Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(49): e2209955119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36459653

RESUMO

From molecules and particles to macroscopic surfaces immersed in fluids, chemical reactions often endow interfaces with electrical charge which in turn governs surface interactions and interfacial phenomena. The ability to measure the electrical properties of a material immersed in any solvent, as well as to monitor the spatial heterogeneity and temporal variation thereof, has been a long-standing challenge. Here, we describe an optical microscopy-based approach to probe the surface charge distribution of a range of materials, including inorganic oxide, polymer, and polyelectrolyte films, in contact with a fluid. The method relies on optical visualization of the electrical repulsion between diffusing charged probe molecules and the unknown surface to be characterized. Rapid image-based measurements enable us to further determine isoelectric points of the material as well as properties of its ionizable chemical groups. We further demonstrate the ability to optically monitor chemically triggered surface charge changes with millisecond time resolution. Finally, we present a scanning-surface probe technique capable of diffraction-limited imaging of spatial heterogeneities in chemical composition and charge over large areas. This technique will enable facile characterization of the solid-liquid interface with wide-ranging relevance across application areas from biology to engineering.

2.
Sensors (Basel) ; 18(9)2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30213045

RESUMO

In this paper, we propose a new fingerprint sensing technology based on electrostatic imaging, which can greatly improve fingerprint sensing distance. This can solve the problem of the existing capacitive fingerprint identification device being easy to damage due to limited detection distance and a protective coating that is too thin. The fingerprint recognition sensor can also be placed under a glass screen to meet the needs of the full screen design of the mobile phone. In this paper, the electric field distribution around the fingerprint is analyzed. The electrostatic imaging sensor design is carried out based on the electrostatic detection principle and MEMS (micro-electro-mechanical system) technology. The MEMS electrostatic imaging array, analog, and digital signal processing circuit structure are designed. Simulation and testing are carried out as well. According to the simulation and prototype test device test results, it is confirmed that our proposed electrostatic imaging-based fingerprint sensing technology can increase fingerprint recognition distance by 46% compared to the existing capacitive fingerprint sensing technology. A distance of more than 439 µm is reached.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA