Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Bioessays ; 46(8): e2300245, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38778437

RESUMO

Entosis, a form of cell cannibalism, is a newly discovered pathogenic mechanism leading to the development of small brains, termed microcephaly, in which P53 activation was found to play a major role. Microcephaly with entosis, found in Pals1 mutant mice, displays P53 activation that promotes entosis and apoptotic cell death. This previously unappreciated pathogenic mechanism represents a novel cellular dynamic in dividing cortical progenitors which is responsible for cell loss. To date, various recent models of microcephaly have bolstered the importance of P53 activation in cell death leading to microcephaly. P53 activation caused by mitotic delay or DNA damage manifests apoptotic cell death which can be suppressed by P53 removal in these animal models. Such genetic studies attest P53 activation as quality control meant to eliminate genomically unfit cells with minimal involvement in the actual function of microcephaly associated genes. In this review, we summarize the known role of P53 activation in a variety of microcephaly models and introduce a novel mechanism wherein entotic cell cannibalism in neural progenitors is triggered by P53 activation.


Assuntos
Apoptose , Entose , Microcefalia , Proteína Supressora de Tumor p53 , Microcefalia/genética , Microcefalia/metabolismo , Microcefalia/patologia , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Animais , Humanos , Camundongos , Modelos Animais de Doenças
2.
Gastroenterology ; 165(6): 1505-1521.e20, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37657757

RESUMO

BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDAC) is a deadly malignancy with high intratumoral heterogeneity. There is a lack of effective therapeutics for PDAC. Entosis, a form of nonapoptotic regulated cell death mediated by cell-in-cell structures (CICs), has been reported in multiple cancers. However, the role of entosis in PDAC progression remains unclear. METHODS: CICs were evaluated using immunohistochemistry and immunofluorescence staining. The formation of CICs was induced by suspension culture. Through fluorescence-activated cell sorting and single-cell RNA sequencing, entosis-forming cells were collected and their differential gene expression was analyzed. Cell functional assays and mouse models were used to investigate malignant phenotypes. Clinical correlations between entosis and PDAC were established by retrospective analysis. RESULTS: Entosis was associated with an unfavorable prognosis for patients with PDAC and was more prevalent in liver metastases than in primary tumors. The single-cell RNA sequencing results revealed that several oncogenes were up-regulated in entosis-forming cells compared with parental cells. These highly entotic cells demonstrated higher oncogenic characteristics in vitro and in vivo. NET1, neuroepithelial cell transforming gene 1, is an entosis-related gene that plays a pivotal role in PDAC progression and is correlated with poor outcomes. CONCLUSIONS: Entosis is correlated with PDAC progression, especially in liver metastasis. NET1 is a newly validated entosis-related gene and a molecular marker of poor outcomes. PDAC cells generate a highly aggressive subpopulation marked by up-regulated NET1 via entosis, which may drive PDAC progression.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Camundongos , Animais , Humanos , Entose , Estudos Retrospectivos , Linhagem Celular Tumoral , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Neoplasias Pancreáticas
3.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37047791

RESUMO

Homotypic entotic figures, which are a form of "cell-in-cell" structures, are considered a potential novel independent prognostic marker in various cancers. Nevertheless, the knowledge concerning the biological role of this phenomenon is still unclear. Since breast cancer cells are remarkably entosis-competent, we aimed to investigate and compare the frequency of entoses in a primary breast tumor and in its lymph node metastasis. Moreover, as there are limited data on defined molecular markers of entosis, we investigated entosis in correlation with classical breast cancer biomarkers used in routine pathomorphological diagnostics (HER2, ER, PR, and Ki67). In the study, a cohort of entosis-positive breast cancer samples paired into primary lesions and lymph node metastases was used. The inclusion criteria were a diagnosis of NOS cancer, lymph node metastases, the presence of entotic figures in the primary lesion, and/or lymph node metastases. In a selected, double-negative, HER2-positive NOS breast cancer case, entoses were characterized by a correlation between an epithelial-mesenchymal transition and proliferation markers. We observed that in the investigated cohort entotic figures were positively correlated with Ki67 and HER2, but not with ER or PR markers. Moreover, for the first time, we identified Ki67-positive mitotic inner entotic cells in clinical carcinoma samples. Our study performed on primary and secondary breast cancer specimens indicated that entotic figures, when examined by routine HE histological staining, present potential diagnostic value, since they correlate with two classical prognostic factors of breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Biomarcadores Tumorais , Antígeno Ki-67 , Receptor ErbB-2 , Entose , Metástase Linfática , Receptores de Estrogênio , Receptores de Progesterona
4.
Int J Mol Sci ; 24(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37569518

RESUMO

Homotypic entosis is a phenomenon in which one cancer cell invades a neighboring cancer cell and is closed entirely within its entotic vacuole. The fate of entosis can lead to inner cell death or survival. Recent evidence draws attention to entosis as a novel prognostic marker in breast cancer. Nevertheless, little is known about the quantity and quality of the process of entosis in human cancer specimens. Here, for the first time, we analyze the frequency of entotic figures in a case of NOS (Non-Other Specified) breast cancer with regard to location: the primary tumor, regional lymph node, and distant metastasis. For the identification of entotic figures, cells were stained using hematoxylin/eosin and assessed using criteria proposed by Mackay. The majority of entotic figures (65%) were found in the lymph node, 27% were found in the primary tumor, and 8% were found in the far metastasis. In the far metastases, entotic figures demonstrated an altered, atypic morphology. Interestingly, in all locations, entosis did not show any signs of cell death. Moreover, the slides were stained for E-cadherin or Ki67, and we identified proliferating (Ki67-positive) inner and outer entotic cells. Therefore, we propose additional criteria for the identification of pro-survival entotic structures in diagnostic histopathology.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Entose/fisiologia , Antígeno Ki-67 , Morte Celular
5.
FASEB J ; 35(10): e21909, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34547144

RESUMO

Metabolic stress contributes to the regulation of cell death in normal and diseased tissues. While different forms of cell death are known to be regulated by metabolic stress, how the cell engulfment and killing mechanism entosis is regulated is not well understood. Here we find that the death of entotic cells is regulated by the presence of amino acids and activity of the mechanistic target of rapamycin (mTOR). Amino acid withdrawal or mTOR inhibition induces apoptosis of engulfed cells and blocks entotic cell death that is associated with the lipidation of the autophagy protein microtubule-associated protein light chain 3 (LC3) to entotic vacuoles. Two other live cell engulfment programs, homotypic cell cannibalism (HoCC) and anti-CD47 antibody-mediated phagocytosis, known as phagoptosis, also undergo a similar vacuole maturation sequence involving LC3 lipidation and lysosome fusion, but only HoCC involves mTOR-dependent regulation of vacuole maturation and engulfed cell death similar to entosis. We further find that the regulation of cell death by mTOR is independent of autophagy activation and instead involves the 4E-BP1/2 proteins that are known regulators of mRNA translation. Depletion of 4E-BP1/2 proteins can restore the mTOR-regulated changes of entotic death and apoptosis rates of engulfed cells. These results identify amino acid signaling and the mTOR-4E-BP1/2 pathway as an upstream regulation mechanism for the fate of live engulfed cells formed by entosis and HoCC.


Assuntos
Aminoácidos/metabolismo , Entose , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antígeno CD47/imunologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Sobrevivência Celular , Fatores de Iniciação em Eucariotos/metabolismo , Humanos , Fagocitose/imunologia , Biossíntese de Proteínas
6.
Int J Mol Sci ; 23(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35563375

RESUMO

Entosis-a homotypic insertion of one cell into another, resulting in a death of the invading cell-has been described in many reports, but crucial aspects of its molecular mechanisms and clinical significance still remain controversial. While actomyosin contractility of the invading cell is very well established as a driving force in the initial phase, and autophagy induced in the outer cell is determined as the main mechanism of degradation of the inner cell, many details remain unresolved. The multitude of triggering factors and crisscrossing molecular pathways described in entosis regulation make interpretations difficult. The question of the physiological role of entosis also remains unanswered. In this review, we summarize the knowledge of molecular mechanisms and clinical data concerning entosis accumulated so far, highlighting both coherent explanations and controversies.


Assuntos
Autofagia , Entose , Citoesqueleto de Actina , Actomiosina , Autofagia/fisiologia , Morte Celular , Entose/fisiologia
7.
Bull Exp Biol Med ; 174(1): 76-80, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36437335

RESUMO

Phenotypic characteristics of human non-small cell lung cancer cells, A549 (p53 wild-type) and H1299 (p53-deficient) as well as their descendants surviving after multifraction X-ray irradiation at a cumulative dose of 60 Gy (sublines A549HR and H1299HR, respectively) were studied before and after additional 2 Gy single dose irradiation. In 24 h after the additional irradiation, we observed a significant increase in the proportion of cells with signs of entosis (by 5 times, p<0.05) and SA-ß-gal+ cells (by 1.6 times, p<0.01) in the general population of A549HR cells. In contrast, a significant increase in the proportion of only SA-ß-gal+ multinucleated giant cancer cells was revealed in the parental A549 cells. Additional single dose irradiation resulted in a significant (by 1.8 times, p<0.05) increase in the proportion of multinucleated giant cancer cells in H1299HR cells in comparison with their parental H1299 cells. These changes did not correlate with changes in the proportion of entotic cells, because their high basal content in the absence of functional p53 did not change in response to additional single dose irradiation. At the same time, both p53-deficient non-small cell lung cancer cell lines showed a significant (2.9-fold for H1299 and 5.5-fold for H1299HR cells, p<0.001) increase in the proportion of SA-ß-gal+ cells in the general population, but not in the multinucleated giant cancer cells population.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Raios X , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Proteína Supressora de Tumor p53/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia
8.
Trends Biochem Sci ; 42(10): 763-764, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28869131

RESUMO

Entosis is an atypical form of cell death that occurs when a cell engulfs and kills another cell. A recent article by Overholtzer and colleagues indicates that glucose deprivation promotes entosis. AMP-activated protein kinase (AMPK) activation in the loser cells triggers their engulfment and elimination by winner cells, which endure starvation.


Assuntos
Proteínas Quinases Ativadas por AMP , Fome , Morte Celular , Glucose , Humanos
9.
Semin Cancer Biol ; 63: 44-48, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31302236

RESUMO

Several lines of evidence indicate that cell competition can occur in mammals. In particular, at the initial stage of carcinogenesis, normal epithelial cells are able to recognize the neighboring transformed cells and actively eliminate them from epithelial tissues. This implies that normal epithelia have anti-tumor activity that does not involve immune cells, which is termed epithelial defense against cancer (EDAC). In this review article, we summarize recent advances on the underlying molecular machinery of EDAC. In addition, we also describe the molecular mechanisms by which transformed cells escape from EDAC to promote carcinogenesis.


Assuntos
Comunicação Celular/fisiologia , Transformação Celular Neoplásica/patologia , Células Epiteliais/citologia , Neoplasias/patologia , Animais , Morte Celular/fisiologia , Transformação Celular Neoplásica/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Neoplasias/metabolismo
10.
Exp Cell Res ; 386(2): 111727, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31759054

RESUMO

Following mating, leukocytes are recruited to the uterine epithelium where they phagocytose spermatozoa and mediate maternal immune tolerance as well as a mild inflammatory response. In this ultrastructural study we utilised array tomography, a high-resolution volume scanning electron microscopy approach to 3D reconstruct the cellular relationships formed by leukocytes recruited to the luminal uterine epithelium 12 h post-mating in the rat. We report that following mating, neutrophils and macrophages are internalised by the luminal uterine epithelium, with multiple leukocytes internalised via contortion through a small tunnel in the apical membrane into a large membrane-bound vacuole within the cytoplasm of luminal uterine epithelial cells (UECs). Once internalised within the UECs, recruited leukocytes appear to phagocytose material within the membrane-bound vacuole and most ultimately undergo a specialised cell death, including vacuolisation and loss of membrane integrity. As these observations involve ultrastructurally normal leukocytic cells internalised within non-phagocytic epithelial cells, these observations are consistent with the formation of cell-in-cell structures via entosis, rather than phagocytic engulfment by UECs. Although cell-in-cell structures have been reported in normal and pathological conditions elsewhere, the data collected herein represents the first evidence of the formation of cell-in-cell structures within the uterine epithelium as a novel component of the maternal inflammatory response to mating.


Assuntos
Copulação/fisiologia , Entose/imunologia , Células Epiteliais/ultraestrutura , Epitélio/ultraestrutura , Leucócitos/ultraestrutura , Útero/citologia , Animais , Morte Celular , Células Epiteliais/imunologia , Epitélio/imunologia , Feminino , Tolerância Imunológica , Leucócitos/imunologia , Masculino , Fagocitose , Gravidez , Ratos , Ratos Wistar , Espermatozoides/citologia , Espermatozoides/imunologia , Útero/imunologia , Vacúolos/imunologia , Vacúolos/ultraestrutura
11.
Vet Pathol ; 58(4): 596-623, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34039100

RESUMO

Balancing cell survival and cell death is fundamental to development and homeostasis. Cell death is regulated by multiple interconnected signaling pathways and molecular mechanisms. Regulated cell death (RCD) is implicated in fundamental processes such as organogenesis and tissue remodeling, removal of unnecessary structures or cells, and regulation of cell numbers. RCD can also be triggered by exogenous perturbations of the intracellular or extracellular microenvironment when the adaptive processes that respond to stress fail. During the past few years, many novel forms of non-apoptotic RCD have been identified, and the characterization of RCD mechanisms at a molecular level has deepened our understanding of diseases encountered in human and veterinary medicine. Given the complexity of these processes, it has become clear that the identification of RCD cannot be based simply on morphologic characteristics and that descriptive and diagnostic terms presently used by pathologists-such as individual cell apoptosis or necrosis-appear inadequate and possibly misleading. In this review, the current understanding of the molecular machinery of each type of non-apoptotic RCD mechanisms is outlined. Due to the continuous discovery of new mechanisms or nuances of previously described processes, the limitations of the terms apoptosis and necrosis to indicate microscopic findings are also reported. In addition, the need for a standard panel of biomarkers and functional tests to adequately characterize the underlying RCD and its role as a mechanism of disease is considered.


Assuntos
Morte Celular Regulada , Animais , Apoptose , Morte Celular , Necrose/veterinária , Transdução de Sinais
12.
Proc Natl Acad Sci U S A ; 115(48): 12212-12217, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30355768

RESUMO

ATP11A and ATP11C, members of the P4-ATPases, are flippases that translocate phosphatidylserine (PtdSer) from the outer to inner leaflet of the plasma membrane. Using the W3 T lymphoma cell line, we found that Ca2+ ionophore-induced phospholipid scrambling caused prolonged PtdSer exposure in cells lacking both the ATP11A and ATP11C genes. ATP11C-null (ATP11C-/y ) mutant mice exhibit severe B-cell deficiency. In wild-type mice, ATP11C was expressed at all B-cell developmental stages, while ATP11A was not expressed after pro-B-cell stages, indicating that ATP11C-/y early B-cell progenitors lacked plasma membrane flippases. The receptor kinases MerTK and Axl are known to be essential for the PtdSer-mediated engulfment of apoptotic cells by macrophages. MerTK-/- and Axl-/- double deficiency fully rescued the lymphopenia in the ATP11C-/y bone marrow. Many of the rescued ATP11C-/y pre-B and immature B cells exposed PtdSer, and these cells were engulfed alive by wild-type peritoneal macrophages, in a PtdSer-dependent manner. These results indicate that ATP11A and ATP11C in precursor B cells are essential for rapidly internalizing PtdSer from the cell surface to prevent the cells' engulfment by macrophages.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/metabolismo , Macrófagos Peritoneais/imunologia , Fosfolipídeos/metabolismo , Células Precursoras de Linfócitos B/enzimologia , Transportador 1 de Cassete de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Adenosina Trifosfatases/genética , Animais , Cálcio/metabolismo , Diferenciação Celular , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Precursoras de Linfócitos B/citologia
13.
Cell Biol Toxicol ; 36(2): 145-164, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31820165

RESUMO

Like the organism they constitute, the cells also die in different ways. The death can be predetermined, programmed, and cleanly executed, as in the case of apoptosis, or it can be traumatic, inflammatory, and sudden as many types of necrosis exemplify. Nevertheless, there are a number of cell deaths-some of them bearing a resemblance to apoptosis and/or necrosis, and many, distinct from each-that serve a multitude of roles in either supporting or disrupting the homoeostasis. Apoptosis is coordinated by death ligands, caspases, b-cell lymphoma-2 (Bcl-2) family proteins, and their downstream effectors. Events that can lead to apoptosis include mitotic catastrophe and anoikis. Necrosis, although it has been considered an abrupt and uncoordinated cell death, has many molecular events associated with it. There are cell death mechanisms that share some standard features with necrosis. These include methuosis, necroptosis, NETosis, pyronecrosis, and pyroptosis. Autophagy, generally a catabolic pathway that operates to ensure cell survival, can also kill the cell through mechanisms such as autosis. Other cell-death mechanisms include entosis, ferroptosis, lysosome-dependent cell death, and parthanatos.


Assuntos
Autofagia/fisiologia , Morte Celular/fisiologia , Eucariotos/metabolismo , Homeostase/fisiologia , Animais , Caspases/metabolismo , Humanos , Transdução de Sinais/fisiologia
14.
Biochim Biophys Acta Mol Cell Res ; 1865(6): 831-841, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29548938

RESUMO

Entosis is a form of epithelial cell engulfment and cannibalism prevalent in human cancer. Until recently, the only known trigger for entosis was loss of attachment to the extracellular matrix, as often occurs in the tumour microenvironment. However, two new studies now reveal that entosis can also occur among adherent epithelial cells, induced by mitosis or glucose starvation. Together, these findings point to the intriguing notion that certain hallmark properties of cancer cells, including anchorage independence, aberrant proliferation and metabolic stress, can converge on the induction of cell cannibalism, a phenomenon so frequently observed in tumours. In this review, we explore the molecular, cellular and biophysical mechanisms underlying entosis and discuss the impact of cell cannibalism on tumour biology.


Assuntos
Entose , Mitose , Neoplasias/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Neoplasias/patologia
15.
J Cell Sci ; 130(1): 278-291, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27445312

RESUMO

The processes of life take place in multiple dimensions, but imaging these processes in even three dimensions is challenging. Here, we describe a workflow for 3D correlative light and electron microscopy (CLEM) of cell monolayers using fluorescence microscopy to identify and follow biological events, combined with serial blockface scanning electron microscopy to analyse the underlying ultrastructure. The workflow encompasses all steps from cell culture to sample processing, imaging strategy, and 3D image processing and analysis. We demonstrate successful application of the workflow to three studies, each aiming to better understand complex and dynamic biological processes, including bacterial and viral infections of cultured cells and formation of entotic cell-in-cell structures commonly observed in tumours. Our workflow revealed new insight into the replicative niche of Mycobacterium tuberculosis in primary human lymphatic endothelial cells, HIV-1 in human monocyte-derived macrophages, and the composition of the entotic vacuole. The broad application of this 3D CLEM technique will make it a useful addition to the correlative imaging toolbox for biomedical research.


Assuntos
Células Endoteliais/ultraestrutura , Imageamento Tridimensional , Macrófagos/ultraestrutura , Microscopia Eletrônica de Varredura/métodos , Sobrevivência Celular , Células Cultivadas , Células Endoteliais/microbiologia , Entose , HIV/ultraestrutura , Humanos , Espaço Intracelular/microbiologia , Macrófagos/virologia , Monócitos/citologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/ultraestrutura
16.
Biochem Soc Trans ; 47(2): 725-732, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30850425

RESUMO

Cell-in-cell (CIC) is a term used to describe the presence of one, usually living, cell inside another cell that is typically considered non-phagocytic. Examples of this include tumour cells inside tumour cells (homotypic), mesenchymal stem cells inside tumour cells (heterotypic) or immune cells inside tumour cells (heterotypic). CIC formation can occur in cell lines and in tissues and it has been most frequently observed during inflammation and in cancers. Over the past 10 years, many researchers have studied CIC structures and a few different models have been proposed through which they can be formed, including entosis, cannibalism and emperipolesis among others. Recently, our laboratory discovered a role for mutant p53 in facilitating the formation of CIC and promoting genomic instability. These data and research by many others have uncovered a variety of molecules involved in CIC formation and have started to give us an idea of why they are formed and how they could contribute to oncogenic processes. In this perspective, we summarise current literature and speculate on the role of CIC in cancer biology.


Assuntos
Neoplasias/metabolismo , Animais , Biomarcadores/metabolismo , Entose/genética , Entose/fisiologia , Humanos , Neoplasias/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
17.
Yale J Biol Med ; 92(4): 687-694, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31866783

RESUMO

Cell death can occur through numerous regulated mechanisms, from apoptosis to necrosis, entosis, and others. Each has a distinct mode of regulation and effect on tissue homeostasis. While the elimination of individual cells is typically considered the relevant physiologic endpoint of cell death, in some cases the remnants left behind by death can also function to support tissue homeostasis. Here we discuss specific functions of the end products of cell death, and how "after-death" functions may contribute to the roles of programmed cell death in physiology.


Assuntos
Apoptose , Animais , Entose , Humanos , Modelos Biológicos , Fagocitose
18.
Int J Mol Sci ; 19(10)2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30241340

RESUMO

Redox active selenium (Se) compounds have gained substantial attention in the last decade as potential cancer therapeutic agents. Several Se compounds have shown high selectivity and sensitivity against malignant cells. The cytotoxic effects are exerted by their biologically active metabolites, with methylselenol (CH3SeH) being one of the key executors. In search of novel CH3SeH precursors, we previously synthesized a series of methylselenoesters that were active (GI50 < 10 µM at 72 h) against a panel of cancer cell lines. Herein, we refined the mechanism of action of the two lead compounds with the additional synthesis of new analogs (ethyl, pentyl, and benzyl derivatives). A novel mechanism for the programmed cell death mechanism for Se-compounds was identified. Both methylseleninic acid and the novel CH3SeH precursors induced entosis by cell detachment through downregulation of cell division control protein 42 homolog (CDC42) and its downstream effector ß1-integrin (CD29). To our knowledge, this is the first time that Se compounds have been reported to induce this type of cell death and is of importance in the characterization of the anticancerogenic properties of these compounds.


Assuntos
Antineoplásicos/farmacologia , Metanol/análogos & derivados , Compostos Organosselênicos/farmacologia , Compostos de Selênio/farmacologia , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Entose , Homeostase , Humanos , Metanol/metabolismo , Metanol/farmacologia , Compostos Organosselênicos/metabolismo , Oxirredução , Neoplasias Pancreáticas , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo
19.
Cell Mol Life Sci ; 73(11-12): 2379-86, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27048820

RESUMO

Multiple mechanisms have emerged where the engulfment of whole live cells, leading to the formation of what are called 'cell-in-cell' structures, induces cell death. Entosis is one such mechanism that drives cell-in-cell formation during carcinogenesis and development. Curiously, entotic cells participate actively in their own engulfment, by invading into their hosts, and are then killed non-cell-autonomously. Here we review the mechanisms of entosis and entotic cell death and the consequences of entosis on cell populations.


Assuntos
Apoptose/fisiologia , Carcinogênese/patologia , Entose/fisiologia , Fagocitose/fisiologia , Autofagia/fisiologia , Humanos , Neoplasias/patologia
20.
Semin Cell Dev Biol ; 35: 24-32, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24582829

RESUMO

It is now clear that apoptosis does not constitute the sole genetically encoded form of cell death. Rather, cells can spontaneously undertake or exogenously be driven into a cell death subroutine that manifests with necrotic features, yet can be inhibited by pharmacological and genetic interventions. As regulated necrosis (RN) plays a major role in both physiological scenarios (e.g., embryonic development) and pathological settings (e.g., ischemic disorders), consistent efforts have been made throughout the last decade toward the characterization of the molecular mechanisms that underlie this cell death modality. Contrarily to initial beliefs, RN does not invariably result from the activation of a receptor interacting protein kinase 3 (RIPK3)-dependent signaling pathway, but may be ignited by distinct molecular networks. Nowadays, various types of RN have been characterized, including (but not limited to) necroptosis, mitochondrial permeability transition (MPT)-dependent RN and parthanatos. Of note, the inhibition of only one of these modules generally exerts limited cytoprotective effects in vivo, underscoring the degree of interconnectivity that characterizes RN. Here, we review the signaling pathways, pathophysiological relevance and therapeutic implications of the major molecular cascades that underlie RN.


Assuntos
Potencial da Membrana Mitocondrial/fisiologia , Modelos Biológicos , Necrose/fisiopatologia , Transdução de Sinais/fisiologia , Caspase 8/metabolismo , Proteína de Domínio de Morte Associada a Fas/metabolismo , Humanos , Necrose/metabolismo , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA