Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(37): e2402793, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38757420

RESUMO

Developing a new end group for synthesizing asymmetric small molecule acceptors (SMAs) is crucial for achieving high-performance organic photovoltaics (OPVs). Herein, an asymmetric small molecule acceptor, BTP-BO-4FO, featuring a new difluoro-methoxylated end-group is reported. Compared to its symmetric counterpart L8-BO, BTP-BO-4FO exhibits an upshifted energy level, larger dipole moment, and more sequential crystallinity. By adopting two representative and widely available solvent additives (1-chloronaphthalene (CN) and 1,8-diiodooctane (DIO)), the device based on PM6:BTP-BO-4FO (CN) photovoltaic blend demonstrates a power conversion efficiency (PCE) of 18.62% with an excellent open-circuit voltage (VOC) of 0.933 V, which surpasses the optimal result of L8-BO. The PCE of 18.62% realizes the best efficiencies for binary OPVs based on SMAs with asymmetric end groups. A series of investigations reveal that optimized PM6:BTP-BO-4FO film demonstrates similar molecular packing motif and fibrillar phase distribution as PM6:L8-BO (DIO) does, resulting in comparable recombination dynamics, thus, similar fill factor. Besides, it is found PM6:BTP-BO-4FO possesses more efficient charge generation, which yields better VOC-JSC balance. This study provides a new ending group that enables a cutting-edge efficiency in asymmetric SMA-based OPVs, enriching the material library and shed light on further design ideas.

2.
Macromol Rapid Commun ; 45(11): e2400032, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38471754

RESUMO

A versatile and robust end-group derivatization approach using oximes has been developed for the detection of oxidative degradation of synthetic polyisoprenes and polybutadiene. This method demonstrates broad applicability, effectively monitoring degradation across a wide molecular weight range through ultraviolet (UV)-detection coupled to gel permeation chromatography. Importantly, it enables the effective monitoring of degradation via derivatization-induced UV-maximum shifts, even in the presence of an excess of undegraded polyene, overcoming limitations previously reported with refractive index detectors. Notably, this oxime-based derivatization methodology is used in enzymatic degradation experiments of synthetic polyisoprenes characterized by a cis: trans ratio with the rubber oxygenase LcpK30. It reveals substantial UV absorption in derivatized enzymatic degradation products of polyisoprene with molecular weights exceeding 1000 g mol-1 - an unprecedented revelation for this enzyme's activity on such synthetic polyisoprenes. This innovative approach holds promise as a valuable tool for advancing research into the degradation of synthetic polyisoprenes and polybutadiene, particularly under conditions of low organocatalytic or enzymatic degradation activity. With its broad applicability and capacity to reveal previously hidden degradation processes, it represents a noteworthy contribution to sustainable polymer chemistry.


Assuntos
Butadienos , Cromatografia em Gel , Oxigenases , Raios Ultravioleta , Butadienos/química , Oxigenases/química , Oxigenases/metabolismo , Borracha/química , Elastômeros/química , Oximas/química , Estrutura Molecular
3.
Sci Technol Adv Mater ; 25(1): 2302795, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361532

RESUMO

In recent times, there has been a significant surge in research interest surrounding thermo-responsive water-soluble polyacrylamides, primarily due to their intriguing capability to undergo significant solubility changes in water. These polymers exhibit the remarkable ability to shift from a soluble to an insoluble state in response to temperature variations. The capacity of these polymers to dynamically respond to temperature changes opens up exciting avenues for designing smart materials with tunable properties, amplifying their utility across a spectrum of scientific and technological applications. Researchers have been particularly captivated by the potential applications of thermo-responsive water-soluble polyacrylamides in diverse fields such as drug delivery, gene carriers, tissue engineering, sensors, catalysis, and chromatography separation. This study reports the construction and functionalization of polymer gels consisting of a polymer network of polyacrylamide derivatives with nano-sized structural units. Specifically, thermo-responsive polymer gels were synthesized by combining well-defined star-shaped polymers composed of polyacrylamide derivatives with a multifunctional initiator and linking method through a self-accelerating click reaction. The polymerization system employed a highly living approach, resulting in polymer chains characterized by narrow molecular weight distributions. The method's high functionality facilitated the synthesis of a temperature-responsive block copolymer gel composed of N-isopropyl acrylamide (NIPA) and N-ethyl acrylamide (NEAA). The resulting polymer gel, comprising star-shaped block copolymers of NIPA and NEAA, showcases smooth volume changes with temperature jumps.


This approach's versatility was showcased by creating networks using widely-used vinyl polymers. It can generate various functional and nearly ideal gels and elastomers, allowing for investigating fundamental aspects of polymer networks.

4.
Molecules ; 29(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38611837

RESUMO

Silver (Ag) nanowires, as an important one-dimensional (1D) nanomaterial, have garnered wide attention, owing to their applications in electronics, optoelectronics, sensors, and other fields. In this study, an alternative hydrothermal route was developed to synthesize Ag nanowires via modified reduction of Ag+. Silver sulfamate plays an important role in the formation of Ag nanowires via controlled release of free Ag+. Results of controlled experiments and characterizations such as UV-vis spectroscopy, FTIR, XPS, and 1H NMR revealed that sulfamic acid does not function as a reductant, supporting by the generation of free Ag+ instead of Ag nanostructures in hydrothermally treated silver sulfamate solution. The initial reduction of Ag+ was induced by the combination of poly (vinylpyrrolidone) (PVP) end group and degradation products. This phenomenon was supported by abundant free Ag+ in the mixed preheated silver sulfamatic and preheated PVP aqueous solutions, indicating a second and distinct Ag+ autocatalytic reduction. Thus, the roles of different reagents and Ag+ reduction must be studied for nanomaterial syntheses.

5.
Angew Chem Int Ed Engl ; : e202416016, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39320167

RESUMO

Organic solar cells (OSCs) processed with non-halogenated solvents usually suffer from excessive self-aggregation of small molecule acceptors (SMAs), severe phase separation and higher energy loss (Eloss), leading to reduced open-circuit voltage (Voc) and power conversion efficiency (PCE). Here, we designed and synthesized two SMAs L8-PhF and L8-PhMe by introducing different substituents (fluorine for L8-PhF and methyl for L8-PhMe) on the phenyl end group of inner side chains of L8-Ph, and investigated the effect of the substituents on the intermolecular interaction of SMAs, Eloss and performance of OSCs processed with non-halogenated solvents. It is found that compared with L8-PhF, which possesses strong intermolecular interactions but downgraded molecular packing order, L8-PhMe exhibits more effective non-covalent interactions, which improves the tightness and order of molecular packing. When blending the SMAs with PM6, the OSCs based on L8-PhMe shows reduced non-radiative energy loss, and enhanced Voc than the devices based on the other two SMAs. Consequently, the L8-PhMe based device processed with o-xylene and using 2PACz as the hole transport layer shows an outstanding PCE of 19.27%. This study highlights that the Eloss of OSCs processed with non-halogenated solvents could be decreased through regulating the intermolecular interactions of SMAs by inner side chain modification.

6.
Small ; 19(3): e2205572, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36399633

RESUMO

Ternary architecture has been widely demonstrated as a facile and efficient strategy to boost the performance of organic solar cells (OSCs). However, the rational design of the third component with suitable core and end-group modification is still a challenge. Herein, two new small-molecule (SM) donors BT-CN and BT-ER, featuring the identical conjugated backbone with distinct end group, have been designed, synthesized, and introduced into the PM6:Y6 binary system as the second donor. Both molecules exhibit complementary absorption and good miscibility with PM6, contributing to the nanofibrous phases and strong face-on molecular packing. Importantly, the incorporation of BT-CN/BT-ER has significantly facilitated charge collection and transportation with remarkable suppression of carrier recombination. As a result, ternary OSCs with 20 wt% BT-CN/BT-ER achieved a PCE of 16.8%/17.22% with synchronously increased open-circuit voltage (VOC ), short-circuit current density (JSC ) and fill factor (FF). Moreover, replacing Y6 with L8-BO further improves the PCE to 18.05%/18.11%, indicating the universality of both molecules as the third component. This work demonstrates not only two efficient SM donors with 4,8-bis(4-chloro-5-(tripropylsilyl)thiophen-2-yl) benzo[1,2-b:4,5-b']dithiophene (BDTT-SiCl) as the core but also end group modification strategy to fine-tune the absorption spectrum, molecular packing, and energy levels of SM donors to construct high-performance ternary OSCs.

7.
Mar Drugs ; 20(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36547879

RESUMO

A novel carotenoid with a unique 2,6-cyclo-ψ-end group, named roretziaxanthin (1), was isolated from the sea squirt Halocynthia roretzi as a minor carotenoid along with (3S,3'S)-astaxanthin, alloxanthin, halocynthiaxanthin, mytiloxanthin, mytiloxanthinone, etc. This structure was determined to be 3-hydroxy-1',16'-didehydro-1',2'-dihydro-2',6'-cyclo-ß,ψ-carotene-4,4'-dione by UV-VIS, MS, and NMR spectral data. The formation mechanism of roretziaxanthin in the sea squirt was discussed.


Assuntos
Urocordados , Animais , Carotenoides/química , Espectroscopia de Ressonância Magnética
8.
Macromol Rapid Commun ; 42(8): e2000752, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33629782

RESUMO

Reversible modifications of reversible addition-fragmentation chain transfer (RAFT)-polymerization derived end groups are usually limited to reductive degradable disulfide conjugates. However, self-immolative linkers can promote ligation and traceless release of primary and secondary amines as well as alcohols via carbonates or carbamates in ß-position to disulfides. In this study, these two strategies are combined and the concept of self-immolative RAFT-polymer end group modifications is introduced: As model compounds, benzylamine, dibenzylamine, and benzyl alcohol are first attached as carbamates or carbonates to a symmetrical disulfide, and in a straightforward one-pot reaction these groups are reversibly attached to aminolyzed trithiocarbonate end groups of RAFT-polymerized poly(N,N-dimethylacrylamide). Quantitative end group modification is confirmed by 1 H NMR spectroscopy, size exclusion chromatography, and mass spectrometry, while reversible release of attached compounds under physiological reductive conditions is successfully monitored by diffusion ordered NMR spectroscopy and thin layer chromatography. Additionally, this concept is further expanded to protein-reactive, self-immolative carbonate species that enable reversible bioconjugation of lysozyme and α-macrophage mannose receptor (MMR) nanobodies as model proteins. Altogether, self-immolative RAFT end group modifications can form the new basis for reversible introduction of various functionalities to polymer chain ends including protein bioconjugates and, thus, opening novel opportunities for stimuli-responsive polymer hybrids.


Assuntos
Polímeros , Proteínas , Dissulfetos , Polimerização
9.
Angew Chem Int Ed Engl ; 60(18): 10137-10146, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33501698

RESUMO

Polymerization sites of small molecule acceptors (SMAs) play vital roles in determining device performance of all-polymer solar cells (all-PSCs). Different from our recent work about fluoro- and bromo- co-modified end group of IC-FBr (a mixture of IC-FBr1 and IC-FBr2), in this paper, we synthesized and purified two regiospecific fluoro- and bromo- substituted end groups (IC-FBr-o & IC-FBr-m), which were then employed to construct two regio-regular polymer acceptors named PYF-T-o and PYF-T-m, respectively. In comparison with its isomeric counterparts named PYF-T-m with different conjugated coupling sites, PYF-T-o exhibits stronger and bathochromic absorption to achieve better photon harvesting. Meanwhile, PYF-T-o adopts more ordered inter-chain packing and suitable phase separation after blending with the donor polymer PM6, which resulted in suppressed charge recombination and efficient charge transport. Strikingly, we observed a dramatic performance difference between the two isomeric polymer acceptors PYF-T-o and PYF-T-m. While devices based on PM6:PYF-T-o can yield power conversion efficiency (PCE) of 15.2 %, devices based on PM6:PYF-T-m only show poor efficiencies of 1.4 %. This work demonstrates the success of configuration-unique fluorinated end groups in designing high-performance regular polymer acceptors, which provides guidelines towards developing all-PSCs with better efficiencies.

10.
Angew Chem Int Ed Engl ; 60(22): 12475-12481, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33749088

RESUMO

Noncovalently fused-ring electron acceptors (NFREAs) have attracted much attention in recent years owing to their advantages of simple synthetic routes, high yields and low costs. However, the efficiencies of NFREAs based organic solar cells (OSCs) are still far behind those of fused-ring electron acceptors (FREAs). Herein, a series of NFREAs with S⋅⋅⋅O noncovalent intramolecular interactions were designed and synthesized with a two-step synthetic route. Upon introducing π-extended end-groups into the backbones, the electronic properties, charge transport, film morphology, and energy loss were precisely tuned by fine-tuning the degree of multi-fluorination. As a result, a record PCE of 14.53 % in labs and a certified PCE of 13.8 % for NFREAs based devices were obtained. This contribution demonstrated that combining the strategies of noncovalent conformational locks and π-extended end-group engineering is a simple and effective way to explore high-performance NFREAs.

11.
Chirality ; 32(5): 579-587, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32126590

RESUMO

Two new carotenoids, sapotexanthin 5,6-epoxide and sapotexanthin 5,8-epoxide, have been isolated from the ripe fruits of red mamey (Pouteria sapota). Sapotexanthin 5,6-epoxide was also prepared by partial synthesis via epoxidation of sapotexanthin, and the (5R,6S) and (5S,6R) stereoisomers were identified by high-performance liquid chromatography-electronic circular dichroism (HPLC-ECD) analysis. Spectroscopic data of the natural and semisynthetic derivatives obtained by acid-catalyzed rearrangement of cryptocapsin 5,8-epoxide stereoisomers were compared for structural elucidation.


Assuntos
Carotenoides/análise , Carotenoides/isolamento & purificação , Compostos de Epóxi/química , Pouteria/química , Carotenoides/química , Estereoisomerismo
12.
Angew Chem Int Ed Engl ; 59(45): 19951-19955, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32729643

RESUMO

We introduce the bioconjugation of polymers synthesized by RAFT polymerization, bearing no specific functional end group, by means of hetero-Diels-Alder cycloaddition through their inherent terminal thiocarbonylthio moiety with a diene-modified model protein. Quantitative conjugation occurs over the course of a few hours, at ambient temperature and neutral pH, and in the absence of any catalyst. Our technology platform affords thermoresponsive bioconjugates, whose aggregation is solely controlled by the polymer chains.


Assuntos
Reação de Cicloadição , Polímeros/química , Catálise , Concentração de Íons de Hidrogênio , Temperatura
13.
J Pept Sci ; 25(10): e3212, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31429163

RESUMO

Biofouling, the undesirable accumulation of organisms onto surfaces, affects many areas including health, water, and energy. We previously designed a tripeptide that self-assembles into a coating that prevents biofouling. The peptide comprises three amino acids: DOPA, which allows its adhesion to the surface, and two fluorinated phenylalanine residues that direct its self-assembly into a coating and acquire it with antifouling properties. This short peptide has an ester group at its C-terminus. To examine the importance of this end group for the self-assembly and antifouling properties of the peptide, we synthesized and characterized tripeptides with different end groups (ester, amide, or carboxylic group). Our results indicate that different groups at the C-terminus of the peptide can lead to a change in the peptide assembly on the surface and its adsorption process. However, this change only affects the antifouling properties of the coating toward Gram-positive bacteria (Staphylococcus epidermidis), whereas Gram-negative bacteria (Escherichia coli) are not affected.


Assuntos
Escherichia coli/metabolismo , Oligopeptídeos , Staphylococcus epidermidis/metabolismo , Oligopeptídeos/síntese química , Oligopeptídeos/química , Oligopeptídeos/farmacologia
14.
Macromol Rapid Commun ; 39(2)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29094443

RESUMO

The development of coupled techniques based on chemically sensitive detectors, such as FTIR or NMR spectrometers, for size exclusion chromatography (SEC) provides sophisticated methods for determining the molecular-weight-dependent chemical composition in polymers. However, the detection of rare functionalities such as end groups or branching points presents a challenge, especially for online coupled SEC detection, which is based on low-concentration chromatography. To address this issue, for the first time, an external cavity quantum cascade laser (EC-QCL) infrared spectrometer is coupled to an SEC. The system is evaluated using polystyrene/poly(methyl methacrylate) (PS/PMMA) blends. The current limit of detection for the carbonyl (PMMA) stretch vibration at 1730 cm-1 with this technique is 3.5 µg PMMA on a semipreparative column (typical load of 2.5 mg polymer in total). That equals 0.15 mol% of PMMA in the PS/PMMA blend and corresponds to one carbonyl group per 70 kg mol-1 polymer.


Assuntos
Internet , Lasers , Teoria Quântica , Cromatografia em Gel , Espectroscopia de Ressonância Magnética , Polimetil Metacrilato/química , Poliestirenos/química , Espectroscopia de Infravermelho com Transformada de Fourier
15.
Eur J Mass Spectrom (Chichester) ; 23(6): 402-410, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29183194

RESUMO

The biodegradable polyester copolymer poly(propylene fumarate) (PPF) is increasingly utilized in bone tissue engineering studies due to its suitability as inert cross-linkable scaffold material. The well-defined poly(propylene fumarate) oligomers needed for this purpose are synthesized by post-polymerization isomerization of poly(propylene maleate), which is prepared by ring opening polymerization of maleic anhydride and propylene oxide. In this study, multidimensional mass spectrometry methodologies, interfacing matrix-assisted laser desorption ionization and electrospray ionization with mass analysis, tandem mass spectrometry fragmentation and/or ion mobility mass spectrometry, have been employed to characterize the composition, end groups, chain connectivity and isomeric purity of the isomeric copolyesters poly(propylene maleate)and poly(propylene fumarate). It is demonstrated that the polymerization catalyst is incorporated into the polymer chain (as the initiating chain end) and that the poly(propylene maleate) to poly(propylene fumarate) isomerization using an amine base proceeds with quantitative yield. Hydrolytic degradation is shown not to alter the double bond geometry of the poly(propylene fumarate) or poly(propylene maleate) chains.


Assuntos
Fumaratos/química , Maleatos/química , Polipropilenos/química , Plásticos Biodegradáveis/química , Compostos de Epóxi/química , Isomerismo , Anidridos Maleicos/química , Estrutura Molecular , Poliésteres/química , Polimerização , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
16.
Macromol Rapid Commun ; 37(3): 246-50, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26636260

RESUMO

PFpP macromolecules, synthesized via migration insertion polymerization of CpFe(CO)2 (CH2)3 PPh2 (FpP), exhibit reactive Fp end groups for further migration insertion reactions in the presence of phosphines. A number of alkyl diphenylphosphines with varied alkyl length, Ph2PCn (n = 6, 10, 18), have been prepared for the reaction, resulting in PFpP-PPh2Cn (n = 6, 10, 18) amphiphiles. The phosphines with longer alkyl chains impose steric hindrance for the reaction and therefore require longer reaction times and excess phosphines relative to PFpP.


Assuntos
Substâncias Macromoleculares/química , Substâncias Macromoleculares/síntese química , Metais/química , Polimerização , Polímeros/química , Polímeros/síntese química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Fosfinas/síntese química , Fosfinas/química , Espectroscopia de Prótons por Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier , Tensoativos/síntese química , Tensoativos/química
17.
Macromol Rapid Commun ; 37(12): 947-51, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27145337

RESUMO

A straightforward synthetic procedure for the double modification and polymer-polymer conjugation of telechelic polymers is performed through amine-thiol-ene conjugation. Thiolactone end-functionalized polymers are prepared via two different methods, through controlled radical polymerization of a thiolactone-containing initiator, or by modification of available end-functionalized polymers. Next, these different linear polymers are treated with a variety of amine/acrylate-combinations in a one-pot procedure, creating a library of tailored end-functionalized polymers. End group conversions are monitored via SEC, NMR, and MALDI-TOF analysis, confirming the quantitative modification after each step. Finally, this strategy is applied for the synthesis of block copolymers via polymer-polymer conjugation and the successful outcome is analyzed via LCxSEC measurements.


Assuntos
Lactonas/química , Polímeros/química , Compostos de Sulfidrila/química , Estrutura Molecular , Polímeros/síntese química
18.
Magn Reson Chem ; 54(7): 584-91, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26845387

RESUMO

Fast and effective structural/compositional analysis on formulated systems represents one of the major challenges encountered in analytical science. (13) C-detected diffusion represents a promising tool to tackle the aforementioned challenges, particularly in industry. Toward exploring the generic applications of (13) C-detected diffusion, thermal convection induced by (1) H decoupling has been identified as a key factor that resulted in significantly reduced resolution in the diffusion dimension. Optimization of experimental parameters and utilization of double-stimulated echo-based pulse sequence both can effectively suppress the thermal convection caused by the (1) H decoupling, the success of which allows robust and generic applications of (13) C-detected diffusion to systems from mixtures of small molecules, polymer blends, and copolymers to actual complex formulated systems. The method is particularly powerful in differentiating small molecules from polymers, polymer blends from copolymers, and end-group analysis. Copyright © 2016 John Wiley & Sons, Ltd.

19.
Macromol Rapid Commun ; 36(12): 1177-83, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25847701

RESUMO

A one-pot procedure that straightforwardly combines reversible addition-fragmentation chain transfer (RAFT) polymerization and end group transformation to remove the RAFT end groups is developed for the synthesis of well-defined poly(meth)acrylates and polyacrylamides with inert end groups. This procedure only requires the addition of an amine at the end of the standard RAFT polymerization procedure, which avoids the separation and purification of the intermediate polymers and, hence, extremely reduces the working time and utilized amount of solvents. Upon addition of the amine, a thiol group is formed by aminolysis of the thiocarbonylthio group, which subsequently undergoes Michael addition with unreacted monomer leading to an inert thioether functionalized polymer.


Assuntos
Resinas Acrílicas/química , Resinas Acrílicas/síntese química , Ácidos Polimetacrílicos/química , Ácidos Polimetacrílicos/síntese química
20.
Molecules ; 20(6): 10313-41, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26053488

RESUMO

The purpose of this article is to provide the reader with an overview of the methods used to determine the molecular weights of cellulose. Methods that employ direct dissolution of the cellulose polymer are described; hence methods for investigating the molecular weight of cellulose in derivatized states, such as ethers or esters, only form a minor part of this review. Many of the methods described are primarily of historical interest since they have no use in modern cellulose chemistry. However, older methods, such as osmometry or ultracentrifuge experiments, were the first analytical methods used in polymer chemistry and continue to serve as sources of fundamental information (such as the cellulose structure in solution). The first part of the paper reviews methods, either absolute or relative, for the estimation of average molecular weights. Regardless of an absolute or relative approach, the outcome is a molecular weight average (MWA). In the final section, coupling methods are described. The primary benefit of performing a pre-separation step on the molecules is the discovery of the molecular weight distribution (MWD). Here, size exclusion chromatography (SEC) is unquestionably the most powerful and most commonly-applied method in modern laboratories and industrial settings.


Assuntos
Celulose/química , Técnicas de Química Analítica , Peso Molecular , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA