Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 428, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773358

RESUMO

BACKGROUND: Acacia nilotica Linn. is a widely distributed tree known for its applications in post-harvest and medicinal horticulture. However, its seed-based growth is relatively slow. Seed is a vital component for the propagation of A. nilotica due to its cost-effectiveness, genetic diversity, and ease of handling. Colchicine, commonly used for polyploidy induction in plants, may act as a pollutant at elevated levels. Its optimal concentration for Acacia nilotica's improved growth and development has not yet been determined, and the precise mechanism underlying this phenomenon has not been established. Therefore, this study investigated the impact of optimized colchicine (0.07%) seed treatment on A. nilotica's morphological, anatomical, physiological, fluorescent, and biochemical attributes under controlled conditions, comparing it with a control. RESULTS: Colchicine seed treatment significantly improved various plant attributes compared to control. This included increased shoot length (84.6%), root length (53.5%), shoot fresh weight (59.1%), root fresh weight (42.8%), shoot dry weight (51.5%), root dry weight (40%), fresh biomass (23.6%), stomatal size (35.9%), stomatal density (41.7%), stomatal index (51.2%), leaf thickness (11 times), leaf angle (2.4 times), photosynthetic rate (40%), water use efficiency (2.2 times), substomatal CO2 (36.6%), quantum yield of photosystem II (13.1%), proton flux (3.1 times), proton conductivity (2.3 times), linear electron flow (46.7%), enzymatic activities of catalase (25%), superoxide dismutase (33%), peroxidase (13.5%), and ascorbate peroxidase (28%), 2,2-diphenyl-1-picrylhydrazyl-radical scavenging activities(23%), total antioxidant capacity (59%), total phenolic (23%), and flavonoid content (37%) with less number of days to 80% germination (57.1%), transpiration rate (53.9%), stomatal conductance (67.1%), non-photochemical quenching (82.8%), non-regulatory energy dissipation (24.3%), and H2O2 (25%) and O-2 levels (30%). CONCLUSION: These findings elucidate the intricate mechanism behind the morphological, anatomical, physiological, fluorescent, and biochemical transformative effects of colchicine seed treatment on Acacia nilotica Linn. and offer valuable insights for quick production of A. nilotica's plants with modification and enhancement from seeds through an eco-friendly approach.


Assuntos
Acacia , Colchicina , Sementes , Colchicina/farmacologia , Acacia/efeitos dos fármacos , Acacia/fisiologia , Acacia/crescimento & desenvolvimento , Acacia/metabolismo , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Fotossíntese/efeitos dos fármacos , Antioxidantes/metabolismo
2.
Int J Neurosci ; : 1-15, 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39207796

RESUMO

BACKGROUND: Chronic alcoholism refers to the unpleasant symptoms directly resulting from excessive drinking. Increased alcohol metabolites and an unbalanced oxidative state are likely to blame for the reported effects under these circumstances. According to preclinical and clinical research, vitamin B12 can act on several organ systems with demonstrated neuroprotective, antioxidant, and glutamate modulating properties. OBJECTIVE: This research sought to examine the ameliorative effects of vitamin B12 (VtB12) in persistent alcohol (AlOH) exposed adult zebrafish with the help of following parameters like the anxiety related behavior test, Oxidative stress, and antioxidant assays, histological and immunofluorescence analysis. METHODS: Zebrafish pretreated with 0.40% AlOH (v/v) for 120 min (+AlOH) or not (-AlOH), were exposed for 6 h to home tank water (-VtB12) or to 59 µg-VtB12/kg-fish food (+VtB12) to analyze anxiety behavior in the geotaxis (novel tank) test as well as the oxidative brain damage in the adult zebrafish. RESULTS: Adult zebrafish exposed to chronic AlOH showed a decrease in the distance travelled, average and mobility speed, and increased the average frozen time, the explored area, and total no. of the site explored in the trapezoid tank. AlOH exposure also resulted in oxidative damage, enhanced lipid peroxidation, advanced oxidative protein products, decreased enzymatic and non-enzymatic antioxidant activities, and enhanced reactive oxygen species generation. Additionally, VtB12 supplementation improved neurogenesis, evident in increased Nissl cell numbers and NeuN expression in the brain. CONCLUSION: Chronic alcoholism may be effect on the brain cells as well as on the neuro-behavior of zebrafish. This research demonstrated that VtB12 shows promise as a neuroprotective agent against chronic alcoholism induced alterations in zebrafish's brain.

3.
Plants (Basel) ; 12(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37299200

RESUMO

Water deficit is a significant environmental stress that has a negative impact on plant growth and yield. In this research, the positive significance of kaolin and SiO2 nanoparticles in moderating the detrimental effects of water deficit on maize plant growth and yield is investigated. The foliar application of kaolin (3 and 6%) and SiO2 NPs (1.5 and 3 mM) solutions increased the growth and yield variables of maize plants grown under normal conditions (100% available water) and drought stress conditions (80 and 60% available water (AW)). In addition, plants treated with SiO2 NPs (3 mM) demonstrated increased levels of important osmolytes, such as proline and phenol, and maintained more of their photosynthetic pigments (net photosynthetic rate (PN), stomatal conductance (gs), intercellular CO2 concentration (Ci), and transpiration rate (E)) than with other applied treatments under either stress or non-stress conditions. Furthermore, the exogenous foliar application of kaolin and SiO2 NPs also reduced the amounts of hydroxyl radicals (OH), superoxide anions (O2), hydrogen peroxide (H2O2), and lipid peroxidation in maize plants experiencing a water deficit. In contrast, the treatments led to an increase in the activity of antioxidant enzymes such as peroxidase (POX), ascorbate peroxidase (APX), glutathione peroxidase (GR), catalase (CAT), and superoxide dismutase (SOD). Overall, our findings indicate the beneficial impact of the application of kaolin and silicon NPs, particularly the impact of SiO2 NPs (3 mM) on managing the negative, harmful impacts of soil water deficit stress in maize plants.

4.
Plant Physiol Biochem ; 202: 107936, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37647821

RESUMO

Plants respond to water shortage by regulating biochemical pathways which result in the biosynthesis of osmotic compounds. Active metabolites and compatible osmolytes control the inhibition of oxygen free radicals and dehydration. The physiological response of scrophularia striata to drought stress, a factorial completely randomized design (FCRD) experiment was conducted in three replication. Drought stress was induced at two levels (100% and 50% field capacity), and salicylic acid (SA) and silicon (Si) and Ecotype were also used at two levels of (0 and 100 PPM), (0 and 1 g/L) and (Ilam and Abdanan) respectively. Data analysis results indicated that the H2O2 content, Malondialdehyde (MDA), glycine betaine (GB) and the activity of the enzyme glutathione reductase (GR; EC 1.6.4.2) of aerial parts increased during the entire stress exposure period. Although the SA + Si + stress + ecotype interaction increased the content of soluble carbohydrate s and the GR activity in aerial parts of Ilam and Abdanan ecotypes, this interaction led to a decrease in MDA, H2O2 in Ilam ecotypes. The interaction between the stress + SA + Si + ecotype led to an increase in the phenylalanine ammonialyase (PAL; EC 4.3.1.5) activity in the Abdanan ecotype, but no important difference was observed. As compared to the control treatment, the content of Polyphenol increased, The interaction between ecotype + stress + Si caused to increased the of proline content in the Abadanan ecotype. The results showed that the increase in antioxidant defense and compatible osmolytes due to the use of SA and Si can improve the drought tolerance in S.striata.


Assuntos
Secas , Scrophularia , Peróxido de Hidrogênio , Silício/farmacologia , Glutationa Redutase , Ácido Salicílico/farmacologia , Componentes Aéreos da Planta
5.
Plants (Basel) ; 10(11)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34834701

RESUMO

The production of ornamentals is an economic activity of great interest, particularly the production of Lilium. This plant is very attractive for its color and shapes; however, the quality of its flower and its shelf life can decrease very fast. Therefore, it is of the utmost importance to develop techniques that allow for increasing both flower quality and shelf life. Nanotechnology has allowed for the use of various materials with unique characteristics. These materials can induce a series of positive responses in plants, among which the production of antioxidant compounds stands out. The objective of this study was to determine the impact of the application of silicone nanoparticles (SiO2 NPs) on the quality, shelf life, and antioxidant status of Lilium. For this, different concentrations of SiO2 NPs (0, 200, 400, 600, 800, and 1000 mg L-1) were applied in two ways, foliar and soil, as two independent experiments. The contents of enzymatic (superoxide dismutase, glutathione peroxidase, catalase, ascorbate peroxidase, and phenylalanine ammonia lyase) and non-enzymatic (phenols, flavonoids, and glutathione) antioxidant compounds, the mineral content, flower quality, and shelf life were analyzed. The results showed that the application of SiO2 NPs through the foliar method induced a greater flowers' shelf life (up to 21.62% more than the control); greater contents of Mg, P, and S (up to 25.6%, 69.1%, and 113.9%, respectively, compared to the control); more photosynthetic pigment (up to 65.17% of total chlorophyll); more glutathione peroxidase activity (up to 69.9%); more phenols (up to 25.93%); and greater antioxidant capacity as evaluated by the DPPH method (up to 5.18%). The use of SiO2 NPs in the production of Lilium is a good alternative method to increase flower quality and shelf life.

6.
Artigo em Inglês | MEDLINE | ID: mdl-33310062

RESUMO

The aim of the present study was to analyze the dose dependency of oxidant-antioxidant homeostasis in Cd2+ exposed Nostoc muscorum Meg 1 cells. Quantification of percent DNA loss, protein oxidation and lipid peroxidation was carried out to assess Cd2+ induced ROS mediated damages to the organism. The countermeasures adopted by the cyanobacterium were also evaluated by computing various components of both enzymatic and non-enzymatic antioxidants. Exposure to different Cd2+ (0.1, 0.2, 0.3, 0.5, 1, 1.5, 2, 2.5, 3 ppm) doses showed substantial increase in ROS content in the ranges of 20-181% and 116-323% at the end of first and seventh day. The DNA damage, protein oxidation and lipid peroxidation were increased by 11-62%, 7-143% and 13-183% with increasing Cd2+ concentrations at the end of seven days. TEM images clearly showed damages to the cell wall, cell membrane and thylakoid organization at higher Cd2+ (0.5-3 ppm) concentrations. Cd2+ exposure up to 0.5 ppm registered increase in contents of antioxidative enzymes (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR)) and in non-enzymatic antioxidants (glutathione, total thiol, phytochelatin and proline) indicating stimulation of ROS mitigating machinery. However, toxicity of Cd2+ was evident as at higher concentrations the cellular morphology and ultra-structures were negatively affected and the capacities of the cells to generate various antioxidant measures were highly compromised. The organism registered 96-98% sorption ability from a solution supplemented with 0.3 ppm Cd2+ and thus show realistic potential as Cd2+ bioremediator in wastewater treatment.


Assuntos
Antioxidantes/metabolismo , Cádmio/toxicidade , Nostoc muscorum/efeitos dos fármacos , Nostoc muscorum/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Cádmio/administração & dosagem , Catalase/metabolismo , Relação Dose-Resposta a Droga , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Peroxidação de Lipídeos , Oxirredução , Superóxido Dismutase/metabolismo
7.
Food Chem ; 217: 45-51, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27664606

RESUMO

Fresh-cut lotus root slices were treated with 80nM 24-epibrassinolide (EBR) and then stored at 4°C for 8days to investigate the effects on cut surface browning. The results showed that EBR treatment reduced cut surface browning in lotus root slices and alleviated membrane lipid peroxidation as reflected by low malondialdehyde content and lipoxygenase activity. EBR treatment inhibited the activity of phenylalanine ammonia lyase and polyphenol oxidase, and subsequently decreased phenolics accumulation and soluble quniones formation. The treatment also stimulated the activity of peroxidase, catalase and ascorbate peroxidase and delayed the loss of ascorbic acid, which would help prevent membrane lipid peroxidation, as a consequence, reducing decompartmentation of enzymes and substrates causing enzymatic browning. These results indicate that EBR treatment is a promising attempt to control browning at cut surface of fresh-cut lotus root slices.


Assuntos
Antioxidantes/metabolismo , Brassinosteroides/farmacologia , Catecol Oxidase/antagonistas & inibidores , Lotus/metabolismo , Fenóis/química , Fenilalanina Amônia-Liase/antagonistas & inibidores , Reguladores de Crescimento de Plantas/farmacologia , Esteroides Heterocíclicos/farmacologia , Ácido Ascórbico/metabolismo , Catalase/metabolismo , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Lotus/efeitos dos fármacos , Oxirredução , Peroxidase/metabolismo , Tubérculos/efeitos dos fármacos , Tubérculos/metabolismo
8.
Postepy Kardiol Interwencyjnej ; 11(4): 298-303, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26677379

RESUMO

INTRODUCTION: Acute myocardial infarction (AMI) is still one of the most common causes of death worldwide. In recent years, for diagnosis of myocardial ischemia, a new parameter, called ischemia modified albumin (IMA), which is thought to be more advantageous than common methods, has been researched. AIM: In this study, systematic analysis of parameters considered to be related to myocardial ischemia has been performed, comparing between control and myocardial ischemia groups. MATERIAL AND METHODS: We selected 40 patients with AMI and 25 healthy controls for this study. Ischemia modified albumin levels, glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) antioxidant enzyme activities and non-enzymatic antioxidants such as retinol, α-tocopherol, ß-carotene and ascorbic acid levels were investigated in both groups. Glutathione (GSH) and malondialdehyde (MDA) levels, which are indicators of oxidative stress, were compared between patient and control groups. RESULTS: Ischemia modified albumin levels were found significantly higher in the AMI diagnosed group when compared with controls. The MDA level was elevated in the patient group, whereas the GSH level was decreased. SOD, GPx and CAT enzyme levels were decreased in the patient group, where it could be presumed that oxidative stress causes the cardiovascular diseases. CONCLUSIONS: Due to the increased oxidative stress, non-enzymatic and enzymatic antioxidant capacity was affected. Systematic investigation of parameters related to myocardial infarction has been performed, and it is believed that such parameters can contribute to protection and early diagnosis of AMI and understanding the mechanism of development of the disease.

9.
Plant Physiol Biochem ; 73: 420-6, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24239614

RESUMO

Effect of salt stress was examined in in vitro shoot cultures of Myrtus communis L. a species of the Mediterranean maquis. To determine the effects of high salt concentrations on myrtle plantlets and contribute toward understanding the mechanisms adopted from this species to counteract soil salinity, in vitro rooted shoots were transferred to a liquid culture medium containing 0, 125 or 250 mM NaCl for 30 days. After 15 and 30 days of in vitro culture, shoot and root growth, chlorosis and necrosis extension, chlorophylls, carotenoids, proline, arginine, cysteine and total sugars content, as well as guaiacol peroxidase (G-POD, EC 1.11.1.7) and ascorbate peroxidase (APX, EC 1.11.1.11) activities were determined. In treated plants shoot and root growth, as well as chlorophyll content, significantly decreased, while carotenoids content was not affected by the NaCl treatment. Among osmolytes, proline did not significantly increase, arginine and cysteine decreased, while total sugars were found to be higher in the treated plants than in the control. Enhancement of G-POD and APX activities was positively related to increasing salt concentrations in the culture media, regardless of the exposure time. Salt-treated plants did not show significant changes in lipid peroxidation or DNA fragmentation after 30 days salt treatment, regardless of the NaCl concentrations applied. The results represent a contribution towards understanding the mechanisms adopted by this species to high salinity.


Assuntos
Ascorbato Peroxidases/metabolismo , Myrtus/fisiologia , Salinidade , Tolerância ao Sal , Cloreto de Sódio/farmacologia , Estresse Fisiológico , Arginina/metabolismo , Metabolismo dos Carboidratos/efeitos dos fármacos , Carotenoides/metabolismo , Clorofila/metabolismo , Meios de Cultura/química , Cisteína/metabolismo , Fragmentação do DNA/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Myrtus/enzimologia , Myrtus/crescimento & desenvolvimento , Myrtus/metabolismo , Estresse Oxidativo , Peroxidase/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Prolina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cloreto de Sódio/metabolismo , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA