RESUMO
Evidence from preclinical and animal studies demonstrated an anticancer effect of flaxseed lignans, particularly enterolactone (ENL), against prostate cancer. However, extensive first-pass metabolism following oral lignan consumption results in their systemic availability primarily as glucuronic acid conjugates (ENL-Gluc) and their modest in vivo effects. To overcome the unfavorable pharmacokinetics and improve their effectiveness in prostate cancer, antibody-directed enzyme prodrug therapy (ADEPT) might offer a novel strategy to allow for restricted activation of ENL from circulating ENL-Gluc within the tumor environment. The anti-prostate-specific membrane antigen (PSMA) antibody D7 was fused with human ß-glucuronidase (hßG) via a flexible linker. The binding property of the fusion construct, D7-hßG, against purified or cell surface PSMA was determined by flow cytometry and Octet Red 384 system, respectively, with a binding rate constant, K d, of 2.5 nM. The enzymatic activity of D7-hßG was first tested using the probe, 4-methylumbelliferone glucuronide. A 3.8-fold greater fluorescence intensity was observed at pH 4.5 at 2 h compared with pH 7.4. The ability of D7-hßG to activate ENL from ENL-Gluc was tested and detected using LC-MS/MS. Enhanced generation of ENL was observed with increasing ENL-Gluc concentrations and reached 3613.2 ng/mL following incubation with 100 µM ENL-Gluc at pH 4.5 for 0.5 h. D7-hßG also decreased docetaxel IC50 value from 23 nM to 14.9 nM in C4-2 cells. These results confirmed the binding and activity of D7-hßG and additional in vitro investigation is needed to support the future possibility of introducing this ADEPT system to animal models.
Assuntos
4-Butirolactona/análogos & derivados , Anticorpos/uso terapêutico , Antígenos de Superfície/imunologia , Glucuronidase/uso terapêutico , Glucuronídeos/uso terapêutico , Glutamato Carboxipeptidase II/imunologia , Lignanas/uso terapêutico , Pró-Fármacos/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Proteínas Recombinantes de Fusão/uso terapêutico , 4-Butirolactona/uso terapêutico , Animais , Células COS , Chlorocebus aethiops , Humanos , Masculino , Neoplasias da Próstata/patologiaRESUMO
Sulfation and glucuronidation constitute a major pathway in humans and may play an important role in biological activity of metabolites including the enterolignan, enterolactone. Because the aromatic structure of enterolactone has similarities to steroid metabolites, it was hypothesized that enterolactone may protect against hormone-dependent cancers. This led to numerous epidemiological studies. In this context, there has been a demand for rapid, sensitive, high-throughput methods to measure enterolactone in biofluids. Different methods have been developed using GC-MS, HPLC, LC-MS/MS and a fluoroimmunoassay; however, most of these methods measure the total concentration of enterolactone, without any specification of its conjugation pattern. Here for the first time we present a high-throughput LC-MS/MS method to quantify enterolactone in its intact form as glucuronide, sulfate, and free enterolactone. The method has shown good accuracy and precision at low concentration and very high sensitivity, with LLOQ for enterolactone sulfate at 16 pM, enterolactone glucuronide at 26 pM, and free enterolactone at 86 pM. The short run time of 2.6 min combined with simple sample clean up and high sensitivity make this method attractive for the high-throughput of samples needed for epidemiological studies. Finally, we have adapted the new method to quantify enterolactone and its conjugates in 3956 plasma samples from an epidemiological study. We found enterolactone glucuronide to be the major conjugation form and that conjugation pattern was similar between men and women.