). One possible precursor trait for freezing tolerance is drought tolerance, because palaeoclimatic data suggest plants were exposed to drought before frost and several studies have demonstrated shared physiological and genetic responses to drought and frost stress. Here, we combine ecophysiological experiments and comparative analyses to test the hypothesis that drought tolerance acted as a precursor to frost tolerance in cool-season grasses (Pooideae). Contrary to our predictions, we measured the highest levels of frost tolerance in species with the lowest ancestral drought tolerance, suggesting that the two stress responses evolved independently in different lineages. We further show that drought tolerance is more evolutionarily labile than frost tolerance. This could limit our ability to reconstruct the order in which drought and frost responses evolved relative to each other. Further research is needed to determine whether our results are unique to Pooideae or general for flowering plants.

3.
Ann Bot ; 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066503

RESUMO

BACKGROUND AND AIMS: As winter and spring temperatures continue to increase, the timing of flowering and leaf out is advancing in many seasonally cold regions. This advancement could put plants that flower early in the spring at risk of decreased reproduction in years when there are late freeze events. Unfortunately, relatively little is known about floral freezing tolerance in forest communities. In this study, we examined the impact of freezing temperatures on the flowers of woody plants in a region where there is rapid winter warming in North America. METHODS: We subjected the flowers of twenty-five woody species to a hard (-5ºC) and a light freeze (0ºC). We assessed tissue damage using electrolyte leakage. In a subset of species, we also examined the impact of a hard freeze on pollen tube growth. To determine if the vulnerability of flowers to freezing damage relates to flowering time and to examine the responsiveness of flowering time to spring temperature, we recorded the date of first flower for our study species for three years. KEY RESULTS AND CONCLUSIONS: Across species, we found that floral freezing tolerance was strongly tied to flowering time with the highest freezing tolerance occurring in plants that bloomed earlier in the year. We hypothesize that these early blooming species are unlikely to be impacted by a false spring. Instead, the most vulnerable species to a false spring should be those that bloom later in the season. The flowering time in these species is also more sensitive to temperature, putting them at a great risk of experiencing a false spring. Ultimately, floral damage in one year will not have a large impact on species fitness, but if false springs become more frequent, there could be long-term impacts on reproduction of vulnerable species.

4.
J Plant Res ; 137(1): 111-124, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37610631

RESUMO

The cyclic nucleotide cyclic guanosine monophosphate (cGMP) is a powerful cell signaling molecule involved in biotic and abiotic stress perception and signal transduction. In the model plant Arabidopsis thaliana, salt and osmotic stress rapidly induce increase in cGMP which plays role by modulating the activity of monovalent cation transporters, possibly by direct binding to these proteins and by altering the expression of many abiotic stress responsive genes. In a recent study, a membrane permeable analogue of cGMP (8-bromo-cGMP) was found to have a promotive effect on soluble sugar, flavonoids and lignin content, and membrane integrity in Solanum lycopersicum seedlings under salt stress. However, it remains to be elucidated how salt stress affects the endogenous cGMP level in S. lycopersicum and if Br-cGMP-induced improvement in salt tolerance in S. lycopersicum involves altered cation fluxes. The current study was conducted to answer these questions. A rapid increase (within 30 s) in endogenous cGMP level was determined in S. lycopersicum roots after treatment with 100 mM NaCl. Addition of membrane permeable Br-cGMP in growth medium remarkably ameliorated the inhibitory effects of NaCl on seedlings' growth parameters, chlorophyll content and net photosynthesis rate. In salt stressed plants, Br-cGMP significantly decreased Na+ content by reducing its influx and increasing efflux while it improved plants K+ content by reducing its efflux and enhancing influx. Furthermore, supplementation with Br-cGMP improved plant's proline content and total antioxidant capacity, resulting in markedly decreased electrolyte leakage under salt stress. Br-cGMP increased the expression of Na+/H+ antiporter genes in roots and shoots of S. lycopersicum growing under salt stress, potentially enhancing plant's ability to sequester Na+ into the vacuole. The findings of this study provide insights into the mechanism of cGMP-induced salt stress tolerance in S. lycopersicum.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Guanosina Monofosfato/metabolismo , Guanosina Monofosfato/farmacologia , Tolerância ao Sal/genética , Cloreto de Sódio/farmacologia , Plântula
5.
Int J Phytoremediation ; 26(7): 1144-1153, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38143325

RESUMO

Cadmium (Cd) is the most toxic element which may cause serious consequences to microbial communities, animals, and plants. The use of green technologies like phytoremediation employs plants with high biomass and metal tolerance to extract toxic metals from their rooting zones. In the present work, Hydrocotyle umbellata was exposed to five Cd concentrations (2, 4, 6, 8, and 10 µmol) in triplicates to judge its phytoextraction ability. Effects of metal exposure on chlorophyll (Chl), bio-concentration factor (BCF), translocation factor (TF), and electrolyte leakage (EL) were analyzed after 10 days of treatment. Metal-responding genes were also observed through transcriptomic analysis. Roots were the primary organs for cadmium accumulation followed by stolon and leaves. There was an increase in EL. Plants showed various symptoms under increasing metal stress namely, chlorosis, browning of the leaf margins, burn-like areas on the leaves, and stunted growth, suggesting a positive relationship between EL, and programmed cell death (PCD). Metal-responsive genes, including glutathione, expansin, and cystatin were equally expressed. The phytoextraction capacity and adaptability of H. umbellata L. against Cd metal stress was also demonstrated by BCF more than 1 and TF less than 1.


The results of the current study demonstrated that Hydrocotyle umbellata is a good choice for environmental cleanup in areas with mild Cd contamination. According to TF and BCF, the plant demonstrated a considerable uptake of Cd. Additionally, H. umbellata's eligibility as a phytoremediation agent for Cd was supported by the transcription of numerous metal-responsive genes, including glutathione, expansin, cystatin, and other genes associated with growth.


Assuntos
Biodegradação Ambiental , Cádmio , Poluentes do Solo , Cádmio/metabolismo , Poluentes do Solo/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas , Transcrição Gênica , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico
6.
BMC Plant Biol ; 23(1): 464, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798697

RESUMO

BACKGROUND: The aim of this study was to compare and investigate the effects of 1-(3-phenyl-propyl) cyclopropene (PPCP) and melatonin (MT) as anti-ethylene agents on postharvest senescence, quality, chilling tolerance, and antioxidant metabolism in the mango fruit cv. "Keitt". The study involved exposing the fruit to 20 µL L- 1 PPCP or 200 µM MT, in addition to a control group of untreated fruit, before storing them at 5 ± 1 °C for 28 d. The findings revealed that the treatments with PPCP and MT were effective in reducing chilling injury and preserving fruit quality when compared to the control group. RESULTS: The use of 20 µL L- 1 PPCP was an effective treatment in terms of mitigating chilling injury and preserving fruit quality for 28 d. This was attributed to the decrease in metabolic activity, specifically the respiration rate and the production of ethylene, which led to the maintenance of fruit firmness and bioactive compounds, energy metabolism, and antioxidant activity, such as ascorbic acid, total flavonoids, trolox equivalent antioxidant capacity, dehydroascorbate reductase, glutathione reductase activity, ATP, and ATPase activity. The study also found that the MT treatment at 200 µM was effective in reducing chilling injury and weight loss and improving membrane stability. Additionally, it led to a decrease in malondialdehyde content and electrolyte leakage, and the maintenance of fruit quality in terms of firmness, peel and pulp colour values for mango peel and pulp total carotenoid content, as well as phenylalanine ammonia lyase and tyrosine ammonia lyase activity. These findings indicate that PPCP and MT have the potential to be efficient treatments in maintaining mango quality and minimizing post-harvest losses. CONCLUSION: The utilisation of treatments with 20 µL L- 1 of PPCP or 200 µM MT was found to effectively preserve the postharvest quality parameters, in terms of bioactive compounds, energy metabolism, and antioxidant activity, of mangoes cv. "Keitt" that were stored at 5 ± 1 °C for 28 d.


Assuntos
Mangifera , Melatonina , Antioxidantes/metabolismo , Melatonina/farmacologia , Melatonina/metabolismo , Armazenamento de Alimentos , Frutas/metabolismo , Ciclopropanos/farmacologia
7.
Int J Phytoremediation ; 24(3): 283-292, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34154463

RESUMO

The use of effluent from fish farming in the greenhouse increases the availability of water and reduces the risk of environmental contamination due to improper disposal. Therefore, a study in a greenhouse was carried out to evaluate the effects of fertigation utilizing fish farming effluent at different phenological stages of cherry tomato. Plants of cherry tomato were fertigated with fish farming effluent (E) alternated with tap water (W) at the four phenological stages of the crop (growth, flowering, fruit formation and ripening). The growth, gas exchange, chlorophyll a fluorescence, chloroplast pigments, electrolyte leakage, production and postharvest quality were evaluated. The fertigation with fish farming effluents did not reduce the growth of tomato plants. The fertirrigated plants with fish farming effluents obtained photosynthetic rates and photochemical efficiency similar or superior to the control. There was no interference on photochemical quenching when the plants were fertigated with fish farming effluents. When applied at the flowering stage, fish farming effluent reduces the average fruit weight and increases acidity. For greenhouse cultivation, each application of fish farming effluents, two successive applications of tap water are required.Novelty statement: Use of fish farming effluent did not compromise the growth and photosynthetic activity of cherry tomato plants. Cherry tomato production was compromised when the effluent was applied during growth, flowering and, beginning of fruit set. The fish farming effluent can be used in irrigation without yield losses if alternating with tap water.


Assuntos
Solanum lycopersicum , Agricultura , Animais , Biodegradação Ambiental , Clorofila A , Frutas
8.
Molecules ; 27(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35408652

RESUMO

The consumption of ready-to-eat (RTE) leafy vegetables has increased rapidly due to changes in consumer diet. RTE products are perceived as fresh, high-quality, and health-promoting. The monitoring of the RTE quality is crucial in relation to safety issues. This study aimed to evaluate the maintenance of RTE rocket salad freshness packed under modified atmospheres. A portable E-nose, the electrolyte leakage test (which measures the index of leaf damage-ILD), and NIR spectroscopy and Aquaphotomics were employed. Two trials were carried out, using the following gas mixtures: (A) atmospheric air (21% O2, 78% N2); (B) 30% O2, 70% N2; (C) 10% CO2, 5% O2, 85% N2. Samples were stored at 4 °C and analyzed at 0, 1, 4, 7, 11, and 13 days. ANOVA, PCA, PLS were applied for data processing. E-nose and ILD results identified the B atmosphere as the best for maintaining product freshness. NIR spectroscopy was able to group the samples according to the storage time. Aquaphotomics proved to be able to detect changes in the water structure during storage. These preliminary data showed a good agreement NIR/ILD suggesting the use of NIR for non-destructive monitoring of the damage to the plant membranes of RTE rocket salad.


Assuntos
Nariz Eletrônico , Verduras , Contagem de Colônia Microbiana , Eletrólitos , Microbiologia de Alimentos , Espectroscopia de Luz Próxima ao Infravermelho , Verduras/química
9.
Mol Plant Microbe Interact ; 34(8): 880-890, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33834857

RESUMO

The infection of Pseudomonas syringae pv. actinidiae in kiwifruit is currently assessed by numerous methodologies, each with their own limitations. Most studies are based on either a laborious method of growth quantification of the pathogen or qualitative assessments by visual scoring following stem or cutting inoculation. Additionally, when assessing for resistance against specific pathogen effectors, confounding interactions between multiple genes in the pathogen can make mapping resistance phenotypes nearly impossible. Here, we present robust alternative methods to quantify pathogen load based on rapid bacterial DNA quantification by PCR, the use of Pseudomonas fluorescens, and a transient reporter eclipse assay for assessing resistance conferred by isolated bacterial avirulence genes. These assays compare well with bacterial plate counts to assess bacterial colonization as a result of plant resistance activation. The DNA-based quantification, when coupled with the P. fluorescens and reporter eclipse assays to independently identify bacterial avirulence genes, is rapid, highly reproducible, and scalable for high-throughput screens of multiple cultivars or genotypes. Application of these methodologies will allow rapid and high-throughput identification of resistant cultivars and the bacterial avirulence genes they recognize, facilitating resistance gene discovery for plant breeding programs.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Actinidia , Pseudomonas syringae , Frutas , Melhoramento Vegetal , Doenças das Plantas , Pseudomonas syringae/genética
10.
BMC Plant Biol ; 21(1): 303, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34187364

RESUMO

BACKGROUND: Organic mulches are widely used in crop production systems. Due to their benefits in improving soil fertility, retention of soil moisture and weed control. Field experiments were conducted during wheat growing seasons of 2018-2019 and 2019-2020 to evaluate the effects of Jatropha leaves mulch on the growth of wheat varieties 'Wadan-17' (rainfed) and 'Pirsabaq-2013' (irrigated) under well irrigated and water stress conditions (non-irrigated maintaining 40% soil field capacity). Jatropha mulch was applied to the soil surface at 0, 1, 3 and 5 Mg ha-1 before sowing grains in the field. Under conditions of water stress, Jatropha mulch significantly maintained the soil moisture content necessary for normal plant growth. RESULTS: We noted a decrease in plant height, shoot and root fresh/dry weight, leaf area, leaf relative water content (LRWC), chlorophyll, and carotenoid content due to water stress. However, water stress caused an increase in leaf and root phenolics content, leaf soluble sugars and electrolytes leakage. We observed that Jatropha mulch maintained LRWC, plant height, shoot and root fresh/dry weight, leaf area and chlorophyll content under water stress. Moreover, water stress adverse effects on leaf soluble sugar content and electrolyte leakage were reversed to normal by Jatropha mulch. CONCLUSION: Therefore, it may be concluded that Jatropha leaves mulch will minimize water stress adverse effects on wheat by maintaining soil moisture and plant water status.


Assuntos
Produção Agrícola/métodos , Jatropha , Folhas de Planta , Triticum/crescimento & desenvolvimento , Metabolismo dos Carboidratos , Carotenoides/metabolismo , Clorofila/metabolismo , Desidratação , Raízes de Plantas/crescimento & desenvolvimento , Solo , Triticum/metabolismo , Triticum/fisiologia
11.
BMC Plant Biol ; 21(1): 199, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33902454

RESUMO

BACKGROUND: Electrical impedance tomography (EIT) has rarely been applied in plant science, particularly to study plant resistance to abiotic and biotic stresses. In this study, we evaluated the freezing resistance of floribunda roses (Rosa Floribunda) during frost dehardening using the EIT technique to identify a new method for rapid and non-destructive measurement of plant freezing resistance. RESULTS: The current was the excitation source, the boundary voltage value was measured, and then the boundary voltage reconstructed value was formed. Using an imaging algorithm, the two-dimensional (2D) distribution of impedance or impedance variation was reconstructed. The EIT reconstructed values decreased obviously with the decline in freezing temperatures. The EIT reconstructed values of stems had the best fit to the logistic equation, and subsequently, the semi-lethal temperatures were calculated. The freezing resistance results evaluated using EIT reconstructed values were linearly correlated with the results of the traditional electrolyte leakage (EL) method (r = 0.93, P < 0.01). CONCLUSIONS: In conclusion, after freezing tests, the reconstructed values of EIT images could be used to quantitatively evaluate the freezing resistance of floribunda rose stems. The present study provides a reference for the further application of the EIT technique for non-destructive and rapid detection of plant freezing resistance.


Assuntos
Congelamento , Horticultura/métodos , Rosa/fisiologia , Tomografia Computadorizada por Raios X/métodos , Impedância Elétrica , Horticultura/instrumentação , Caules de Planta/fisiologia , Tomografia Computadorizada por Raios X/instrumentação , Tempo (Meteorologia)
12.
Plant Cell Environ ; 44(8): 2593-2603, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33993527

RESUMO

The heat resistance of meristematic tissues is crucial for the survival of plants exposed to high temperatures, as experienced during a forest fire. Although the risk and frequency of forest fires are increasing due to climate change, knowledge about the heat susceptibility of buds, which enclose apical meristems and thus enable resprouting and apical growth, is scarce. In this study, the heat resistance of buds in two different phenological stages was experimentally assessed for 10 European tree species. Cellular heat tolerance of buds was analyzed by determining the electrolyte leakage following heat exposure. Further, the heat insulation capability was tested by measuring the time required to reach lethal internal temperatures linked to bud traits. Our results highlighted differences in cellular heat tolerance and insulation capability among the study species. The phenological stage was found to affect both the thermal stability of cells and the buds' insulation. Further, a good relationship between size-related bud traits and insulation capability was established. Species-specific data on the heat resistance of buds give a more accurate picture of the fire susceptibility of European tree species and provide useful information for estimating tree post-fire responses more precisely.


Assuntos
Magnoliopsida/fisiologia , Termotolerância/fisiologia , Árvores/fisiologia , Eletrólitos/metabolismo , Região dos Alpes Europeus , Temperatura Alta , Magnoliopsida/citologia , Células Vegetais , Árvores/citologia
13.
Ecotoxicol Environ Saf ; 212: 111962, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33550082

RESUMO

The production of cucumber under combined salinity and heat stress is a crucial challenge facing many countries particularly in arid environments. This challenge could be controlled through exogenous foliar application of some bio-stimulants or anti-stressors. This study was carried out to investigate the management and improving cucumber production under combined salinity and heat stress. Nano-selenium (nano-Se, 25 mg L-1), silicon (Si, 200 mg L-1) and hydrogen peroxide (H2O2, 20 mmol L-1) were foliar applied on cucumber plants as anti-stress compounds. The results revealed that studied anti-stressors improved growth and productivity of cucumber grown in saline soil regardless the kind of anti-stressor under heat stress. The foliar application of nano-Se (25 mg L-1) clearly improved cucumber growth parameters (plant height and leaf area) compared to other anti-stressor and control. Foliar Si application showed the greatest impact on enzymatic antioxidant capacities among the other anti-stressor treatments. This applied rate of Si also showed the greatest increase in marketable fruit yield and yield quality (fruit firmness and total soluble solids) compared to untreated plants. These increases could be due to increasing nutrient uptake particularly N, P, K, and Mg, as well as Se (by 40.2% and 43%) in leaves and Si (by 11.2% and 22.1% in fruits) in both seasons, respectively. The potential role of Si in mitigating soil salinity under heat stress could be referred to high Si content found in leaf which regulates water losses via transpiration as well as high nutrient uptake of other nutrients (N, P, K, Mg and Se). The distinguished high K+ content found in cucumber leaves might help stressed plants to tolerate studied stresses by regulating the osmotic balance and controlling stomatal opening, which support cultivated plants to adapt to soil salinity under heat stress. Further studies are needed to be carried out concerning the different response of cultivated plants to combined stresses.


Assuntos
Selênio , Silício , Antioxidantes , Cucumis sativus/crescimento & desenvolvimento , Frutas , Resposta ao Choque Térmico/fisiologia , Peróxido de Hidrogênio , Folhas de Planta , Salinidade , Solo
14.
J Sci Food Agric ; 101(14): 6134-6142, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34402534

RESUMO

BACKGROUND: Fresh-cut vegetables are subjected to multiple stressing agents including: (i) slicing, which induces cellular decompartmentalization; (ii) low refrigeration temperatures, responsible for chilling injury in the most sensitive products (e.g. tomatoes), and (iii) storage time because tissue senescence and aging can occur and reduce the shelf-life. In tomato slices, one of the most important issues is the membrane, which is responsible for several disorders related to the alteration of physiological processes, including ethylene biosynthesis. RESULTS: Electrolyte leakage and the content of thiobarbituric acid reactive substances in sliced tomatoes increased over time at two storage temperatures (4 °C and 15 °C) compared with intact fruit for the commercial variety (cultivar) Jama used as reference. However, in the tomato Italian landrace Canestrino, electrolyte leakage in sliced fruits increased after 120 h of storage compared to intact tomatoes, while the thiobarbituric acid reactive substance content increased rapidly over time at both storage temperatures. In the packages, higher ethylene content and carbon dioxide concentrations were detected in sliced tomatoes compared with intact fruits for both genotypes. In the most sensitive genotype for slicing (Jama), phospholipase C activity increased in tomato slices after 24 h of storage, but phospholipase D reached a higher value only at 168 h after processing at 4 °C of storage. CONCLUSIONS: The results evidence that the main damage in slices of full ripe tomatoes is more related to cutting, rather than chilling injury due to storage temperatures, with differences related to the genotype. Slicing enhanced membrane catabolism, ethylene production, and enzyme activity of phospholipases with a significant genotype effect. © 2021 Society of Chemical Industry.


Assuntos
Membrana Celular/química , Manipulação de Alimentos/métodos , Solanum lycopersicum/química , Membrana Celular/genética , Membrana Celular/metabolismo , Etilenos/metabolismo , Armazenamento de Alimentos , Frutas/química , Frutas/genética , Frutas/metabolismo , Genótipo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Temperatura
15.
Am J Bot ; 107(3): 489-497, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32096224

RESUMO

PREMISE: Cold tolerance is an important factor limiting the geographic distribution and growing season for many plant species, yet few studies have examined variation in cold tolerance extensively within and among closely related species and compared that to their geographic distribution. METHODS: This study examines cold tolerance within and among species in the genus Arabidopsis. We assessed cold tolerance by measuring electrolyte leakage from detached leaves in multiple populations of five Arabidopsis taxa. The temperature at which 50% of cells were lysed was considered the lethal temperature (LT50 ). RESULTS: We found variability within and among taxa in cold tolerance. There was no significant within-species relationship between latitude and cold tolerance. However, the northern taxa, A. kamchatica, A. lyrata subsp. petraea, and A. lyrata subsp. lyrata, were more cold tolerant than A. thaliana and A. halleri subsp. gemmifera both before and after cold acclimation. Cold tolerance increased after cold acclimation (exposure to low, but nonfreezing temperatures) for all taxa, although the difference was not significant for A. halleri subsp. gemmifera. For all taxa except A. lyrata subsp. lyrata, the LT50 values for cold-acclimated plants were higher than the January mean daily minimum temperature (Tmin ), indicating that if plants were not insulated by snow cover, they would not likely survive winter at the northern edge of their range. CONCLUSIONS: Arabidopsis lyrata and A. kamchatica were far more cold tolerant than A. thaliana. These extremely cold-tolerant taxa are excellent candidates for studying both the molecular and ecological aspects of cold tolerance.


Assuntos
Arabidopsis , Aclimatação , Temperatura Baixa , Variação Genética , Folhas de Planta
16.
Ecotoxicol Environ Saf ; 201: 110869, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32585490

RESUMO

Chromium (Cr) contamination is a potential threat to the agricultural soil. Arbuscular mycorrhizal (AM) fungi have potential to remediate the heavy metal polluted soils. It was hypothesized that Cr phytoremediation potentiality of AM fungi could be enhanced in combination with saprophytic filamentous fungi and soil amendment. Tomato plants were raised in Cr polluted technosol amended with compost, inoculated with mixed-culture of AM fungi and Aspergillus terreus. It was found that, triple treatment (soil amendment with compost along with AM fungi and A. terreus inoculation) enhanced biomass production (up to 315%), fruit setting (up to 49%), photosynthetic pigments (up to 214%) and carbohydrate content (up to 400%) whereas reduced the proline (up to 76.5%), catalase (up to 34.2%), peroxidase (up to 58.9%) and root membrane permeability (up to 74.2%). The effect of AM fungi with compost amendment was additive, while it was synergistic with A. terreus. AM fungi enhanced the extraction of Cr from the substrate, but retained in the mycorrhizal root, thereby reduced the translocation into shoot and in fruit, Cr translocation was undetectable. At the end of experiment Cr content in the substrate was significantly decreased (up to 37.9%). Soil amendment with compost along with AM fungi and A. terreus inoculation can be used for reclamation of Cr polluted soils at field scale.


Assuntos
Aspergillus/fisiologia , Cromo/farmacocinética , Micorrizas/fisiologia , Poluentes do Solo/farmacocinética , Solanum lycopersicum/metabolismo , Biodegradação Ambiental , Biomassa , Metabolismo dos Carboidratos , Catalase/metabolismo , Compostagem , Solanum lycopersicum/enzimologia , Peroxidase/metabolismo , Raízes de Plantas/metabolismo , Prolina/metabolismo
17.
Int J Mol Sci ; 20(15)2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31370193

RESUMO

Prior experiments illustrated reactive oxygen species (ROS) overproduction in maize plants infested with bird-cherry-oat (Rhopalosiphum padi L.) aphids. However, there is no available data unveiling the impact of aphids feeding on oxidative damages of crucial macromolecules in maize tissues. Therefore, the purpose of the current study was to evaluate the scale of oxidative damages of genomic DNA, total RNA and mRNA, proteins, and lipids in seedling leaves of two maize genotypes (Zlota Karlowa and Waza cvs-susceptible and relatively resistant to the aphids, respectively). The content of oxidized guanosine residues (8-hydroxy-2'-deoxyguanosine; 8-OHdG) in genomic DNA, 8-hydroxyguanosine (8-OHG) in RNA molecules, protein carbonyl groups, total thiols (T-SH), protein-bound thiols (PB-SH), non-protein thiols (NP-SH), malondialdehyde (MDA) and electrolyte leakage (EL) levels in maze plants were determined. In addition, the electrical penetration graphs (EPG) technique was used to monitor and the aphid stylet positioning and feeding modes in the hosts. Maize seedlings were infested with 0 (control), 30 or 60 R. padi adult apterae per plant. Substantial increases in the levels of RNA, protein and lipid oxidation markers in response to aphid herbivory, but no significant oxidative damages of genomic DNA, were found. Alterations in the studied parameters were dependent on maize genotype, insect abundance and infestation time.


Assuntos
Afídeos/fisiologia , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Parasita/genética , Folhas de Planta/genética , Proteínas de Plantas/genética , Zea mays/genética , 8-Hidroxi-2'-Desoxiguanosina/metabolismo , Animais , Afídeos/patogenicidade , DNA de Plantas/genética , DNA de Plantas/metabolismo , Genótipo , Guanosina/análogos & derivados , Guanosina/metabolismo , Lipídeos/química , Malondialdeído/metabolismo , Oxirredução , Estresse Oxidativo , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Folhas de Planta/parasitologia , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Plântula/genética , Plântula/parasitologia , Compostos de Sulfidrila/metabolismo , Zea mays/parasitologia
18.
Planta ; 247(6): 1377-1392, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29520461

RESUMO

MAIN CONCLUSION: A powerful acquired thermotolerance response in potato was demonstrated and characterised in detail, showing the time course required for tolerance, the reversibility of the process and requirement for light. Potato is particularly vulnerable to increased temperature, considered to be the most important uncontrollable factor affecting growth and yield of this globally significant crop. Here, we describe an acquired thermotolerance response in potato, whereby treatment at a mildly elevated temperature primes the plant for more severe heat stress. We define the time course for acquiring thermotolerance and demonstrate that light is essential for the process. In all four commercial tetraploid cultivars that were tested, acquisition of thermotolerance by priming was required for tolerance at elevated temperature. Accessions from several wild-type species and diploid genotypes did not require priming for heat tolerance under the test conditions employed, suggesting that useful variation for this trait exists. Physiological, transcriptomic and metabolomic approaches were employed to elucidate potential mechanisms that underpin the acquisition of heat tolerance. This analysis indicated a role for cell wall modification, auxin and ethylene signalling, and chromatin remodelling in acclimatory priming resulting in reduced metabolic perturbation and delayed stress responses in acclimated plants following transfer to 40 °C.


Assuntos
Resposta ao Choque Térmico , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Solanum tuberosum/fisiologia , Termotolerância , Parede Celular/metabolismo , Montagem e Desmontagem da Cromatina , Eletrólitos/metabolismo , Etilenos/metabolismo , Perfilação da Expressão Gênica , Genótipo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico/genética , Resposta ao Choque Térmico/efeitos da radiação , Temperatura Alta , Ácidos Indolacéticos/metabolismo , Metabolômica , Oxirredução , Fenótipo , Proteínas de Plantas/genética , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação , Solanum tuberosum/genética , Solanum tuberosum/efeitos da radiação , Termotolerância/genética , Termotolerância/efeitos da radiação
19.
Int J Mol Sci ; 19(3)2018 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-29562632

RESUMO

Oxidative stress signaling is essential for plant adaptation to hostile environments. Previous studies revealed the essentiality of hydroxyl radicals (HO•)-induced activation of massive K⁺ efflux and a smaller Ca2+ influx as an important component of plant adaptation to a broad range of abiotic stresses. Such activation would modify membrane potential making it more negative. Contrary to these expectations, here, we provide experimental evidence that HO• induces a strong depolarization, from -130 to -70 mV, which could only be explained by a substantial HO•-induced efflux of intracellular anions. Application of Gd3+ and NPPB, non-specific blockers of cation and anion conductance, respectively, reduced HO•-induced ion fluxes instantaneously, implying a direct block of the dual conductance. The selectivity of an early instantaneous HO•-induced whole cell current fluctuated from more anionic to more cationic and vice versa, developing a higher cation selectivity at later times. The parallel electroneutral efflux of K⁺ and anions should underlie a substantial leak of the cellular electrolyte, which may affect the cell's turgor and metabolic status. The physiological implications of these findings are discussed in the context of cell fate determination, and ROS and cytosolic K⁺ signaling.


Assuntos
Cálcio/metabolismo , Membrana Celular/metabolismo , Radical Hidroxila/metabolismo , Estresse Oxidativo , Raízes de Plantas/fisiologia , Potássio/metabolismo , Adaptação Fisiológica , Ânions/química , Ânions/metabolismo , Cálcio/química , Membrana Celular/química , Hordeum/fisiologia , Radical Hidroxila/química , Transporte de Íons , Potenciais da Membrana , Técnicas de Patch-Clamp , Pisum sativum/fisiologia , Raízes de Plantas/citologia , Potássio/química , Protoplastos/ultraestrutura , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/metabolismo
20.
Int J Mol Sci ; 19(4)2018 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-29690632

RESUMO

Ion channels activated by reactive oxygen species (ROS) have been found in the plasma membrane of charophyte Nitella flixilis, dicotyledon Arabidopsis thaliana, Pyrus pyrifolia and Pisum sativum, and the monocotyledon Lilium longiflorum. Their activities have been reported in charophyte giant internodes, root trichoblasts and atrichoblasts, pollen tubes, and guard cells. Hydrogen peroxide and hydroxyl radicals are major activating species for these channels. Plant ROS-activated ion channels include inwardly-rectifying, outwardly-rectifying, and voltage-independent groups. The inwardly-rectifying ROS-activated ion channels mediate Ca2+-influx for growth and development in roots and pollen tubes. The outwardly-rectifying group facilitates K⁺ efflux for the regulation of osmotic pressure in guard cells, induction of programmed cell death, and autophagy in roots. The voltage-independent group mediates both Ca2+ influx and K⁺ efflux. Most studies suggest that ROS-activated channels are non-selective cation channels. Single-channel studies revealed activation of 14.5-pS Ca2+ influx and 16-pS K⁺ efflux unitary conductances in response to ROS. The molecular nature of ROS-activated Ca2+ influx channels remains poorly understood, although annexins and cyclic nucleotide-gated channels have been proposed for this role. The ROS-activated K⁺ channels have recently been identified as products of Stellar K⁺ Outward Rectifier (SKOR) and Guard cell Outwardly Rectifying K⁺ channel (GORK) genes.


Assuntos
Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Sinalização do Cálcio/fisiologia , Humanos , Radical Hidroxila/metabolismo , Potássio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA