Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
1.
J Virol ; : e0054024, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162433

RESUMO

Systemic viral infection of insects typically begins with the primary infection of midgut epithelial cells (enterocytes) and subsequent transit of the progeny virus in an apical-to-basal orientation into the hemocoel. For insect-vectored viruses, an oppositely oriented process (basal-to-apical transit) occurs upon secondary infection of salivary glands and is necessary for virus transmission to non-insect hosts. To examine this inversely oriented virus transit in these polarized tissues, we assessed the intracellular trafficking of two model viral envelope proteins (baculovirus GP64 and vesicular stomatitis virus G) in the midgut and salivary gland cells of the model insect, Drosophila melanogaster. Using fly lines that inducibly express either GP64 or VSV G, we found that each protein, expressed alone, was trafficked basally in midgut enterocytes. In salivary gland cells, VSV G was trafficked apically in most but not all cells, whereas GP64 was consistently trafficked basally. We demonstrated that a YxxØ motif present in both proteins was critical for basal trafficking in midgut enterocytes but dispensable for trafficking in salivary gland cells. Using RNAi, we found that clathrin adaptor protein complexes AP-1 and AP-3, as well as seven Rab GTPases, were involved in polarized VSV G trafficking in midgut enterocytes. Our results indicate that these viral envelope proteins encode the requisite information and require no other viral factors for appropriately polarized trafficking. In addition, they exploit tissue-specific differences in protein trafficking pathways to facilitate virus egress in the appropriate orientation for establishing systemic infections and vectoring infection to other hosts. IMPORTANCE: Viruses that use insects as hosts must navigate specific routes through different insect tissues to complete their life cycles. The routes may differ substantially depending on the life cycle of the virus. Both insect pathogenic viruses and insect-vectored viruses must navigate through the polarized cells of the midgut epithelium to establish a systemic infection. In addition, insect-vectored viruses must also navigate through the polarized salivary gland epithelium for transmission. Thus, insect-vectored viruses appear to traffic in opposite directions in these two tissues. In this study, we asked whether two viral envelope proteins (VSV G and baculovirus GP64) alone encode the signals necessary for the polarized trafficking associated with their respective life cycles. Using Drosophila as a model to examine tissue-specific polarized trafficking of these viral envelope proteins, we identified one of the virus-encoded signals and several host proteins associated with regulating the polarized trafficking in the midgut epithelium.

2.
EMBO Rep ; 24(9): e56454, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37493498

RESUMO

The protective and absorptive functions of the intestinal epithelium rely on differentiated enterocytes in the villi. The differentiation of enterocytes is orchestrated by sub-epithelial mesenchymal cells producing distinct ligands along the villus axis, in particular Bmps and Tgfß. Here, we show that individual Bmp ligands and Tgfß drive distinct enterocytic programs specific to villus zonation. Bmp4 is expressed from the centre to the upper part of the villus and activates preferentially genes connected to lipid uptake and metabolism. In contrast, Bmp2 is produced by villus tip mesenchymal cells and it influences the adhesive properties of villus tip epithelial cells and the expression of immunomodulators. Additionally, Tgfß induces epithelial gene expression programs similar to those triggered by Bmp2. Bmp2-driven villus tip program is activated by a canonical Bmp receptor type I/Smad-dependent mechanism. Finally, we establish an organoid cultivation system that enriches villus tip enterocytes and thereby better mimics the cellular composition of the intestinal epithelium. Our data suggest that not only a Bmp gradient but also the activity of individual Bmp drives specific enterocytic programs.


Assuntos
Enterócitos , Mucosa Intestinal , Enterócitos/metabolismo , Ligantes , Mucosa Intestinal/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular
3.
J Lipid Res ; 65(6): 100557, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38719152

RESUMO

Dietary sphingomyelin (SM) has been reported to favorably modulate postprandial lipemia. Mechanisms underlying these beneficial effects on cardiovascular risk markers are not fully elucidated. Rodent studies showed that tritiated SM was hydrolyzed in the intestinal lumen into ceramides (Cer) and further to sphingosine (SPH) and fatty acids (FA) that were absorbed by the intestine. Our objective was to investigate the uptake and metabolism of SPH and/or tricosanoic acid (C23:0), the main FA of milk SM, as well as lipid secretion in Caco-2/TC7 cells cultured on semipermeable inserts. Mixed micelles (MM) consisting of different digested lipids and taurocholate were prepared without or with SPH, SPH and C23:0 (SPH+C23:0), or C23:0. Triglycerides (TG) were quantified in the basolateral medium, and sphingolipids were analyzed by tandem mass spectrometry. TG secretion increased 11-fold in all MM-incubated cells compared with lipid-free medium. Apical supply of SPH-enriched MM led to increased concentrations of total Cer in cells, and coaddition of C23:0 in SPH-enriched MM led to a preferential increase of C23:0 Cer and C23:0 SM. Complementary experiments using deuterated SPH demonstrated that SPH-d9 was partly converted to sphingosine-1-phosphate-d9, Cer-d9, and SM-d9 within cells incubated with SPH-enriched MM. A few Cer-d9 (2% of added SPH-d9) was recovered in the basolateral medium of (MM+SPH)-incubated cells, especially C23:0 Cer-d9 in (MM+SPH+C23:0)-enriched cells. In conclusion, present results indicate that MM enriched with (SPH+C23:0), such as found in postprandial micelles formed after milk SM ingestion, directly impacts sphingolipid endogenous metabolism in enterocytes, resulting in the secretion of TG-rich particles enriched with C23:0 Cer.


Assuntos
Ceramidas , Absorção Intestinal , Esfingosina , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Humanos , Ceramidas/metabolismo , Células CACO-2 , Micelas , Triglicerídeos/metabolismo , Marcação por Isótopo , Animais
4.
Dev Biol ; 495: 92-103, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36657508

RESUMO

The availability of glucose transporter in the small intestine critically determines the capacity for glucose uptake and consequently systemic glucose homeostasis. Hence a better understanding of the physiological regulation of intestinal glucose transporter is pertinent. However, the molecular mechanisms that regulate sodium-glucose linked transporter 1 (SGLT1), the primary glucose transporter in the small intestine, remain incompletely understood. Recently, the Drosophila SLC5A5 (dSLC5A5) has been found to exhibit properties consistent with a dietary glucose transporter in the Drosophila midgut, the equivalence of the mammalian small intestine. Hence, the fly midgut could serve as a suitable model system for the study of the in vivo molecular underpinnings of SGLT1 function. Here, we report the identification, through a genetic screen, of Drosophila transmembrane protein 214 (dTMEM214) that acts in the midgut enterocytes to regulate systemic glucose homeostasis and glucose uptake. We show that dTMEM214 resides in the apical membrane and cytoplasm of the midgut enterocytes, and that the proper subcellular distribution of dTMEM214 in the enterocytes is regulated by the Rab4 GTPase. As a corollary, Rab4 loss-of-function phenocopies dTMEM214 loss-of-function in the midgut as shown by a decrease in enterocyte glucose uptake and an alteration in systemic glucose homeostasis. We further show that dTMEM214 regulates the apical membrane localization of dSLC5A5 in the enterocytes, thereby revealing dTMEM214 as a molecular regulator of glucose transporter in the midgut.


Assuntos
Proteínas de Drosophila , Drosophila , Proteínas Facilitadoras de Transporte de Glucose , Glucose , Animais , Transporte Biológico , Drosophila/metabolismo , Enterócitos/metabolismo , Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Homeostase , Proteínas de Drosophila/metabolismo
5.
Infect Immun ; : e0029924, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39194219

RESUMO

The obligate intracellular parasite Toxoplasma gondii can infect and replicate in any warm-blooded cell tested to date, but much of our knowledge about T. gondii cell biology comes from just one host cell type: human foreskin fibroblasts (HFFs). To expand our knowledge of host-parasite lipid interactions, we studied T. gondii in intestinal epithelial cells, the first site of host-parasite contact following oral infection and the exclusive site of parasite sexual development in feline hosts. We found that highly metabolic Caco-2 cells are permissive to T. gondii growth even when treated with high levels of linoleic acid (LA), a polyunsaturated fatty acid (PUFA) that kills parasites in HFFs. Caco-2 cells appear to sequester LA away from the parasite, preventing membrane disruptions and lipotoxicity that characterize LA-induced parasite death in HFFs. Our work is an important step toward understanding host-parasite interactions in feline intestinal epithelial cells, an understudied but important cell type in the T. gondii life cycle.

6.
J Virol ; 97(11): e0152623, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37905839

RESUMO

IMPORTANCE: Alterations of the gut microbiome can have significant effects on gastrointestinal homeostasis leading to various diseases and symptoms. Increased understanding of rotavirus infection in relation to the microbiota can provide better understanding on how microbiota can be used for clinical prevention as well as treatment strategies. Our volumetric 3D imaging data show that antibiotic treatment and its consequent reduction of the microbial load does not alter the extent of rotavirus infection of enterocytes in the small intestine and that restriction factors other than bacteria limit the infection of colonocytes.


Assuntos
Colo , Microbioma Gastrointestinal , Infecções por Rotavirus , Animais , Humanos , Colo/virologia , Trato Gastrointestinal , Intestino Delgado/virologia , Rotavirus , Camundongos
7.
Histochem Cell Biol ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110194

RESUMO

The consumption of fructose is increasing day by day. Understanding the impact of increasing fructose consumption on the small intestine is crucial since the small intestine processes fructose into glucose. ∆9-Tetrahydrocannabinol (THC), a key cannabinoid, interacts with CB1 and CB2 receptors in the gastrointestinal tract, potentially mitigating inflammation. Therefore, this study aimed to investigate the effects of the high-fructose diet (HFD) on the jejunum of rats and the role of THC consumption in reversing these effects. Experiments were conducted on Sprague-Dawley rats, with the experimental groups as follows: control (C), HFD, THC, and HFD + THC. The HFD group received a 10% fructose solution in drinking water for 12 weeks. THC groups were administered 1.5 mg/kg/day of THC intraperitoneally for the last four weeks. Following sacrification, the jejunum was evaluated for mucus secretion capacity. IL-6, JNK, CB2 and PCNA expressions were assessed through immunohistochemical analysis and the ultrastructural alterations via transmission electron microscopy. The results showed that fructose consumption did not cause weight gain but triggered inflammation in the jejunum, disrupted the cell proliferation balance, and increased mucus secretion in rats. Conversely, THC treatment displayed suppressed inflammation and improved cell proliferation balance caused by HFD. Ultrastructural examinations showed that the zonula occludens structures deteriorated in the HFD group, along with desmosome shrinkage. Mitochondria were found to be increased due to THC application following HFD. In conclusion, the findings of this research reveal the therapeutic potential of THC in reversing HFD-related alterations and provide valuable insights for clinical application.

8.
Vet Res ; 55(1): 30, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493107

RESUMO

Epithelial damage due to gastrointestinal disorders frequently causes severe disease in horses. To study the underlying pathophysiological processes, we aimed to establish equine jejunum and colon enteroids (eqJE, eqCE) mimicking the in vivo epithelium. Therefore, enteroids were cultivated in four different media for differentiation and subsequently characterized histomorphologically, on mRNA and on protein level in comparison to the native epithelium of the same donor horses to identify ideal culture conditions for an in vitro model system. With increasing enterocyte differentiation, the enteroids showed a reduced growth rate as well as a predominantly spherical morphology and less budding compared to enteroids in proliferation medium. Combined or individual withdrawal of stem cell niche pathway components resulted in lower mRNA expression levels of stem cell markers and concomitant differentiation of enterocytes, goblet cells and enteroendocrine cells. For eqCE, withdrawal of Wnt alone was sufficient for the generation of differentiated enterocytes with a close resemblance to the in vivo epithelium. Combined removal of Wnt, R-spondin and Noggin and the addition of DAPT stimulated differentiation of eqJE at a similar level as the in vivo epithelium, particularly with regard to enterocytes. In summary, we successfully defined a medium composition that promotes the formation of eqJE and eqCE consisting of multiple cell types and resembling the in vivo epithelium. Our findings emphasize the importance of adapting culture conditions to the respective species and the intestinal segment. This in vitro model will be used to investigate the pathological mechanisms underlying equine gastrointestinal disorders in future studies.


Assuntos
Gastroenteropatias , Doenças dos Cavalos , Animais , Cavalos , Mucosa Intestinal , Intestinos , Diferenciação Celular , Gastroenteropatias/veterinária , RNA Mensageiro
9.
Arterioscler Thromb Vasc Biol ; 43(4): 562-580, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36756879

RESUMO

BACKGROUND: Postprandial dyslipidemia is a causative risk factor for cardiovascular disease. The majority of absorbed dietary lipids are packaged into chylomicron and then delivered to circulation. Previous studies showed that Surf4 (surfeit locus protein 4) mediates very low-density lipoprotein secretion from hepatocytes. Silencing hepatic Surf4 markedly reduces the development of atherosclerosis in different mouse models of atherosclerosis without causing hepatic steatosis. However, the role of Surf4 in chylomicron secretion is unknown. METHODS: We developed inducible intestinal-specific Surf4 knockdown mice (Surf4IKO) using Vil1Cre-ERT2 and Surf4flox mice. Metabolic cages were used to monitor mouse metabolism. Enzymatic kits were employed to measure serum and tissue lipid levels. The expression of target genes was detected by qRT-PCR and Western Blot. Transmission electron microscopy and radiolabeled oleic acid were used to assess the structure of enterocytes and intestinal lipid absorption and secretion, respectively. Proteomics was performed to determine changes in protein expression in serum and jejunum. RESULTS: Surf4IKO mice, especially male Surf4IKO mice, displayed significant body weight loss, increased mortality, and reduced metabolism. Surf4IKO mice exhibited lipid accumulation in enterocytes and impaired fat absorption and secretion. Lipid droplets and small lipid vacuoles were accumulated in the cytosol and the endoplasmic reticulum lumen of the enterocytes of Surf4IKO mice, respectively. Surf4 colocalized with apoB and co-immunoprecipitated with apoB48 in differentiated Caco-2 cells. Intestinal Surf4 deficiency also significantly reduced serum triglyceride, cholesterol, and free fatty acid levels in mice. Proteomics data revealed that diverse pathways were altered in Surf4IKO mice. In addition, Surf4IKO mice had mild liver damage, decreased liver size and weight, and reduced hepatic triglyceride levels. CONCLUSIONS: Our findings demonstrate that intestinal Surf4 plays an essential role in lipid absorption and chylomicron secretion and suggest that the therapeutic use of Surf4 inhibition requires highly cell/tissue-specific targeting.


Assuntos
Aterosclerose , Mucosa Intestinal , Humanos , Masculino , Animais , Camundongos , Mucosa Intestinal/metabolismo , Células CACO-2 , Absorção Intestinal/fisiologia , Gorduras na Dieta , Quilomícrons/metabolismo , Metabolismo dos Lipídeos/genética , Triglicerídeos/metabolismo , Aterosclerose/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
10.
Arch Toxicol ; 98(2): 481-491, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38063875

RESUMO

Cyanobacterial harmful blooms (CyanoHABs) pose a global ecological problem, and their lipopolysaccharides (LPS) are among the bioactive compounds they release. Previous studies on CyanoHAB-LPS from single cyanobacterial species have shown varying bioactivities in different in vitro cell models. In this study, we isolated LPS from 19 CyanoHAB samples collected at 18 water bodies in the Czech Republic over two consecutive seasons. The proportions of cyanobacteria, Gram-negative bacteria (G-), and other bacteria in the biomass were determined by qPCR, while the cyanobacterial genera were identified using light microscopy. In vitro models of keratinocytes (HaCaT), the intestinal epithelium (co-culture of differentiated Caco-2 cells and peripheral blood mononuclear cells - PBMC), and PBMC alone were treated with isolated LPS at concentrations of 50, 100, and 1 µg/ml, respectively. The endotoxin activities of these concentrations were within the range measured in the aquatic environment. Approximately 85-90% of the samples displayed biological activity. However, the potency of individual LPS effects and response patterns varied across the different in vitro models. Furthermore, the observed activities did not exhibit a clear correlation with the taxonomic composition of the phytoplankton community, the relative share of microbial groups in the biomass, endotoxin activity of the LPS, or LPS migration and staining pattern in SDS-PAGE. These findings suggest that the effects of CyanoHAB-LPS depend on the specific composition and abundance of various LPS structures within the complex environmental sample and their interactions with cellular receptors.


Assuntos
Cianobactérias , Lipopolissacarídeos , Humanos , Lipopolissacarídeos/toxicidade , Leucócitos Mononucleares , Células CACO-2 , Biomassa , Proliferação Nociva de Algas
11.
Cell Tissue Res ; 393(2): 297-320, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37272999

RESUMO

The mosquito larval midgut is responsible for acquiring and storing most of the nutrients that will sustain the events of metamorphosis and the insect's adult life. Despite its importance, the basic biology of this larval organ is poorly understood. To help fill this gap, we carried out a comparative morphophysiological investigation of three larval midgut regions (gastric caeca, anterior midgut, and posterior midgut) of phylogenetically distant mosquitoes: Anopheles gambiae (Anopheles albimanus was occasionally used as an alternate), Aedes aegypti, and Toxorhynchites theobaldi. Larvae of Toxorhynchites mosquitoes are predacious, in contrast to the other two species, that are detritivorous. In this work, we show that the larval gut of the three species shares basic histological characteristics, but differ in other aspects. The lipid and carbohydrate metabolism of the An. gambiae larval midgut is different compared with that of Ae. aegypti and Tx. theobaldi. The gastric caecum is the most variable region, with differences probably related to the chemical composition of the diet. The peritrophic matrix is morphologically similar in the three species, and processes involved in the post-embryonic development of the organ, such as cell differentiation and proliferation, were also similar. FMRF-positive enteroendocrine cells are grouped in the posterior midgut of Tx. theobaldi, but individualized in An. gambiae and Ae. aegypti. We hypothesize that Tx. theobaldi larval predation is an ancestral condition in mosquito evolution.


Assuntos
Aedes , Anopheles , Animais , Anopheles/fisiologia , Larva/metabolismo , Sistema Digestório , Células Enteroendócrinas
12.
Fish Shellfish Immunol ; 141: 109010, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37598736

RESUMO

ß-conglycinin is a recognized factor in leading to intestinal inflammation and limiting application of soybean meal in aquaculture. Our previous study reported that heat-killed B. siamensis LF4 could effectively mitigate inflammatory response and apoptosis caused by ß-conglycinin in spotted seabass (Lateolabrax maculatus) enterocytes, but the mechanisms involved are not fully understood. In the present study, therefore, whole cell wall (CW), peptidoglycan (PG) and lipoteichoic acid (LTA) and cell-free supernatant (CFS) have been collected from B. siamensis LF4 and their mitigative function on ß-conglycinin-induced adverse impacts and mechanisms underlying were evaluated. The results showed that ß-conglycinin-induced cell injury, characterized with significantly decreased cell viability and increased activities of lactate dehydrogenase, glutamic oxaloacetic transaminase, glutamic propylic transaminase (P < 0.05), were reversed by subsequent heat-killed B. siamensis LF4 and its CW, LTA, PG and CFS treatment. Enterocytes co-cultured with heat-killed B. siamensis LF4 and its CW, LTA, PG and CFS (especially PG) significantly increased expressions of anti-inflammatory genes (IL-2, IL-4, IL-10 and TGF-ß1), tight junction proteins (ZO-1, occludin and claudin-b) and antimicrobial peptides (ß-defensin, hepcidin-1, NK-lysin and piscidin-5), and decreased expressions of pro-inflammatory genes (IL-1ß, IL-8 and TNF-α) and apoptosis-related genes (caspase 3, caspase 8 and caspase 9) (P < 0.05), indicating their excellent mitigation effects on ß-conglycinin-induced cell damages. In addition, heat-killed B. siamensis LF4 and its CW, LTA, PG and CFS significantly increased TLR2 mRNA level (especially in PG treatment), and decreased MAPKs (JNK, ERK, p38 and AP-1) and NF-κB related genes expressions. In conclusion, heat-killed B. siamensis LF4 and its CW, LTA, PG and CFS could modulating TLR2/MAPKs/NF-κB signaling and alleviating ß-conglycinin-induced enterocytes injury in spotted seabass (L. maculatus), and PG presented the best potential.

13.
Int J Mol Sci ; 24(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36901975

RESUMO

Intestinal transplantation (ITx) remains a lifesaving option for patients suffering from irreversible intestinal failure and complications from total parenteral nutrition. Since its inception, it became obvious that intestinal grafts are highly immunogenic, due to their high lymphoid load, the abundance in epithelial cells and constant exposure to external antigens and microbiota. This combination of factors and several redundant effector pathways makes ITx immunobiology unique. To this complex immunologic situation, which leads to the highest rate of rejection among solid organs (>40%), there is added the lack of reliable non-invasive biomarkers, which would allow for frequent, convenient and reliable rejection surveillance. Numerous assays, of which several were previously used in inflammatory bowel disease, have been tested after ITx, but none have shown sufficient sensibility and/or specificity to be used alone for diagnosing acute rejection. Herein, we review and integrate the mechanistic aspects of graft rejection with the current knowledge of ITx immunobiology and summarize the quest for a noninvasive biomarker of rejection.


Assuntos
Doenças Inflamatórias Intestinais , Transplante de Fígado , Humanos , Rejeição de Enxerto/etiologia , Intestinos , Nutrição Parenteral Total
14.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36835003

RESUMO

The use of cell models is common to mimic cellular and molecular events in interaction with their environment. In the case of the gut, the existing models are of particular interest to evaluate food, toxicants, or drug effects on the mucosa. To have the most accurate model, cell diversity and the complexity of the interactions must be considered. Existing models range from single-cell cultures of absorptive cells to more complex combinations of two or more cell types. This work describes the existing solutions and the challenges that remain to be solved.


Assuntos
Técnicas de Cultura de Células , Mucosa Intestinal , Mucosa Intestinal/metabolismo
15.
Int J Mol Sci ; 24(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37894724

RESUMO

The system of the four different human blood groups is based on the oligosaccharide antigens A or B, which are located on the surface of blood cells and other cells including endothelial cells, attached to the membrane proteins or lipids. After transfusion, the presence of these antigens on the apical surface of endothelial cells could induce an immunological reaction against the host. The final oligosaccharide sequence of AgA consists of Gal-GlcNAc-Gal (GalNAc)-Fuc. AgB contains Gal-GlcNAc-Gal (Gal)-Fuc. These antigens are synthesised in the Golgi complex (GC) using unique Golgi glycosylation enzymes (GGEs). People with AgA also synthesise antibodies against AgB (group A [II]). People with AgB synthesise antibodies against AgA (group B [III]). People expressing AgA together with AgB (group AB [IV]) do not have these antibodies, while people who do not express these antigens (group O [0; I]) synthesise antibodies against both antigens. Consequently, the antibodies are synthesised against antigens that apparently do not exist in the body. Here, we compared the prediction power of the main hypotheses explaining the formation of these antibodies, namely, the concept of natural antibodies, the gut bacteria-derived antibody hypothesis, and the antibodies formed as a result of glycosylation mistakes or de-sialylation of polysaccharide chains. We assume that when the GC is overloaded with lipids, other less specialised GGEs could make mistakes and synthesise the antigens of these blood groups. Alternatively, under these conditions, the chylomicrons formed in the enterocytes may, under this overload, linger in the post-Golgi compartment, which is temporarily connected to the endosomes. These compartments contain neuraminidases that can cleave off sialic acid, unmasking these blood antigens located below the acid and inducing the production of antibodies.


Assuntos
Células Endoteliais , Oligossacarídeos , Humanos , Sequência de Carboidratos , Células Endoteliais/metabolismo , Oligossacarídeos/metabolismo , Antígenos , Sistema ABO de Grupos Sanguíneos , Lipídeos
16.
J Bacteriol ; 204(5): e0062021, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35389257

RESUMO

Enterohemorrhagic Escherichia coli O157:H7 is an enteric pathogen responsible for bloody diarrhea, hemolytic uremic syndrome, and in severe cases, even death. The study of O157:H7 is difficult due to the high specificity of the bacteria for the human intestine, along with our lack of sufficiently complex human cell culture models. The recent development of human intestinal enteroids derived from intestinal crypt multipotent stem cells has allowed us to construct two-dimensional differentiated epithelial monolayers grown in transwells that mimic the human intestine. Unlike previous studies, saline was added to the apical surface, while maintaining culture media in the basolateral well. The monolayers continued to grow and differentiate with apical saline. Apical infection with O157:H7 or commensal E. coli resulted in robust bacterial growth from 105 to over 108 over 24 h. Despite this robust bacterial growth, commensal E. coli neither adhered to nor damaged the epithelial barrier over 30 h. However, O157:H7 was almost fully adhered (>90%) by 18 h with epithelial damage observed by 30 h. O157:H7 contains the locus of enterocyte effacement (LEE) pathogenicity island responsible for attachment and damage to the intestinal epithelium. Previous studies report the ability of nutrients such as biotin, d-serine, and L-fucose to downregulate LEE gene expression. O157:H7 treated with biotin or L-fucose, but not d-serine displayed both decreased attachment and reduced epithelial damage over 36 h. These data illustrate enteroid monolayers can serve as a suitable model for the study of O157:H7 pathogenesis, and identification of potential therapeutics. IMPORTANCE O157:H7 is difficult to study due to its high specificity for the human intestine and the lack of sufficiently complex human cell culture models. The recent development of human intestinal enteroids derived from intestinal crypt multipotent stem cells has allowed us to construct two-dimensional differentiated epithelial monolayers grown in transwells that mimic the human intestine. Our data illustrates enteroid monolayers can serve as a suitable model for the study of O157:H7 pathogenesis, and allow for identification of potential therapeutics.


Assuntos
Infecções por Escherichia coli , Escherichia coli O157 , Proteínas de Escherichia coli , Biotina , Infecções por Escherichia coli/microbiologia , Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fucose/metabolismo , Humanos , Intestinos/microbiologia , Serina/metabolismo
17.
Traffic ; 21(1): 169-171, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31596022

RESUMO

Whole exome sequencing now provides a tool for rapid analysis of patients manifesting congenital diseases. Congenital diarrheal diseases provide a critical example of the challenges of combining identification of genetic mutations responsible for disease with characterization of the cell biological and cell physiological deficits observed in patients. Recent studies exploring the cellular events associated with loss of functional Myosin 5B (MYO5B) have demonstrated the importance of cell biological and physiological analyses to provide a greater understanding of the implications of pathological mutations. Development of enteroids derived from biopsies of patients with complex congenital diarrheal diseases provides a critical resource for evaluation of the cell biological impact of specific monogenic mutations on enterocyte function. The ability to identify putative causative mutations for congenital disease now provides an opportunity to coordinate the efforts of physicians and cell biologists in an effort to provide patients with personalized cell biology analysis to improve patient diagnosis and treatment.


Assuntos
Síndromes de Malabsorção , Mucolipidoses , Miosina Tipo V , Humanos , Síndromes de Malabsorção/genética , Microvilosidades/patologia , Mucolipidoses/genética , Medicina de Precisão
18.
J Lipid Res ; 63(11): 100284, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36152881

RESUMO

The intestine plays a crucial role in regulating whole-body lipid metabolism through its unique function of absorbing dietary fat. In the small intestine, absorptive epithelial cells emulsify hydrophobic dietary triglycerides (TAGs) prior to secreting them into mesenteric lymphatic vessels as chylomicrons. Except for short- and medium-chain fatty acids, which are directly absorbed from the intestinal lumen into portal vasculature, the only way for an animal to absorb dietary TAG is through the chylomicron/mesenteric lymphatic pathway. Isolating intestinal lipoproteins, including chylomicrons, is extremely difficult in vivo because of the dilution of postprandial lymph in the peripheral blood. In addition, once postprandial lymph enters the circulation, chylomicron TAGs are rapidly hydrolyzed. To enhance isolation of large quantities of pure postprandial chylomicrons, we have modified the Tso group's highly reproducible gold-standard double-cannulation technique in rats to enable single-day surgery and lymph collection in mice. Our technique has a significantly higher survival rate than the traditional 2-day surgical model and allows for the collection of greater than 400 µl of chylous lymph with high postprandial TAG concentrations. Using this approach, we show that after an intraduodenal lipid bolus, the mesenteric lymph contains naïve CD4+ T-cell populations that can be quantified by flow cytometry. In conclusion, this experimental approach represents a quantitative tool for determining dietary lipid absorption, intestinal lipoprotein dynamics, and mesenteric immunity. Our model may also be a powerful tool for studies of antigens, the microbiome, pharmacokinetics, and dietary compound absorption.


Assuntos
Quilomícrons , Vasos Linfáticos , Animais , Camundongos , Ratos , Quilomícrons/metabolismo , Gorduras na Dieta/metabolismo , Absorção Intestinal/fisiologia , Lipoproteínas/metabolismo , Linfa/metabolismo , Vasos Linfáticos/metabolismo , Linfócitos/metabolismo , Triglicerídeos/metabolismo
19.
Development ; 146(2)2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696713

RESUMO

The JAK/STAT pathway is a conserved metazoan signaling system that transduces cues from extracellular cytokines into transcriptional changes in the nucleus. JAK/STAT signaling is best known for its roles in immunity. However, recent work has demonstrated that it also regulates critical homeostatic processes in germline and somatic stem cells, as well as regenerative processes in several tissues, including the gonad, intestine and appendages. Here, we provide an overview of JAK/STAT signaling in stem cells and regeneration, focusing on Drosophila and highlighting JAK/STAT pathway functions in proliferation, survival and cell competition that are conserved between Drosophila and vertebrates.


Assuntos
Drosophila/citologia , Drosophila/fisiologia , Janus Quinases/metabolismo , Regeneração/fisiologia , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Vertebrados/fisiologia , Animais , Células-Tronco/metabolismo
20.
Amino Acids ; 54(7): 1025-1039, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35294675

RESUMO

Enterocytes of young pigs are known to use glutamine, glutamate, and glucose as major metabolic fuels. However, little is known about the roles of aspartate, alanine, and fatty acids as energy sources for these cells. Therefore, this study simultaneously determined the oxidation of the amino acids and glucose as well as short- and long-chain fatty acids in enterocytes of developing pigs. Jejunal enterocytes were isolated from 0-, 7-, 14- and 21-day-old piglets, and incubated at 37 °C for 30 min in Krebs-Henseleit bicarbonate buffer (pH 7.4) containing 5 mM D-glucose and one of the following: D-[U-14C]glucose, 0.5-5 mM L-[U-14C]glutamate, 0.5-5 mM L-[U-14C]glutamine, 0.5-5 mM L-[U-14C]aspartate, 0.5-5 mM L-[U-14C]alanine, 0.5-2 mM L-[U-14C]palmitate, 0.5-5 mM [U-14C]propionate, and 0.5-5 mM [1-14C]butyrate. At the end of the incubation, 14CO2 produced from each 14C-labeled substrate was collected. Rates of oxidation of each substrate by enterocytes from all age groups of piglets increased (P < 0.05) gradually with increasing its extracellular concentrations. The rates of oxidation of glutamate, glutamine, aspartate, and glucose by enterocytes from 0- to 21-day-old pigs and of alanine from newborn pigs were much greater (P < 0.05) than those for the same concentrations of palmitate, propionate, and butyrate. Compared with 0-day-old pigs, the rates of oxidation of glutamate, aspartate, glutamine, alanine, and glucose by enterocytes from 21-day-old pigs decreased (P < 0.05) markedly, without changes in palmitate oxidation. Oxidation of alanine, propionate, butyrate and palmitate by enterocytes of pigs was limited during their postnatal growth. At each postnatal age, the oxidation of glutamate, glutamine, aspartate, and glucose produced much more ATP than alanine, propionate, butyrate and palmitate. The degradation of glutamate was initiated primarily by glutamate-pyruvate and glutamate-oxaloacetate transaminases. Our results indicated that amino acids (glutamate plus glutamine plus aspartate) are the major metabolic fuels in enterocytes of 0- to 21-day-old pigs.


Assuntos
Aminoácidos , Glutamina , Alanina , Aminoácidos/metabolismo , Animais , Ácido Aspártico/metabolismo , Butiratos , Enterócitos/metabolismo , Ácidos Graxos , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Palmitatos , Propionatos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA