Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
BMC Plant Biol ; 23(1): 576, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37978421

RESUMO

BACKGROUND: Green chili is the predominant vegetable in tropical and subtropical regions with high economic value. However, after harvest, it exhibits vigorous metabolic activities due to the high moisture level, leading to a reduction in bioactive compounds and hence reduced shelf life and nutritional quality. Low temperature storage results in the onset of chilling injury symptoms. Therefore, developing techniques to increase the shelf life of green chilies and safeguard their nutritional value has become a serious concern for researchers. In this regard, an experiment was conducted to evaluate the impact of the alone or combined application of hot water treatment (HWT) (45 °C for 15 min) and eucalyptus leaf extract (ELE) (30%) on 'Golden Hot' chilies in comparison to the control. After treatment, chilies were stored at 20 ± 1.5 °C for 20 days. RESULTS: HWT + ELE-treated chilies had a significant reduction in fruit weight loss (14.6%), fungal decay index (35%), red chili percentage (41.2%), soluble solid content (42.9%), ripening index (48.9%), and reactive oxygen species production like H2O2 (55.1%) and O-2 (46.5%) during shelf in comparison to control, followed by the alone application of HWT and ELE. Furthermore, the combined use of HWT and ELE effectively improved the antioxidative properties of stored chilies including DPPH radical scavenging activities (54.6%), ascorbic acid content (28.4%), phenolic content (31.8%), as well as the enzyme activities of POD (103%), CAT (128%), SOD (26.5%), and APX (43.8%) in comparison to the control. Additionally, the green chilies underwent HWT + ELE treatment also exhibited higher chlorophyll levels (100%) and general appearance (79.6%) with reduced anthocyanin content (40.8%) and wrinkling (43%), leading to a higher marketable fruit (41.3%) than the control. CONCLUSION: The pre-storage application of HWT and ELE could be used as an antimicrobial, non-chemical, non-toxic, and eco-friendly treatment for preserving the postharvest quality of green chilies at ambient temperature (20 ± 1.5 °C).


Assuntos
Antioxidantes , Eucalyptus , Antioxidantes/análise , Peróxido de Hidrogênio , Ácido Ascórbico , Extratos Vegetais/análise , Frutas/microbiologia
2.
Chemphyschem ; 24(21): e202300134, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37594478

RESUMO

This research endeavors to overcome the significant challenge of developing materials that simultaneously possess photostability and photosensitivity to UV-visible irradiation. Sulfurized nanorod (NR)-like ZnO/Zn(OH)2 and hierarchical flower-like γ-Zn(OH)2 /ϵ-Zn(OH)2 were identified from XRD diffraction patterns and Raman vibrational modes. The sulfurized material, observed by FEG-SEM and TEM, showed diameters ranging from 10 and 40 nm and lengths exceeding 200 nm. The S2- ions intercalated Zn2+ , modulating NRs to dumbbell-like microrods. SAED and HRTEM illustrated the atomic structure in (101) crystal plane. Its direct band gap of 3.0 eV was attributed to the oxygen vacancies, which also contribute to the deep-level emissions at 422 and 485 nm. BET indicated specific surface area of 4.4 m2 g-1 and pore size as mesoporosity, which are higher compared to the non-sulfurized analogue. These findings were consistent with the observed photocurrent, photostability and photoluminescence (PL), further supporting the suitability of sulfurized NR-like ZnO/Zn(OH)2 as a promising candidate for Luminescent solar concentrators (LSC)-photovoltaic (PV) system.

3.
Environ Res ; 231(Pt 1): 116058, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37178749

RESUMO

An emerging contaminant of concern in aqueous streams is naproxen. Due to its poor solubility, non-biodegradability, and pharmaceutically active nature, the separation is challenging. Conventional solvents employed for naproxen are toxic and harmful. Ionic liquids (ILs) have attracted great attention as greener solubilizing and separating agent for various pharmaceuticals. ILs have found extensive usage as solvents in nanotechnological processes involving enzymatic reactions and whole cells. The employment of ILs can enhance the effectiveness and productivity of such bioprocesses. To avoid cumbersome experimental screening, in this study, conductor like screening model for real solvents (COSMO-RS) was used to screen ILs. Thirty anions and eight cations from various families were chosen. Activity coefficient at infinite dilution, capacity, selectivity, performance index, molecular interactions using σ-profiles and interaction energies were used to make predictions about solubility. According to the findings, quaternary ammonium cations, highly electronegative, and food-grade anions will form excellent ionic liquid combinations for solubilizing naproxen and hence will be better separating agents. This research will contribute easy designing of ionic liquid-based separation technologies for naproxen. In different separation technologies, ionic liquids can be employed as extractants, carriers, adsorbents, and absorbents.


Assuntos
Líquidos Iônicos , Humanos , Solventes , Água , Naproxeno , Cátions , Ânions
4.
Environ Geochem Health ; 45(7): 4897-4913, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36988854

RESUMO

In order to solve the problem of environmental pollution caused by the escape of coal dust in open-pit coal mines, a composite dust suppressant was prepared from Enteromorpha, and the preparation factors (water-soluble polymer, temperature, solid content and surfactant) were optimized. The mechanism of dust suppression and the possibility of large-scale field application were discussed. The research results on the related properties of dust suppressants showed that the performance of Enteromorpha-based dust suppressants prepared by this method was excellent compared with similar studies. Among them, polyacrylamide (PAM) Enteromorpha-based dust suppressant had the best performance, with viscosity of 25.1 mPa s and surface tension of 27.05 mN/m. Moreover, PAM Enteromorpha-based dust suppressant had the best effect, with the mass loss of 2.94% under the wind speed of 10 m/s and the coal dust loss rate of 4.6% after rain erosion, and it had strong water retention performance. Through the discussion of dust suppression mechanism, it was found that the mechanical entangled network structure with hydrogen bonds as nodes was formed after the graft copolymerization of PAM and Enteromorpha. It had high permeability and good adhesion. After quickly wetting coal dust, it formed a dense package for coal dust. The field experiment also showed that the use of Enteromorpha-based dust suppressant can effectively inhibit the escape of coal dust. From the point of view of economy and efficiency, Enteromorpha can save 30% of the material cost and the dust suppression efficiency can reach 89-94%. Therefore, the Enteromorpha-based dust suppressant may stably suppress coal dust on the basis of reducing the cost.


Assuntos
Minas de Carvão , Poeira , Poeira/análise , Poluição Ambiental , Carvão Mineral/análise , Minerais , Água
5.
Bull Environ Contam Toxicol ; 111(3): 33, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667101

RESUMO

Presence of colors, organic surface finishing agents and surfactants in textile industry effluent makes it highly detrimental for surrounding environment. Hence the effluent from textile industry needs treatment for removal of these colors, organic and inorganic components before its disposal. Hence applicability of low cost and environmental friendly biosorbents, Azospirillium biofertilizer and Rhizobium biofertilizer were investigated for removal of Congo red dye. Batch experimentation was carried out to check operating parameters like, temperature, dose of adsorbent, pH, agitation speed, contact time and initial concentration. The biosorption capacity for Congo red dye was 67.114 and 101.01 mg/g, for Azospirillium biofertilizer and Rhizobium biofertilizer, respectively at optimized parameters. RL factor was 0.558 and 0.568 for Azospirillium biofertilizer and Rhizobium biofertilizer. The data showed combination of interaction-based separation through better fitting of Langmuir isotherm compared to Freundlich. Its separation is well described by Pseudo-second order and intraparticle diffusion model. Adsorption was favorable at lower temperature suggesting exothermic and spontaneous nature. Reusability for Azospirillium biofertilizer and Rhizobium biofertilizer was checked for 25 mg/land. While the biological nature of Azospirillium and Rhizobium biofertilizer makes removal of Congo red dye environmentally benign.


Assuntos
Vermelho Congo , Rhizobium , Adsorção , Temperatura , Indústria Têxtil
6.
Biotechnol Bioeng ; 119(4): 1091-1104, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35023152

RESUMO

Detergent-mediated virus inactivation (VI) provides a valuable orthogonal strategy for viral clearance in mammalian processes, in particular for next-generation continuous manufacturing. Furthermore, there exists an industry-wide need to replace the conventionally employed detergent Triton X-100 with eco-friendly alternatives. However, given Triton X-100 has been the gold standard for VI due its minimal impact on protein stability and high inactivation efficacy, inactivation by other eco-friendly detergents and its impact on protein stability is not well understood. In this study, the sugar-based detergent commonly used in membrane protein purification, n-dodecyl-ß- d-maltoside was found to be a promising alternative for VI. We investigated a panel of detergents to compare the relative VI efficacy, impact on therapeutic quality attributes, and clearance of the VI agent and other impurities through subsequent chromatographic steps. Detergent-mediated inactivation and protein stability showed comparable trends to low pH inactivation. Using experimental and modeling data, we found detergent-mediated product aggregation and its kinetics to be driven by extrinsic factors such as detergent and protein concentration. Detergent-mediated aggregation was also impacted by an initial aggregation level as well as intrinsic factors such as the protein sequence and detergent hydrophobicity, and critical micelle concentration. Knowledge gained here on factors driving product stability and VI provides valuable insight to design, standardize, and optimize conditions (concentration and duration of inactivation) for screening of detergent-mediated VI.


Assuntos
Produtos Biológicos , Inativação de Vírus , Animais , Detergentes/química , Cinética , Mamíferos , Octoxinol/química , Estabilidade Proteica
7.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36142370

RESUMO

Taking into consideration the items of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), this study reviews application of mechanochemical approaches to the modification of polysaccharides. The ability to avoid toxic solvents, initiators, or catalysts during processes is an important characteristic of the considered approach and is in line with current trends in the world. The mechanisms of chemical transformations in solid reactive systems during mechanical activation, the structure and physicochemical properties of the obtained products, their ability to dissolve and swell in different media, to form films and fibers, to self-organize in solution and stabilize nanodispersed inorganic particles and biologically active substances are considered using a number of polysaccharides and their derivatives as examples.


Assuntos
Polissacarídeos , Catálise , Solventes
8.
J Environ Manage ; 316: 115280, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35588665

RESUMO

Microbial-induced struvite precipitation (MISP) is a new biocementation method for soil improvement and hydraulic permeability reduction. Compared with traditional microbial-induced carbonate precipitation (MICP), MISP can significantly reduce the production of harmful ammonium ions during biochemical reactions and convert ammonium ions into struvite with promising mechanical strength. In this study, a series of experiments were conducted to compare the performance of the MICP and the MISP processes on sandy soils. Results showed that the average content of calcium carbonate in MISP cemented sand columns after 3 times of injection is similar to that in MICP cemented sand columns after 9 times of injection. The hydraulic permeability of MISP cemented sand columns after 3 times of injection is an order of magnitude lower than that of MICP cemented sand columns after 9 times of injection. To further investigate the physicochemical interactions during MISP and MICP processes, a one-dimensional finite element code considering the chemical reactions and the solute transportation was proposed. Results show that most of the MISP were formed in the early 3 h of the 6 h injection cycle, whereas most of the MICP were formed in the last 5 h of the injection cycle. The simulated total mass of the MISP precipitation, 11.3 g, was close to the experimental result of 9.6 g. The spatial distribution of MISP is more uneven as compared to MICP, as a result of the much faster reaction rate of struvite than calcium carbonate. The findings suggested that MISP could partially replace MICP in the applications of leakage mitigation and reinforcement of sandy soils.


Assuntos
Compostos de Amônio , Solo , Carbonato de Cálcio/química , Carbonatos , Precipitação Química , Areia , Solo/química , Estruvita
9.
World J Microbiol Biotechnol ; 38(8): 141, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35710855

RESUMO

Mineral lubricating oils are widely used in various industrial sectors for their applications in maintenance and functioning of machineries. However, indiscriminate dumping of these used oils have resulted in polluting the natural reservoirs which subsequently destroys ecological balance. Bacteria can emulsify or lower surface tension between phases of immiscible substrates and can acquire them as their carbon and energy sources. Such a phenomenon is mediated by production of extracellular polymers which can function as eminent surface active compounds based on their surfactant or emulsifying nature. The comparison between bacterial strains (Gram-positive Bacillus stratosphericus A15 and Gram-negative Ochrobactrum pseudintermedium C1) on utilization of pure straight chain hydrocarbons, waste mineral lubricating oils as sole carbon source and chemical characterization of the synthesized surface active compounds were studied. Characterization analysis by Ultraviolet Visible spectrophotometry, Fourier transform infrared spectroscopy, Nuclear Magnetic Resonance spectroscopy, Carbon-Hydrogen-Nitrogen analysis has given detailed structural elucidation of surface active compounds. The contrasting nature of bacterial strains in utilization of different hydrocarbons of waste mineral lubricating oils was observed in Gas Chromatography-Mass Spectroscopy analysis. The variation between both strains in utilization of hydrocarbons can be manifested in chemical structural differences and properties of the produced surface active compounds. Scanning Electron Microscopy has given detailed insight into the microstructural difference of the compounds. The utilization of lubricating oils can address waste disposal problem and offer an economical feasible approach for bacterial production of surface active compounds. Our results suggest that these surface active compounds can maneuver applications in environmental bioremediation and agriculture, pharmaceuticals and food as functional biomaterials.


Assuntos
Bacillus , Ochrobactrum , Biodegradação Ambiental , Carbono , Hidrocarbonetos , Minerais , Óleos de Plantas , Tensoativos
10.
Molecules ; 26(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34684824

RESUMO

La3LiMn1-xTixO7 (0 ≤ x ≤ 0.05) samples were synthesized by a solid-state reaction method, and a single-phase form was observed for the samples in the range of x ≤ 0.03. Crystal structure, optical properties, and color of the La3LiMn1-xTixO7 (0 ≤ x ≤ 0.03) samples were characterized. Strong optical absorption was observed at a wavelength between 400 and 550 nm, and a shoulder absorption peak also appeared around 690 nm in all samples; orange colors were also exhibited. Among the samples synthesized, the most brilliant orange color was obtained at La3LiMn0.97Ti0.03O7. The redness (a*) and yellowness (b*) values of this pigment were higher than those of the commercially available orange pigments. Therefore, the orange color of this pigment is brighter than those of the commercial products. Since the La3LiMn0.97Ti0.03O pigment is composed of non-toxic elements, it could be a new environmentally friendly inorganic orange pigment.

11.
J Sci Food Agric ; 101(7): 3030-3040, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33179763

RESUMO

BACKGROUND: Ridge-furrow mulching farming systems (RFMs) aim to increase field productivity and improve water use efficiency. To explore environment-friendly and efficient farming systems is a central aspect of rainfed wheat field management in Kenya where rainfall utilization is at a low level. We introduced RFMs (including plastic film and grass straw mulching) to semiarid Kenya to evaluate the effects on field productivity, rainwater utilization, soil quality and economic profitability using old and modern wheat cultivars from 2012 to 2013. RESULTS: Across the cultivars, the RFMs increased grain yield, aboveground biomass and water use efficiency by 74-163%, 36-104% and 89-273%, respectively, compared with conventional flat planting (control). RFMs significantly shortened the vegetative period while prolonging the reproductive period. The net economic output under RFMs was 74-165% higher than that of the control. Grass straw mulching achieved the highest economic output to input ratio, almost 45% higher than plastic film mulching, despite the former harvested only 82% of the maximum field productivity of the latter. Compared with the control, grass straw mulching promoted the contents of soil organic carbon, total nitrogen and C:N ratio by 14%, 8% and 5%, respectively, while obviously decreased values of these parameters were observed under plastic mulching. CONCLUSIONS: Through reducing soil water loss, and improving rainwater use efficiency and soil quality, ridge-furrow grass straw mulching would be a sustainable option for boosting field productivity and thus ensuring local food security in rainfed agricultural areas of Kenya. © 2020 Society of Chemical Industry.


Assuntos
Produção Agrícola/métodos , Triticum/crescimento & desenvolvimento , Água/análise , Irrigação Agrícola , Produção Agrícola/instrumentação , Quênia , Caules de Planta/química , Poaceae/química , Solo/química , Triticum/metabolismo , Água/metabolismo
12.
J Food Sci Technol ; 58(10): 3924-3932, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34471316

RESUMO

Films that incorporate antioxidant agents are widely used and improve the stability of food products that are prone to oxidation. This work evaluated the potential antioxidant activity of PVA/gelatine films incorporated with quercetin. The films were prepared by the casting method and characterised by TG-DSC, FTIR spectroscopy, SEM, optical microscopy and swelling index. Antioxidant properties were evaluated with DPPH, ABTS and FRAP assays. According to the thermal characterisation results, the film was stable up to 68 °C and entirely degraded at 632 °C. The FTIR spectroscopic analysis indicated that there was a physical interaction between the quercetin and the polymeric film, and microscopy indicated a homogeneous and uniform film. The film showed DPPH (315.4 ± 8.2) and ABTS radical potential activity (199.4 ± 9.7), as well as potential iron reduction activity-FRAP (740.6 ± 8.9) mainly when analysed in ethanol: water (95:5 v/v) system, all results expressed as milligram of Trolox per gram of film. Hence, PVA/gelatine films incorporated with quercetin have properties that allow a potential application in active packaging systems to delay oxidative processes in food.

13.
Sensors (Basel) ; 20(7)2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235570

RESUMO

Smart structures have attracted significant research attention in the last decade, mainly due to the capabilities of advanced concrete in electrical resistance-enabled self-sensing. In this study, we present a type of environment-friendly, self-sensing concrete enabled by electrical resistance. Environment-friendly, self-sensing concrete was casted with the additions of byproduct wastes (i.e., coal fly ash (FA), blast furnace slag (BOF) and red mud (RM)) at various volume fractions and cured using the conditions of 3, 7 and 28 days. The self-sensing concrete samples were experimentally tested to investigate the effects of the byproduct wastes on the mechanical and electrical properties (i.e., compressive strength and electrical resistance). In the end, parametric studies were experimentally conducted to investigate the influences of the byproduct wastes on the mechanical and electrical properties of the reported environment-friendly, self-sensing concrete.

14.
Ecotoxicol Environ Saf ; 182: 109423, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31325810

RESUMO

Indole derivatives derived from the secondary metabolites of marine organisms possess the excellent antifouling property to inhibit the biofouling. These compounds and their analogues are simple in structure and have been proven to have low toxicity and bioaccumulation. Therefore, the active indole antifoulants are expected to replace the potentially toxic antifoulants which are widely used in current antifouling coatings. Seven indole derivatives were synthesized via the Friedel-Crafts alkylation reaction and were characterized by IR spectra, 1H NMR, 13C NMR and elemental analysis. Inhibition experiments against marine algae and bacteria were conducted, and the partial inhibition rates of algae and bacteria were more than 90%. This outcome indicates that indole derivatives possess excellent properties suitable for use as targeting anti-fouling compound for algae and bacteria. Non-invasive Micro-test Technology (NMT) reveals that the Ca2+ efflux of Platymonas subcordiformis dramatically increased in the presence of indole derivatives, which is inferred to be the molecular mechanism for inhibiting the growth of marine algae. The antifouling coatings containing indole derivatives were prepared and subjected to an antifouling test in a marine environment, and the results show that N-(1-H-5-bromo-indole-3-ylmethyl) benzamide and N-(1-H-2-phenyl-indole-3-ylmethyl) benzamide possess better antifouling performance compared to copper pyrithione (CuPT). According to these results, indole derivatives in this study might become novel and promising antifoulants.


Assuntos
Incrustação Biológica/prevenção & controle , Desinfetantes/toxicidade , Indóis/toxicidade , Organismos Aquáticos , Bactérias/crescimento & desenvolvimento
15.
Bioprocess Biosyst Eng ; 42(1): 1-15, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30238362

RESUMO

The hazardous effects of current nanoparticle synthesis methods have steered researchers to focus on the development of newer environmentally friendly and green methods for synthesizing nanoparticles using nontoxic chemicals. The development of environmentally friendly methods of nanoparticle synthesis with different sizes and shapes is one of the pressing challenges for the current nanotechnology. Several novel green approaches for the synthesis of AuNPs have been explored using different natural sources, such as plants, algae, bacteria, and fungi. Among organisms, algae and blue-green algae are of particular interest for nanoparticle synthesis. Gold nanoparticles (AuNPs) have a range of applications in medicine, diagnostics, catalysis, and sensors because of their significant key roles in important fields. AuNPs have attracted a significant interest for use in a variety of applications. The widespread use of AuNPs can be accredited to a combination of optical, physical, and chemical properties as well as the miscellany of size, shape, and surface composition that has been adopted through green synthesis methods.


Assuntos
Cianobactérias/fisiologia , Ouro/química , Nanopartículas Metálicas/química , Nanotecnologia/métodos , Antioxidantes/química , Infecções Bacterianas/tratamento farmacológico , Catálise , Linhagem Celular Tumoral , Fungos , Química Verde , Humanos , Nanotecnologia/tendências , Neoplasias/tratamento farmacológico , Plantas , Polímeros/química , Alga Marinha , Sefarose/análogos & derivados , Sefarose/química , Propriedades de Superfície
16.
J Sci Food Agric ; 98(8): 2889-2897, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29168567

RESUMO

BACKGROUND: Traditional seed coating agents often contain toxic ingredients, which contaminate the environment and threaten human health. This paper expounds a method of preparing a novel environment-friendly seed coating agent for maize and researches its mechanism of action. The natural polysaccharide polymer, which is the main active ingredient of this environment-friendly seed coating agent, has the characteristics of innocuity and harmlessness, and it can replace the toxic ingredients used in traditional seed coating agents. RESULTS: This environment-friendly seed coating agent for maize was mainly made up of the natural polysaccharide polymer and other additives. The field trials results showed that the control efficacy of Helminthosporium maydis came to 93.72%, the anti-feeding rate of cutworms came to 81.29%, and the maize yield was increased by 17.75%. Besides, the LD50 value (half the lethal dose in rats) of this seed coating agent was 10 times higher than that of the traditional seed coating agents. This seed coating agent could improve the activity of plant protective enzymes (peroxidase, catalase and superoxidase dismutase) and increase the chlorophyll content. CONCLUSION: This seed coating agent has four characteristics of disease prevention, desinsectization, increasing yield and safety. Results of mechanism analyses showed that this seed coating agent could enhance disease control effectiveness by improving plant protective enzymes activity and increase maize yield by improving chlorophyll content. © 2017 Society of Chemical Industry.


Assuntos
Produção Agrícola/métodos , Doenças das Plantas/prevenção & controle , Sementes/química , Zea mays/crescimento & desenvolvimento , Ascomicetos/fisiologia , Catalase/metabolismo , Clorofila/metabolismo , Produção Agrícola/instrumentação , Germinação , Peroxidase/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Polissacarídeos/química , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Sementes/microbiologia , Zea mays/química , Zea mays/metabolismo , Zea mays/microbiologia
17.
J Comput Chem ; 38(10): 721-729, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28225197

RESUMO

Developing the environment-friendly insulation gases to replace sulfur hexafluoride (SF6 ) has attracted considerable experimental and theoretical attentions but without success. A computational methodology was presented herein for prediction on dielectric strength and boiling point of arbitrary gaseous molecules in the purpose of molecular design and screening. New structure-activity relationship (SAR) models have been established by combining the density-dependent properties of the electrostatic potential surface, including surface area and the statistical variance of the surface potentials, with the molecular properties including polarizability, electronegativity, and hardness. All the descriptors in the SAR models were calculated using density functional theory. The substitution effect of SF6 by various functional groups was studied systematically. It was found that CF3 is the most effective functional group to improve the dielectric strength due to the large surface area and polarizability. However, all the substitutes exhibit higher boiling points than SF6 because the molecular hardness decreases. The balance between Er and Tb could be achieved by minimizing the local polarity of the molecules. SF5 CN and SF5 CFO were found to be the potent candidates to replace SF6 in view of their large dielectric strengths and low boiling points. © 2017 Wiley Periodicals, Inc.

18.
Molecules ; 22(5)2017 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-28505098

RESUMO

Described herein is an environmentally benign method for the synthesis of multisubstituted 3-alkoxylated-2-oxindoles 3 via direct alkoxylation of 3-halooxindoles 1. A wide variety of such multisubstituted 3-alkoxylated-2-oxindole scaffolds were smoothly obtained in good yields (up to 94%) by heating in an oil bath at 35 °C for 24 h. A particularly valuable feature of this method was the development of environment-friendly chemistry using alcohols 2 as both the substrates and solvents in the presence of a catalytic amount of base.


Assuntos
Álcoois/química , Indóis/química , Solventes/química , Catálise , Estrutura Molecular , Oxindóis , Estereoisomerismo
19.
Zhongguo Zhong Yao Za Zhi ; 42(13): 2433-2438, 2017 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-28840679

RESUMO

Natural plant pigment is rich in resources, with the features of natural color and environment friendly, which has a broad space for development and market prospects. In order to further develop and utilize of natural plant pigment, this paper mainly introduces the natural plant dyes in the domains of food, cosmetics and health care products on the historical development process and their application. In addition,this paper summarizes the application of representative natural plant pigment, dyes, and prospects the market of natural plant pigment, so as to provide reference for the development of natural plant pigment in the enlarged health industry of China.


Assuntos
Compostos Fitoquímicos/química , Pigmentos Biológicos/química , China , Cosméticos/química , Corantes de Alimentos/química
20.
Anal Bioanal Chem ; 408(25): 6929-44, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27349918

RESUMO

Greening the analytical methods used for analysis of pharmaceuticals has been receiving great interest aimed at eliminating or minimizing the amount of organic solvents consumed daily worldwide without loss in chromatographic performance. Traditional analytical LC techniques employed in pharmaceutical analysis consume tremendous amounts of hazardous solvents and consequently generate large amounts of waste. The monetary and ecological impact of using large amounts of solvents and waste disposal motivated the analytical community to search for alternatives to replace polluting analytical methodologies with clean ones. In this context, implementing the principles of green analytical chemistry (GAC) in analytical laboratories is highly desired. This review gives a comprehensive overview on different green LC pathways for implementing GAC principles in analytical laboratories and focuses on evaluating the greenness of LC analytical procedures. This review presents green LC approaches for eco-friendly analysis of pharmaceuticals in industrial, biological, and environmental matrices. Graphical Abstract Green pathways of liquid chromatography for more eco-friendly analysis of pharmaceuticals.


Assuntos
Cromatografia Líquida/métodos , Química Verde/métodos , Preparações Farmacêuticas/análise , Cromatografia Líquida/instrumentação , Química Verde/instrumentação , Interações Hidrofóbicas e Hidrofílicas , Miniaturização/instrumentação , Miniaturização/métodos , Preparações Farmacêuticas/isolamento & purificação , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA