Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.615
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(9): 2002-2017.e21, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37080201

RESUMO

Paired mapping of single-cell gene expression and electrophysiology is essential to understand gene-to-function relationships in electrogenic tissues. Here, we developed in situ electro-sequencing (electro-seq) that combines flexible bioelectronics with in situ RNA sequencing to stably map millisecond-timescale electrical activity and profile single-cell gene expression from the same cells across intact biological networks, including cardiac and neural patches. When applied to human-induced pluripotent stem-cell-derived cardiomyocyte patches, in situ electro-seq enabled multimodal in situ analysis of cardiomyocyte electrophysiology and gene expression at the cellular level, jointly defining cell states and developmental trajectories. Using machine-learning-based cross-modal analysis, in situ electro-seq identified gene-to-electrophysiology relationships throughout cardiomyocyte development and accurately reconstructed the evolution of gene expression profiles based on long-term stable electrical measurements. In situ electro-seq could be applicable to create spatiotemporal multimodal maps in electrogenic tissues, potentiating the discovery of cell types and gene programs responsible for electrophysiological function and dysfunction.


Assuntos
Eletrônica , Análise de Sequência de RNA , Humanos , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/metabolismo , Análise de Célula Única , Transcriptoma , Eletrônica/métodos
2.
Proc Natl Acad Sci U S A ; 121(13): e2320386121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38513101

RESUMO

Stimuli-responsive soft robots offer new capabilities for the fields of medical and rehabilitation robotics, artificial intelligence, and soft electronics. Precisely programming the shape morphing and decoupling the multiresponsiveness of such robots is crucial to enable them with ample degrees of freedom and multifunctionality, while ensuring high fabrication accuracy. However, current designs featuring coupled multiresponsiveness or intricate assembly processes face limitations in executing complex transformations and suffer from a lack of precision. Therefore, we propose a one-stepped strategy to program multistep shape-morphing soft millirobots (MSSMs) in response to decoupled environmental stimuli. Our approach involves employing a multilayered elastomer and laser scanning technology to selectively process the structure of MSSMs, achieving a minimum machining precision of 30 µm. The resulting MSSMs are capable of imitating the shape morphing of plants and hand gestures and resemble kirigami, pop-up, and bistable structures. The decoupled multistimuli responsiveness of the MSSMs allows them to conduct shape morphing during locomotion, perform logic circuit control, and remotely repair circuits in response to humidity, temperature, and magnetic field. This strategy presents a paradigm for the effective design and fabrication of untethered soft miniature robots with physical intelligence, advancing the decoupled multiresponsive materials through modular tailoring of robotic body structures and properties to suit specific applications.

3.
Proc Natl Acad Sci U S A ; 121(25): e2322264121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38865265

RESUMO

Despite the tremendous clinical potential of nucleic acid-based vaccines, their efficacy to induce therapeutic immune response has been limited by the lack of efficient local gene delivery techniques in the human body. In this study, we develop a hydrogel-based organic electronic device (µEPO) for both transdermal delivery of nucleic acids and in vivo microarrayed cell electroporation, which is specifically oriented toward one-step transfection of DNAs in subcutaneous antigen-presenting cells (APCs) for cancer immunotherapy. The µEPO device contains an array of microneedle-shaped electrodes with pre-encapsulated dry DNAs. Upon a pressurized contact with skin tissue, the electrodes are rehydrated, electrically triggered to release DNAs, and then electroporate nearby cells, which can achieve in vivo transfection of more than 50% of the cells in the epidermal and upper dermal layer. As a proof-of-concept, the µEPO technique is employed to facilitate transdermal delivery of neoantigen genes to activate antigen-specific immune response for enhanced cancer immunotherapy based on a DNA vaccination strategy. In an ovalbumin (OVA) cancer vaccine model, we show that high-efficiency transdermal transfection of APCs with OVA-DNAs induces robust cellular and humoral immune responses, including antigen presentation and generation of IFN-γ+ cytotoxic T lymphocytes with a more than 10-fold dose sparing over existing intramuscular injection (IM) approach, and effectively inhibits tumor growth in rodent animals.


Assuntos
Eletroporação , Imunoterapia , Vacinas de DNA , Animais , Vacinas de DNA/administração & dosagem , Vacinas de DNA/imunologia , Eletroporação/métodos , Camundongos , Imunoterapia/métodos , Administração Cutânea , Neoplasias/terapia , Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/administração & dosagem , Ovalbumina/imunologia , Ovalbumina/administração & dosagem , Células Apresentadoras de Antígenos/imunologia , Feminino , Camundongos Endogâmicos C57BL , Humanos , Vacinação/métodos
4.
Proc Natl Acad Sci U S A ; 121(28): e2320222121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38954542

RESUMO

Artificial skins or flexible pressure sensors that mimic human cutaneous mechanoreceptors transduce tactile stimuli to quantitative electrical signals. Conventional trial-and-error designs for such devices follow a forward structure-to-property routine, which is usually time-consuming and determines one possible solution in one run. Data-driven inverse design can precisely target desired functions while showing far higher productivity, however, it is still absent for flexible pressure sensors because of the difficulties in acquiring a large amount of data. Here, we report a property-to-structure inverse design of flexible pressure sensors, exhibiting a significantly greater efficiency than the conventional routine. We use a reduced-order model that analytically constrains the design scope and an iterative "jumping-selection" method together with a surrogate model that enhances data screening. As an exemplary scenario, hundreds of solutions that overcome the intrinsic signal saturation have been predicted by the inverse method, validating for a variety of material systems. The success in property design on multiple indicators demonstrates that the proposed inverse design is an efficient and powerful tool to target multifarious applications of flexible pressure sensors, which can potentially advance the fields of intelligent robots, advanced healthcare, and human-machine interfaces.

5.
Proc Natl Acad Sci U S A ; 121(11): e2317440121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437532

RESUMO

Silicone-based elastomers (SEs) have been extensively applied in numerous cutting-edge areas, including flexible electronics, biomedicine, 5G smart devices, mechanics, optics, soft robotics, etc. However, traditional strategies for the synthesis of polymer elastomers, such as bulk polymerization, suspension polymerization, solution polymerization, and emulsion polymerization, are inevitably restricted by long-time usage, organic solvent additives, high energy consumption, and environmental pollution. Here, we propose a Joule heating chemistry method for ultrafast universal fabrication of SEs with configurable porous structures and tunable components (e.g., graphene, Ag, graphene oxide, TiO2, ZnO, Fe3O4, V2O5, MoS2, BN, g-C3N4, BaCO3, CuI, BaTiO3, polyvinylidene fluoride, cellulose, styrene-butadiene rubber, montmorillonite, and EuDySrAlSiOx) within seconds by only employing H2O as the solvent. The intrinsic dynamics of the in situ polymerization and porosity creation of these SEs have been widely investigated. Notably, a flexible capacitive sensor made from as-fabricated silicone-based elastomers exhibits a wide pressure range, fast responses, long-term durability, extreme operating temperatures, and outstanding applicability in various media, and a wireless human-machine interaction system used for rescue activities in extreme conditions is established, which paves the way for more polymer-based material synthesis and wider applications.

6.
Proc Natl Acad Sci U S A ; 120(9): e2209807120, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36812210

RESUMO

Since first developed, the conducting materials in wireless communication and electromagnetic interference (EMI) shielding devices have been primarily made of metal-based structures. Here, we present a graphene-assembled film (GAF) that can be used to replace copper in such practical electronics. The GAF-based antennas present strong anticorrosive behavior. The GAF ultra-wideband antenna covers the frequency range of 3.7 GHz to 67 GHz with the bandwidth (BW) of 63.3 GHz, which exceed ~110% than the copper foil-based antenna. The GAF Fifth Generation (5G) antenna array features a wider BW and lower sidelobe level compared with that of copper antennas. EMI shielding effectiveness (SE) of GAF also outperforms copper, reaching up to 127 dB in the frequency range of 2.6 GHz to 0.32 THz, with a SE per unit thickness of 6,966 dB/mm. We also confirm that GAF metamaterials exhibit promising frequency selection characteristics and angular stability as flexible frequency selective surfaces.

7.
Proc Natl Acad Sci U S A ; 120(9): e2219394120, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36802437

RESUMO

Vocal fatigue is a measurable form of performance fatigue resulting from overuse of the voice and is characterized by negative vocal adaptation. Vocal dose refers to cumulative exposure of the vocal fold tissue to vibration. Professionals with high vocal demands, such as singers and teachers, are especially prone to vocal fatigue. Failure to adjust habits can lead to compensatory lapses in vocal technique and an increased risk of vocal fold injury. Quantifying and recording vocal dose to inform individuals about potential overuse is an important step toward mitigating vocal fatigue. Previous work establishes vocal dosimetry methods, that is, processes to quantify vocal fold vibration dose but with bulky, wired devices that are not amenable to continuous use during natural daily activities; these previously reported systems also provide limited mechanisms for real-time user feedback. This study introduces a soft, wireless, skin-conformal technology that gently mounts on the upper chest to capture vibratory responses associated with vocalization in a manner that is immune to ambient noises. Pairing with a separate, wirelessly linked device supports haptic feedback to the user based on quantitative thresholds in vocal usage. A machine learning-based approach enables precise vocal dosimetry from the recorded data, to support personalized, real-time quantitation and feedback. These systems have strong potential to guide healthy behaviors in vocal use.


Assuntos
Canto , Distúrbios da Voz , Voz , Humanos , Retroalimentação , Distúrbios da Voz/etiologia , Voz/fisiologia , Prega Vocal/fisiologia
8.
Proc Natl Acad Sci U S A ; 120(23): e2300953120, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37253015

RESUMO

Self-healing is a bioinspired strategy to repair damaged conductors under repetitive wear and tear, thereby largely extending the life span of electronic devices. The self-healing process often demands external triggering conditions as the practical challenges for the widespread applications. Here, a compliant conductor with electrically self-healing capability is introduced by combining ultrahigh sensitivity to minor damages and reliable recovery from ultrahigh tensile deformations. Conductive features are created in a scalable and low-cost fabrication process comprising a copper layer on top of liquid metal microcapsules. The efficient rupture of microcapsules is triggered by structural damages in the copper layer under stress conditions as a result of the strong interfacial interactions. The liquid metal is selectively filled into the damaged site for the instantaneous restoration of the metallic conductivity. The unique healing mechanism is responsive to various structural degradations including microcracks under bending conditions and severe fractures upon large stretching. The compliant conductor demonstrates high conductivity of ∼12,000 S/cm, ultrahigh stretchability of up to 1,200% strain, an ultralow threshold to activate the healing actions, instantaneous electrical recovery in microseconds, and exceptional electromechanical durability. Successful implementations in a light emitting diode (LED) matrix display and a multifunctional electronic patch demonstrate the practical suitability of the electrically self-healing conductor in flexible and stretchable electronics. The developments provide a promising approach to improving the self-healing capability of compliant conductors.

9.
Annu Rev Biomed Eng ; 26(1): 331-355, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38959390

RESUMO

Recent advancements in soft electronic skin (e-skin) have led to the development of human-like devices that reproduce the skin's functions and physical attributes. These devices are being explored for applications in robotic prostheses as well as for collecting biopotentials for disease diagnosis and treatment, as exemplified by biomedical e-skins. More recently, machine learning (ML) has been utilized to enhance device control accuracy and data processing efficiency. The convergence of e-skin technologies with ML is promoting their translation into clinical practice, especially in healthcare. This review highlights the latest developments in ML-reinforced e-skin devices for robotic prostheses and biomedical instrumentations. We first describe technological breakthroughs in state-of-the-art e-skin devices, emphasizing technologies that achieve skin-like properties. We then introduce ML methods adopted for control optimization and pattern recognition, followed by practical applications that converge the two technologies. Lastly, we briefly discuss the challenges this interdisciplinary research encounters in its clinical and industrial transition.


Assuntos
Aprendizado de Máquina , Robótica , Dispositivos Eletrônicos Vestíveis , Humanos , Robótica/métodos , Pele , Desenho de Equipamento , Engenharia Biomédica/métodos
10.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35064088

RESUMO

Sensing technology is under intense development to enable the Internet of everything and everyone in new and useful ways. Here we demonstrate a method of stretchable and self-powered temperature sensing. The basic sensing element consists of three layers: an electrolyte, a dielectric, and an electrode. The electrolyte/dielectric interface accumulates ions, and the dielectric/electrode interface accumulates electrons (in either excess or deficiency). The ions and electrons at the two interfaces are usually not charge-neutral, and this charge imbalance sets up an ionic cloud in the electrolyte. The design functions as a charged temperature-sensitive capacitor. When temperature changes, the ionic cloud changes thickness, and the electrode changes open-circuit voltage. We demonstrate high sensitivity (∼1 mV/K) and fast response (∼10 ms). Such temperature sensors can be made small, stable, and transparent. Depending on the arrangement of the electrolyte, dielectric, and electrode, we develop four designs for the temperature sensor. In addition, the temperature sensor has good linearity in the range of tens of Kelvin. We further show that the temperature sensors can be integrated into stretchable electronics and soft robots.

11.
Proc Natl Acad Sci U S A ; 119(46): e2204346119, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36343237

RESUMO

A grand challenge in materials science is to identify the impact of molecular composition and structure across a range of length scales on macroscopic properties. We demonstrate a unified experimental-theoretical framework that coordinates experimental measurements of mesoscale structure with molecular-level physical modeling to bridge multiple scales of physical behavior. Here we apply this framework to understand charge transport in a semiconducting polymer. Spatially-resolved nanodiffraction in a transmission electron microscope is combined with a self-consistent framework of the polymer chain statistics to yield a detailed picture of the polymer microstructure ranging from the molecular to device relevant scale. Using these data as inputs for charge transport calculations, the combined multiscale approach highlights the underrepresented role of defects in existing transport models. Short-range transport is shown to be more chaotic than is often pictured, with the drift velocity accounting for a small portion of overall charge motion. Local transport is sensitive to the alignment and geometry of polymer chains. At longer length scales, large domains and gradual grain boundaries funnel charges preferentially to certain regions, creating inhomogeneous charge distributions. While alignment generally improves mobility, these funneling effects negatively impact mobility. The microstructure is modified in silico to explore possible design rules, showing chain stiffness and alignment to be beneficial while local homogeneity has no positive effect. This combined approach creates a flexible and extensible pipeline for analyzing multiscale functional properties and a general strategy for extending the accesible length scales of experimental and theoretical probes by harnessing their combined strengths.


Assuntos
Polímeros , Semicondutores , Polímeros/química , Microscopia , Simulação por Computador , Modelos Moleculares
12.
Proc Natl Acad Sci U S A ; 119(34): e2208060119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35972962

RESUMO

As nitric oxide (NO) plays significant roles in a variety of physiological processes, the capability for real-time and accurate detection of NO in live organisms is in great demand. Traditional assessments of NO rely on indirect colorimetric techniques or electrochemical sensors that often comprise rigid constituent materials and can hardly satisfy sensitivity and spatial resolution simultaneously. Here, we report a flexible and highly sensitive biosensor based on organic electrochemical transistors (OECTs) capable of continuous and wireless detection of NO in biological systems. By modifying the geometry of the active channel and the gate electrodes of OECTs, devices achieve optimum signal amplification of NO. The sensor exhibits a low response limit, a wide linear range, high sensitivity, and excellent selectivity, with a miniaturized active sensing region compared with a conventional electrochemical sensor. The device demonstrates continuous detection of the nanomolar range of NO in cultured cells for hours without significant signal drift. Real-time and wireless measurement of NO is accomplished for 8 d in the articular cavity of New Zealand White rabbits with anterior cruciate ligament (ACL) rupture injuries. The observed high level of NO is associated with the onset of osteoarthritis (OA) at the later stage. The proposed device platform could provide critical information for the early diagnosis of chronic diseases and timely medical intervention to optimize therapeutic efficacy.


Assuntos
Técnicas Biossensoriais , Óxido Nítrico , Osteoartrite , Tecnologia sem Fio , Animais , Técnicas Biossensoriais/métodos , Doença Crônica , Diagnóstico Precoce , Técnicas Eletroquímicas/métodos , Eletrodos , Óxido Nítrico/análise , Osteoartrite/diagnóstico , Coelhos
13.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35074874

RESUMO

For nearly 50 years, the vision of using single molecules in circuits has been seen as providing the ultimate miniaturization of electronic chips. An advanced example of such a molecular electronics chip is presented here, with the important distinction that the molecular circuit elements play the role of general-purpose single-molecule sensors. The device consists of a semiconductor chip with a scalable array architecture. Each array element contains a synthetic molecular wire assembled to span nanoelectrodes in a current monitoring circuit. A central conjugation site is used to attach a single probe molecule that defines the target of the sensor. The chip digitizes the resulting picoamp-scale current-versus-time readout from each sensor element of the array at a rate of 1,000 frames per second. This provides detailed electrical signatures of the single-molecule interactions between the probe and targets present in a solution-phase test sample. This platform is used to measure the interaction kinetics of single molecules, without the use of labels, in a massively parallel fashion. To demonstrate broad applicability, examples are shown for probe molecule binding, including DNA oligos, aptamers, antibodies, and antigens, and the activity of enzymes relevant to diagnostics and sequencing, including a CRISPR/Cas enzyme binding a target DNA, and a DNA polymerase enzyme incorporating nucleotides as it copies a DNA template. All of these applications are accomplished with high sensitivity and resolution, on a manufacturable, scalable, all-electronic semiconductor chip device, thereby bringing the power of modern chips to these diverse areas of biosensing.


Assuntos
Técnicas Biossensoriais/instrumentação , Eletrônica/instrumentação , Ensaios Enzimáticos/instrumentação , Análise de Sequência com Séries de Oligonucleotídeos/instrumentação , DNA , Desenho de Equipamento/instrumentação , Cinética , Dispositivos Lab-On-A-Chip , Miniaturização/instrumentação , Nanotecnologia/instrumentação , Semicondutores
14.
Proc Natl Acad Sci U S A ; 119(46): e2214164119, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36343234

RESUMO

A quantitative understanding of the coupled dynamics of flow and particles in aerosol and droplet transmission associated with speech remains elusive. Here, we summarize an effort that integrates insights into flow-particle dynamics induced by the production plosive sounds during speech with skin-integrated electronic systems for monitoring the production of these sounds. In particular, we uncover diffusive and ballistic regimes separated by a threshold particle size and characterize the Lagrangian acceleration and pair dispersion. Lagrangian dynamics of the particles in the diffusive regime exhibit features of isotropic turbulence. These fundamental findings highlight the value in skin-interfaced wireless sensors for continuously measuring critical speech patterns in clinical settings, work environments, and the home, based on unique neck biomechanics associated with the generation of plosive sounds. We introduce a wireless, soft device that captures these motions to enable detection of plosive sounds in multiple languages through a convolutional neural network approach. This work spans fundamental flow-particle physics to soft electronic technology, with implications in monitoring and studying critical speech patterns associated with aerosol and droplet transmissions relevant to the spread of infectious diseases.


Assuntos
Eletrônica , Fala , Aerossóis , Tamanho da Partícula , Movimento (Física)
15.
Proc Natl Acad Sci U S A ; 119(33): e2203287119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35939711

RESUMO

Electrical neuron stimulation holds promise for treating chronic neurological disorders, including spinal cord injury, epilepsy, and Parkinson's disease. The implementation of ultrathin, flexible electrodes that can offer noninvasive attachment to soft neural tissues is a breakthrough for timely, continuous, programable, and spatial stimulations. With strict flexibility requirements in neural implanted stimulations, the use of conventional thick and bulky packages is no longer applicable, posing major technical issues such as short device lifetime and long-term stability. We introduce herein a concept of long-lived flexible neural electrodes using silicon carbide (SiC) nanomembranes as a faradic interface and thermal oxide thin films as an electrical barrier layer. The SiC nanomembranes were developed using a chemical vapor deposition (CVD) process at the wafer level, and thermal oxide was grown using a high-quality wet oxidation technique. The proposed material developments are highly scalable and compatible with MEMS technologies, facilitating the mass production of long-lived implanted bioelectrodes. Our experimental results showed excellent stability of the SiC/silicon dioxide (SiO2) bioelectronic system that can potentially last for several decades with well-maintained electronic properties in biofluid environments. We demonstrated the capability of the proposed material system for peripheral nerve stimulation in an animal model, showing muscle contraction responses comparable to those of a standard non-implanted nerve stimulation device. The design concept, scalable fabrication approach, and multimodal functionalities of SiC/SiO2 flexible electronics offer an exciting possibility for fundamental neuroscience studies, as well as for neural stimulation-based therapies.


Assuntos
Terapia por Estimulação Elétrica , Neuroestimuladores Implantáveis , Nanoestruturas , Semicondutores , Compostos Inorgânicos de Carbono/química , Terapia por Estimulação Elétrica/instrumentação , Membranas Artificiais , Compostos de Silício/química , Dióxido de Silício/química
16.
Proc Natl Acad Sci U S A ; 119(31): e2200223119, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35901205

RESUMO

Phase-change materials (PCMs), as important energy storage materials (ESMs), have been widely used in heat dissipation for electronics. However, PCMs are encountering huge challenges since the extremely limited space in microelectronics largely suppresses the applied volume of PCMs, which demands excellent PCMs that can fully utilize the valuable latent heat. This work successfully found a universal strategy toward powerful ESMs from fluidic ternary metals (TMs, GaInSn as a representative TM in this work). TMs exhibit high thermal conductivity (20.3 W m-1 K-1) and significantly effective latent heat (115 J/cm3) and, more important, show continuous phase transition and full utilization of the valuable latent heat. Interestingly, theoretical prediction through ternary phase diagram is carried out to easily tune the melting range, latent heat, and fluidity (viscosity) of TMs to adapt with different service conditions. As a result, thermally conductive silicone grease can be conveniently fabricated via simple shear mixing of TM and polymers. Such thermally conductive TM grease inherits the merits of TM, exhibiting continuous thermal control over daily electronics according to thermal shock performance.

17.
Proc Natl Acad Sci U S A ; 119(46): e2211786119, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36343232

RESUMO

The discovery of quantum interference (QI) is widely considered as an important advance in molecular electronics since it provides unique opportunities for achieving single-molecule devices with unprecedented performance. Although some pioneering studies suggested the presence of spin qubit coherence and QI in collective systems such as thin films, it remains unclear whether the QI can be transferred step-by-step from single molecules to different length scales, which hinders the application of QI in fabricating active molecular devices. Here, we found that QI can be transferred from a single molecule to their assemblies. We synthesized and investigated the charge transport through the molecular cages using 1,3-dipyridylbenzene (DPB) as a ligand block with a destructive quantum interference (DQI) effect and 2,5-dipyridylfuran (DPF) as a control building block with a constructive quantum interference (CQI) effect using both single-molecule break junction and large area junction techniques. Combined experiments and calculations revealed that both DQI and CQI had been transferred from the ligand blocks to the molecular cages and the monolayer thin film of the cages. Our work introduced QI effects from a ligand to the molecular cage comprising 732 atoms and even their monolayers, suggesting that the quantum interference could be scaled up within the phase-coherent distance.

18.
Nano Lett ; 24(19): 5904-5912, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38700588

RESUMO

Stretchable electroluminescent devices represent an emerging optoelectronic technology for future wearables. However, their typical construction on sub-millimeter-thick elastomers has limited moisture permeability, leading to discomfort during long-term skin attachment. Although breathable textile displays may partially address this issue, they often have distinct visual appearances with discrete emissions from fibers or fiber junctions. This study introduces a convenient procedure to create stretchable, permeable displays with continuous luminous patterns. The design utilizes ultrathin nanocomposite devices embedded in a porous elastomeric microfoam to achieve high moisture permeability. These displays also exhibit excellent deformability, low-voltage operation, and excellent durability. Additionally, the device is decorated with fluorinated silica nanoparticles to achieve self-cleaning and washable capabilities. The practical implementation of these nanocomposite devices is demonstrated by creating an epidermal counter display that allows intimate integration with the human body. These developments provide an effective design of stretchable and breathable displays for comfortable wearing.

19.
Nano Lett ; 24(4): 1332-1340, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38232321

RESUMO

Printed electronic technology serves as a key component in flexible electronics and wearable devices, yet achieving compatibility with both high resolution and high efficiency remains a significant challenge. Here, we propose a rapid fabrication method of high-resolution nanoparticle microelectronics via self-assembly and transfer printing. The tension gradient-electrostatic attraction composite-induced nanoparticle self-assembly strategy is constructed, which can significantly enhance the self-assembly efficiency, stability, and coverage by leveraging the meniscus Marangoni effect and the electric double-layer effect. The close-packed nanoparticle self-assembly layer can be rapidly formed on microstructure surfaces over a large area. Inspired by ink printing, a transfer printing strategy is further proposed to transform the self-assembly layer into conformal micropatterns. Large-area, high-resolution (2 µm), and ultrathin (1 µm) nanoparticle microelectronics can be stably fabricated, yielding a significant improvement over fluid printing methods. The unique deformability, recoverability, and scalability of nanoparticle microelectronics are revealed, providing promising opportunities for various academic and real applications.

20.
Nano Lett ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985893

RESUMO

The field of molecular electronics has emerged from efforts to understand electron propagation through single molecules and to use them in electronic circuits. Serving as a testbed for advanced theoretical methods, it reveals a significant discrepancy between the operational time scales of experiments (static to GHz frequencies) and theoretical models (femtoseconds). Utilizing a recently developed time-linear nonequilibrium Green function formalism, we model molecular junctions on experimentally accessible time scales. Our study focuses on the quantum pump effect in a benzenedithiol molecule connected to two copper electrodes and coupled with cavity photons. By calculating both electric and photonic current responses to an ac bias voltage, we observe pronounced electroluminescence and high harmonic generation in this setup. The mechanism of the latter effect is more analogous to that from solids than from isolated molecules, with even harmonics being suppressed or enhanced depending on the symmetry of the driving field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA