Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39164803

RESUMO

The objective of this work was to optimize the application of an enzymatic blend produced by Aspergillus niger ATCC 1004 on the Pimenta dioica fruits for essential oil extraction. The enzyme blend was obtained from the fermentation of cocoa bean shells, an agro-industrial residue. The effects of the enzymatic pre-treatment on the extraction yield, the chemical composition of the oil through gas chromatography, and the fruit structure through scanning electron microscopy (SEM) were assessed. A Doehlert design was used to optimize the process conditions, resulting in an extraction with 117 mL of enzyme during 77 min, which increased the extraction yield by 387.5%. The chemical composition was not altered, which proves that the enzyme blend preserves the quality of the essential oil extracted. The content of eugenol (70%), the major compound in the P. dioica essential oil, had a great increase in its concentration (560%). The enzyme activity analyses showed the presence of endoglucanase (0.4 U/mL), exoglucanase (0.25 U/mL), ß-glucosidase (0.19 U/mL), and invertase (135.08 U/mL). The microscopy analyses revealed changes in the morphology of fruit surface due to the enzymatic action. These results demonstrate the great potential of using enzyme blends produced by filamentous fungi from agro-industrial residues for the essential oils extraction of interest for the pharmaceutical and food industries.

2.
J Environ Manage ; 356: 120573, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479289

RESUMO

Anaerobic co-fermentation is a favorable way to convert agricultural waste, such as swine manure (SM) and apple waste (AW), into lactic acid (LA) through microbial action. However, the limited hydrolysis of organic matter remains a main challenge in the anaerobic co-fermentation process. Therefore, this work aims to deeply understand the impact of cellulase (C) and protease (P) ratios on LA production during the anaerobic co-fermentation of SM with AW. Results showed that the combined use of cellulase and protease significantly improved the hydrolysis during the enzymatic pretreatment, thus enhancing the LA production in anaerobic acidification. The highest LA reached 41.02 ± 2.09 g/L within 12 days at the ratio of C/P = 1:3, which was approximately 1.26-fold of that in the control. After a C/P = 1:3 pretreatment, a significant SCOD release of 45.34 ± 2.87 g/L was achieved, which was 1.13 times the amount in the control. Moreover, improved LA production was also attributed to the release of large amounts of soluble carbohydrates and proteins with enzymatic pretreated SM and AW. The bacterial community analysis revealed that the hydrolytic bacteria Romboutsia and Clostridium_sensu_stricto_1 were enriched after enzyme pretreatment, and Lactobacillus was the dominant bacteria for LA production. This study provides an eco-friendly technology to enhance hydrolysis by enzymatic pretreatment and improve LA production during anaerobic fermentation.


Assuntos
Celulases , Malus , Animais , Suínos , Fermentação , Esterco/microbiologia , Ácido Láctico , Bactérias , Peptídeo Hidrolases
3.
Prep Biochem Biotechnol ; : 1-12, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39264050

RESUMO

This study explores a novel enzymatic pretreatment approach in anaerobic reactors for dairy wastewater, using lipase AY Amano to enhance methane production and modify microbial and archaeal community composition. Batch and semi-batch reactors with a total volume of 2000 mL were used to treat dairy wastewater with initial COD of 2000 and 15,000 mg L-1, respectively. In a new novel approach, the semi-batch reactors underwent a three-phase operation: 30 days of acclimation, 30 days of rest, and 30 days of active operation. Adding lipase (0.05% wv-1) as a pretreatment significantly increased methane yield over the 90 days by 135-138% compared with the control (without enzyme addition). The organic loading rate reached 0.22 g COD day-1 L-1. Furthermore, 30 days after the end of the semi-batch reactor approach (120 days from the start), reusing sludge in batch reactors increased methane yield by 114-122% compared to the control. This increase was linked to the emergence and shift of new methanogenic communities within the sludge. Integrating hydrolytic enzymes into the anaerobic treatment enhances performance and sustainability by fostering methanogen-enriched microbial communities. This is crucial for maximizing methane production but may increase costs, requiring further economic feasibility research.

4.
Environ Res ; 204(Pt C): 112299, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34743806

RESUMO

In recent years, attempts have been made to develop a thermophilic composting process for organic sludge to produce ammonia gas for high value-added algal production. However, the hydrolysis of non-dissolved organic nitrogen in sludge is a bottleneck for ammonia conversion. The aim of this study was to identify enzymes that enhance sludge hydrolysis in a thermophilic composting system for ammonia recovery from shrimp pond sludge. This was achieved by screening useful enzymes to degrade non-dissolved nitrogen and subsequently investigating their effectiveness in lab-scale composting systems. Among the four hydrolytic enzyme classes assessed (lysozyme, protease, phospholipase, and collagenase), proteases from Streptomyces griseus were the most effective at hydrolysing non-dissolved nitrogen in the sludge. After composting sludge pre-treated with proteases, the final amount of non-dissolved nitrogen was 46.2% of the total N in the control sample and 22.3% of the total N in the protease sample, thus increasing the ammonia (gaseous and in-compost) conversion efficiency from 41.5% to 56.4% of the total N. The decrease in non-dissolved nitrogen was greater in the protease sample than in the control sample during the pre-treatment period, and no difference was observed during the subsequent composting period. These results suggest that Streptomyces proteases hydrolyse the organic nitrogen fraction, which cannot be degraded by the bacterial community in the compost. Functional potential analysis of the bacterial community using PICRUSt2 suggested that 4 (EC:3.4.21.80, EC:3.4.21.81, EC:3.4.21.82, and EC:3.4.24.77) out of 13 endopeptidase genes in S. griseus were largely absent in the compost bacterial community and that they play a key role in the hydrolysis of non-dissolved nitrogen. This is the first study to identify the enzymes that enhance the hydrolysis of shrimp pond sludge and to show that the thermophilic bacterial community involved in composting has a low ability to secrete these enzymes.


Assuntos
Compostagem , Amônia/análise , Nitrogênio/análise , Lagoas/análise , Esgotos , Solo
5.
Biotechnol Appl Biochem ; 69(5): 1843-1856, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34496084

RESUMO

Leaves of Croton argyrophyllus contain essential oil with promising active components for the development of drugs and botanical insecticides. In this study, we evaluated the enzymatic pretreatment process to increase the extraction of essential oil from fresh and dried leaves of C. argyrophyllus. Pretreatment was carried out using a crude multienzymatic extract obtained via solid-state fermentation of forage palm by Aspergillus niger, and the extraction was performed by hydrodistillation. A Doehlert matrix was used to optimize the enzymatic pretreatment variables temperature and enzymatic extract. The effect of pretreatment time was also investigated. At optimum experimental conditions, 41.34°C, 140 min, and 130.73 mL of enzyme in 369.27 mL of water, the essential oil yield from fresh leaves subjected to enzymatic pretreatment increased by 9.35% and that from dry leaves by 6.77%. Based on chromatographic analysis (GC-MS), no compound was degraded in the extraction process. Micromorphological analysis confirmed the rupture of the glandular trichomes, favoring essential oil release. Therefore, enzymatic pretreatment associated with hydrodistillation increased the essential oil yield and is a promising application to obtain essential oil for therapeutic purposes without altering its composition.


Assuntos
Croton , Óleos Voláteis , Óleos Voláteis/análise , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Croton/química , Aspergillus niger , Folhas de Planta/química , Extratos Vegetais/química
6.
J Environ Manage ; 319: 115777, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35982572

RESUMO

Food waste (FW) is not only a major social, nutritional and environmental issue, but also an underutilized resource with significant energy, which has not been fully explored currently. Considering co-digestion can adjust carbon to nitrogen ratio (C/N) of the feedstock and improve the synergetic interactions among microorganisms, anaerobic co-digestion (AnCoD) is then becoming an emerging approach to achieve higher energy recovery from FW while ensuring the stability of the system. To obtain higher economic gain from such biodegradable wastes, increasing attention has been paid on optimizing the system configuration or applying enzymatic hydrolysis before digesting FW. A better understanding on the potentiality of correlating enzymatic pretreatment and AnCoD operated in various system configuration would enhance the bioresource recovery from FW and increase revenue through treating this organic waste. Specifically, the biobased chemicals outputs from FW-related co-digestion system with different configuration were firstly compared in this review. A deep discussion concerning the challenges for achieving bioresources recovery from FW co-digestion systems with enzymatic pretreatment was then given. Recommendations for future studies regarding FW co-digestion were then proposed at last.


Assuntos
Alimentos , Eliminação de Resíduos , Anaerobiose , Reatores Biológicos , Digestão , Metano , Nitrogênio , Esgotos
7.
Prep Biochem Biotechnol ; 52(1): 19-29, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33787468

RESUMO

Lipid-rich wastewater from the local dairy industry (cheese whey) in the Galilee, Israel was hydrolyzed by using two different sources of lipase as hydrolytic enzymes: fungal (Candida rogusa lipase-AY) and animal porcine pancreatic lipase(PPL). Pretreatment efficiency was verified by comparative biodegradability tests of raw and treated wastewater samples. Simultaneous hydrolysis and anaerobic digestion in the same reactors were also tested. Enzymatic pretreatment of these samples at a concentration of 0.05 w v-1 showed organic matter removal of 90% and methane formation increases of 140% for the fungal source enzyme (i.e., AY), while for the animal source enzyme (i.e., PPL) was 86 and 130%, respectively. Enzymatic pretreatment led to significant methane formation which was obtained only for moderate substrate concentration (initial chemical oxygen demand of 15 gL-1); While in high concentrated lipid-rich wastewater led to methane yield inhibition. The main finding was that the combination of AY enzyme with Candida rugosa fungus (i.e., enzyme mixture) led to a high efficiency in methane production (+152%) and organic materials removal (more than 90%). In summary, the use of fungal hydrolytic lipase mixed with Candida rugosa fungus is a promising method for enhancing methane production during the biodegradation of fat and grease-rich wastewaters.


Assuntos
Lipase/metabolismo , Metabolismo dos Lipídeos , Metano/metabolismo , Saccharomycetales/metabolismo , Águas Residuárias/microbiologia , Animais , Biodegradação Ambiental , Hidrólise , Microbiologia Industrial , Lipídeos/análise , Saccharomycetales/enzimologia , Suínos , Águas Residuárias/análise
8.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502353

RESUMO

Since laccase acts specifically in lignin, the major contributor to biomass recalcitrance, this biocatalyst represents an important alternative to the pretreatment of lignocellulosic biomass. Therefore, this study investigates the laccase pretreatment and climate change effects on the hydrolytic performance of Panicum maximum. Through a Trop-T-FACE system, P. maximum grew under current (Control (C)) and future climate conditions: elevated temperature (2 °C more than the ambient canopy temperature) combined with elevated atmospheric CO2 concentration(600 µmol mol-1), name as eT+eC. Pretreatment using a laccase-rich crude extract from Lentinus sajor caju was optimized through statistical strategies, resulting in an increase in the sugar yield of P. maximum biomass (up to 57%) comparing to non-treated biomass and enabling hydrolysis at higher solid loading, achieving up to 26 g L-1. These increments are related to lignin removal (up to 46%) and lignin hydrophilization catalyzed by laccase. Results from SEM, CLSM, FTIR, and GC-MS supported the laccase-catalyzed lignin removal. Moreover, laccase mitigates climate effects, and no significant differences in hydrolytic potential were found between C and eT+eC groups. This study shows that crude laccase pretreatment is a potential and sustainable method for biorefinery solutions and helped establish P. maximum as a promising energy crop.


Assuntos
Lacase/metabolismo , Lignina/química , Panicum/crescimento & desenvolvimento , Biomassa , Carboidratos , Mudança Climática , Hidrólise/efeitos dos fármacos , Lacase/química , Lentinula , Lignina/metabolismo , Açúcares
9.
Molecules ; 26(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34361727

RESUMO

Enzymatic pretreatment of seeds is a novel approach that enhances the health benefits of the extracted oil. The study investigated the influence of the enzymatic pretreatment of seeds on the quality of oil from different pomegranate cultivars. The quality of the ultrasound-assisted (and ethanol-extracted) oil was studied, with respect to the refractive index (RI), yellowness index (YI), conjugated dienes (K232), peroxide value (PV) ρ-anisidine value (AV), total oxidation value (TOTOX), total carotenoid content (TCC), total phenolic compounds (TPC), fatty acid composition, phytosterol composition, ferric reducing antioxidant power (FRAP), and 2.2-diphenyl-1-picryl hydrazyl (DPPH) radical scavenging capacity. The seeds of three different pomegranate cultivars ('Wonderful', 'Herskawitz', and 'Acco') were digested with an equal mixture of Pectinex Ultra SPL, Flavourzyme 100 L, and cellulase crude enzymes, at a concentration, pH, temperature, and time of 1.7%, 4.5, 40 °C, and 5 h, respectively. Enzymatic pretreatment of PS increased oil yield, PV, TPC, TCC, and DPPH radical scavenging capacity, but decreased the YI. The levels of K232, AV and TOTOX, fatty acids, phytosterols, RI, and FRAP, were not significantly affected by enzymatic pretreatment of PS. Principal component analysis (PCA) established that oil extracted from the 'Acco' seed after enzymatic pretreatment had higher yield, TPC, TCC, and DPPH radical scavenging capacity. Therefore, enzyme-pretreated 'Acco' pomegranate fruit seed is a source of quality seed oil with excellent antioxidant properties.


Assuntos
Antioxidantes/isolamento & purificação , Hidrolases/química , Extração Líquido-Líquido/métodos , Óleos de Plantas/isolamento & purificação , Punica granatum/química , Sementes/química , Antioxidantes/química , Antioxidantes/farmacologia , Compostos de Bifenilo/antagonistas & inibidores , Carotenoides/química , Carotenoides/isolamento & purificação , Carotenoides/farmacologia , Etanol/química , Ácidos Graxos/química , Ácidos Graxos/isolamento & purificação , Ácidos Graxos/farmacologia , Frutas/química , Alimento Funcional/provisão & distribuição , Humanos , Oxirredução , Fenóis/química , Fenóis/isolamento & purificação , Fenóis/farmacologia , Fitosteróis/química , Fitosteróis/isolamento & purificação , Fitosteróis/farmacologia , Picratos/antagonistas & inibidores , Óleos de Plantas/química , Análise de Componente Principal , Solventes/química , Sonicação/métodos
10.
Appl Microbiol Biotechnol ; 104(10): 4235-4246, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32200469

RESUMO

The population growth is causing an increase in the generation of effluents (mainly organic fraction of municipal solid waste (OFMSW) and agro-industrial waste), which is an old problem in agro-industrial countries such as Brazil. Contrastingly, it is possible to add value to these residual biomasses (residues) through the application of new technologies for the production of bioenergy. Anaerobic digestion (AD) of sewage sludge is being applied in many effluent treatment plants for the sustainable and economically viable production of biogas. However, the biogas produced from AD (sludge) or co-digestion (sludge with other residues) presents a concentration of methane between 60 and 70% on average, which is relatively low. This review is aimed at analyzing studies involving (i) production of lipases by solid-state fermentation (SSF) by different microorganisms for the application in enzymatic pretreatments prior to the anaerobic treatment of effluents; (ii) pretreatment followed by AD of various residues, with an emphasis on OFMSW and sewage sludge; and (iii) more recent studies on anaerobic co-digestion (AcoD) and hybrid technologies (pretreatment + AD or AcoD). There are many studies in the literature that demonstrate the enzymatic pretreatment or AcoD applied to the optimization of methane production. Nevertheless, few studies report the combination of these two technologies, which can improve the process and reduce or eliminate the costs of biogas purification, which are major challenges for the viability of this route of bioenergy production. KEY POINTS: • Municipal and agro-industrial wastes have potential as medium for lipase production. • Enzymatic pretreatment and anaerobic co-digestion are low cost for high-methane production. Graphical abstract Interactions among various factors optimization methane production from enzymatic pretreatment and AcoD.


Assuntos
Fenômenos Fisiológicos Bacterianos , Fermentação , Metano/biossíntese , Esgotos/microbiologia , Anaerobiose , Biocombustíveis/análise , Biomassa , Reatores Biológicos , Brasil , Meios de Cultura , Ativação Enzimática , Resíduos Industriais , Lipase/análise
11.
Molecules ; 25(14)2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708275

RESUMO

Microalgal biomass is a sustainable and valuable source of lipids with omega-3 fatty acids. The efficient extraction of lipids from microalgae requires fast and alternative extraction methods, frequently combined with biomass pre-treatment by different procedures. In this work, Pressurized liquid extraction (PLE) was optimized and compared with traditional lipid extraction methods, Folch and Bligh and Dyer, and with a new Ultrasound Assisted Extraction (UAE) method for lipids from microalgae Isochrysis galbana. To further optimize PLE and UAE, enzymatic pre-treatment of microalga Isochrysis galbana was studied with commercial enzymes Viscozyme and Celluclast. No significant differences were found for lipid yields among different extraction techniques used. However, advanced extraction techniques with or without pre-treatment are a green, fast, and toxic solvent free alternative to traditional techniques. Lipid composition of Isochrysis was determined by HPLC-ELSD and included neutral and polar lipids, showing that each fraction comprised different contents in omega-3 polyunsaturated fatty acids (PUFA). The highest polar lipids content was achieved with UAE (50 °C and 15 min) and PLE (100 °C) techniques. Moreover, the highest omega-3 PUFA (33.2%), eicosapentaenoic acid (EPA) (3.3%) and docosahexaenoic acid (DHA) (12.0%) contents were achieved with the advanced technique UAE, showing the optimized method as a practical alternative to produce valuable lipids for food and nutraceutical applications.


Assuntos
Ácidos Docosa-Hexaenoicos/química , Enzimas/metabolismo , Haptófitas/química , Lipídeos/isolamento & purificação , Suplementos Nutricionais , Ácido Eicosapentaenoico/química , Ácidos Graxos Ômega-3/química , Extração Líquido-Líquido , Microalgas/química , Pressão , Solventes/química , Ondas Ultrassônicas
12.
J Environ Manage ; 233: 774-784, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30314871

RESUMO

The rapid depletion of natural resources and the environmental concerns associated with the use of fossil fuels as the main source of global energy is leading to an increased interest in alternative and renewable energy sources. Particular interest has been given to the lignocellulosic biomass as the most abundant source of organic matter with a potential of being utilized for energy recovery. Different approaches have been applied to convert the lignocellulosic biomass to energy products including anaerobic digestion (AD), fermentation, combustion, pyrolysis, and gasification. The AD process has been proven as an effective technology for converting organic material into energy in the form of methane-rich biogas. However, the complex structure of the lignocellulosic biomass comprised of cellulose, hemicelluloses, and lignin hinders the ability of microorganisms in an AD process to degrade and convert these compounds to biogas. Therefore, a pretreatment step is essential to improve the degradability of the lignocellulosic biomass to achieve higher biogas rate and yield. A system that uses pretreatment and AD is known as advanced AD. Several pretreatment methods have been studied over the past few years including physical, thermal, chemical and biological pretreatment. This paper reviews the enzymatic pretreatment as one of the biological pretreatment methods which has received less attention in the literature than the other pretreatment methods. This paper includes a review of lignocellulosic biomass composition, AD process, challenges in degrading lignocellulosic materials, the current status of research to improve the biogas rate and yield from the AD of lignocellulosic biomass via enzymatic pretreatment, and the future trend in research for the reduction of enzymatic pretreatment cost.


Assuntos
Biocombustíveis , Lignina , Biomassa , Metano
13.
Food Technol Biotechnol ; 56(2): 218-227, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30228796

RESUMO

Membrane technology has been successfully applied for the purification of bromelain, a protease enzyme from pineapple. However, the current system operates less optimally in terms of flux and separation primarily due to properties of the feed, such as viscosity. Hence, in this study, enzymatic pretreatment and diafiltration operation were employed in a two-stage ultrafiltration (UF) system to enhance the performance of the purification and concentration process of bromelain enzyme from an extract of pineapple crude waste mixture (CWM). Pretreatment of the CWM extract using either pectinase or cellulase, or the combination of both, was applied and compared regarding the apparent viscosity reduction. Diafiltration step was introduced in UF stage 2 and observations on the flux performance, enzyme recovery and enzyme purity were made. A 12% apparent viscosity reduction was achieved when the CWM extract was pretreated with pectinase which led to 37-38% improvement in the flux performance of both UF stages, as well as higher enzyme recovery in UF stage 1. The introduction of diafiltration mode in UF stage 2 managed to sustain high flux values while yielding 4.4-fold enzyme purity (higher than a 2.5-fold purity achieved in our previous work); however, high diluent consumption was needed. The outcomes of this study showed that the flux performance and bromelain separation can be enhanced by reducing the viscosity with the employment of enzymatic pretreatment and diafiltration operation. Thus, both techniques can be potentially applied in a large-scale membrane-based process for bromelain production.

14.
Foodborne Pathog Dis ; 14(9): 518-523, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28594572

RESUMO

The contamination of oysters with human noroviruses poses a human health risk, since oysters are often consumed raw. In this study, human norovirus genogroup II was allowed to bio-accumulate in oysters, and then the effect of high-pressure processing (HPP) on human noroviruses in oysters was determined through a polymerase chain reaction (PCR)-based method with enzymatic pretreatment to distinguish infectious noroviruses. As a result, oysters could be artificially contaminated to a detectable level of norovirus genome by the reverse transcription-PCR. Concentrations of norovirus genome in laboratory-contaminated oysters were log normally distributed, as determined by the real-time PCR, suggesting that artificial contamination by bio-accumulation was successful. In two independent HPP trials, a 1.87 log10 and 1.99 log10 reduction of norovirus GII.17 genome concentration was observed after HPP at 400 MPa for 5 min at 25°C. These data suggest that HPP is a promising process of inactivation of infectious human noroviruses in oysters. To our knowledge, this is the first report to investigate the effect of HPP on laboratory-contaminated noroviruses in oysters.


Assuntos
Infecções por Caliciviridae/prevenção & controle , Contaminação de Alimentos/prevenção & controle , Manipulação de Alimentos/métodos , Doenças Transmitidas por Alimentos/prevenção & controle , Norovirus/fisiologia , Ostreidae/virologia , Animais , Infecções por Caliciviridae/virologia , Doenças Transmitidas por Alimentos/virologia , Humanos , Pressão Hidrostática , Reação em Cadeia da Polimerase em Tempo Real
15.
Foodborne Pathog Dis ; 14(8): 465-471, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28594609

RESUMO

To obtain detailed information on the diversity of infectious norovirus in oysters (Crossostrea gigas), oysters obtained from fish producers at six different sites (sites A, B, C, D, E, and F) in Japan were analyzed once a month during the period spanning October 2015-February 2016. To avoid false-positive polymerase chain reaction (PCR) results derived from noninfectious virus particles, samples were pretreated with RNase before reverse transcription-PCR (RT-PCR). RT-PCR products were subjected to next-generation sequencing to identify norovirus genotypes in oysters. As a result, all GI genotypes were detected in the investigational period. The detection rate and proportion of norovirus GI genotypes differed depending on the sampling site and month. GII.3, GII.4, GII.13, GII.16, and GII.17 were detected in this study. Both the detection rate and proportion of norovirus GII genotypes differed depending on the sampling site and month. In total, the detection rate and proportion of GII.3 were highest from October to December among all detected genotypes. In January, the detection rates of GII.4 and GII.17 reached the same level as that of GII.3. The proportion of GII.17 was relatively lower from October to December, whereas it was the highest in January. To our knowledge, this is the first investigation on noroviruses in oysters in Japan, based on a method that can distinguish their infectivity.


Assuntos
Infecções por Caliciviridae/virologia , Variação Genética , Norovirus/genética , Ostreidae/virologia , Animais , Infecções por Caliciviridae/epidemiologia , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Japão/epidemiologia , Norovirus/isolamento & purificação , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
16.
Bioprocess Biosyst Eng ; 39(2): 331-40, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26670779

RESUMO

Anaerobic digestion is a consolidated bioprocess which can be further enhanced by incorporating an upstream pretreatment unit. The olive oil production produces a large amount of solid waste which needs to be properly managed and disposed. Three different pretreatment techniques were evaluated in regard to their impact on the anaerobic biodegradability: manual milling of olive pomace (OP), enzyme maceration, direct enzyme addition, and thermal hydrolysis of two-phase olive mill waste. The Gompertz equation was used to obtain parameters for comparison purposes. A substrate/inoculum ratio 0.5 was found to be the best to be used in anaerobic batch test with olive pomace as substrate. Mechanical pretreatment of OP by milling increases the methane production rate while keeping the maximum methane yield. The enzymatic pretreatment showed different results depending on the chosen pretreatment strategies. After the enzymatic maceration pretreatment, a methane production of 274 ml CH4 g VS added (-1) was achieved, which represents an improvement of 32 and 71 % compared to the blank and control, respectively. The direct enzyme addition pretreatment showed no improvement in both the rate and the maximum methane production. Steam explosion showed no improvement on the anaerobic degradability of two-phase olive mill waste; however, thermal hydrolysis with no rapid depressurization enhanced notoriously both the maximum rate (50 %) and methane yield (70 %).


Assuntos
Eliminação de Resíduos de Serviços de Saúde/métodos , Modelos Químicos , Complexos Multienzimáticos/química , Azeite de Oliva , Resíduos Sólidos , Vapor
17.
Int J Biol Macromol ; 255: 128100, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37981285

RESUMO

The current study applied dual-enzymatic treatment via alcalase and Bacillus velezensis hydrolase for enhancing extraction of proteins and polysaccharides from wheat bran and modifying their corresponding structure. Results indicated the aqueous extract by enzymatic pretreatment (referred as EHWB) had an increased content of soluble substance, in which 18.5 % increased for carbohydrates and 11.4 % increased for proteins in the extract compared to the aqueous extract without enzymes (labeled as AEWB). Furthermore, compositions with lower molecular weight of 130 kDa and < 21.1 kDa for polysaccharides and proteins, respectively, were found in EHWB. Interestingly, EHWB had a twice higher radicals scavenging than that of AEWB, and digestive property indicated EHWB had a greater peptides production although glucose release was lower in gastric phase. Importantly, this is the first study to reveal that gut microbiota fermentation of EHWB resulted in faster generation of short-chain fatty acids at initial fermentation stage (6 h), followed a higher generation of butyrate at final fermentation stage (24 h). This fermentation property might be associated with its presence of lower molecular weight substrates and even the changes in the molecular structure induced by the enzymes. This study highlights a novel approach for developing a value-added product from wheat bran.


Assuntos
Fibras na Dieta , Polissacarídeos , Fibras na Dieta/metabolismo , Carboidratos/química , Ácidos Graxos Voláteis/metabolismo , Fermentação
18.
Bioresour Technol ; 406: 131012, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908762

RESUMO

Anaerobic co-fermentation of swine manure (SM) and apple waste (AW) restricts by the slow hydrolysis of substrates with complex structures, which subsequently leads to low lactic acid (LA) production. Therefore, a novel strategy based on enzymatic pretreatment for improving LA production from anaerobic co-fermentation of SM and AW was proposed in this study. The results indicated that the maximal LA concentration increased from 35.89 ± 1.84 to 42.70 ± 2.18 g/L with the increase of enzyme loading from 0 to 300 U/g VSsubstrate. Mechanism exploration indicated that enzymatic pretreatment significantly promoted the release and hydrolysis of insoluble organic matter from fermentation substrate, thus providing an abundance of reaction intermediates that were directly available for LA production. Additionally, bacteria analysis revealed that the high concentration of LA was associated with the prevalence of Lactobacillus. This study offered an environmental-friendly strategy for promoting SM and AW hydrolysis and provided a viable approach for recovering valuable products.


Assuntos
Fermentação , Ácido Láctico , Malus , Esterco , Animais , Hidrólise , Ácido Láctico/biossíntese , Suínos , Resíduos , Anaerobiose
19.
Waste Manag ; 189: 114-126, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39182277

RESUMO

This study optimized the anaerobic digestion (AD) of separated collected organic fractions of municipal solid waste (OFMSW) to produce energy and digestate as biofertilizer. Due to OFMSW's partial recalcitrance to degradation, enzymatic (UPP2, MCPS, USC4, USE2, A. niger) and physical (mechanical blending, heating, hydrodynamic cavitation) pre-treatments were tested. Experimental and modeling approaches were used to compare AD performance regarding energy sustainability and digestate quality. Digestate was separated into solid and liquid fractions, and then chemically and physically characterized by investigating the nutrient release mechanisms. Principal Component Analysis was applied, equally weighing energy and digestate productions. Unlike previous studies focusing only on biogas, this study evaluated the effects of pre-treatments on both biogas and digestate production, viewing AD as a biorefinery process for urban waste valorization. Results showed that all pre-treatments were energetically sustainable, but enzymatic pre-treatments yielded digestates richer in nutrients (increase of 80% N, 200% P and 150% K as compared to OFMSW) and with greater organic matter degradation compared to physical pre-treatments. The liquid fraction of digestate from enzymatic pre-treatments had higher nutrient concentrations, while those from physical pre-treatments had more balanced nutrient content, making them more suitable for fertigation.


Assuntos
Biocombustíveis , Eliminação de Resíduos , Resíduos Sólidos , Anaerobiose , Biocombustíveis/análise , Resíduos Sólidos/análise , Eliminação de Resíduos/métodos , Agricultura/métodos , Reatores Biológicos
20.
Int J Biol Macromol ; 253(Pt 4): 127054, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37769759

RESUMO

Enzymatic pretreatment plays a crucial role in producing cellulose nanofibers (CNFs) before fibrillation. While previous studies have explored how treatment severity affects CNF characteristics, there remains a lack of suitable parameters to monitor real-time enzymatic processes and fully comprehend the link between enzymatic action, fibrillation, and CNF properties. This study focuses on evaluating the impact of enzyme charge (using a monocomponent endoglucanase) and treatment time on cellulose fiber morphology and reducing sugar generation. For the first time, a random forest (RF) model is developed to predict reducing sugar concentration based on easily measurable process conditions (e.g., stirrer power consumption) and fiber/suspension characteristics like fines content and apparent viscosity. Polarized light optical microscopy was found to be a suitable technique to evaluate the morphological changes that fibers experience during enzymatic pretreatment. The research also revealed that endoglucanases initially induce surface fibrillation, releasing fine fibers into the suspension, followed by fiber swelling and shortening. Furthermore, the effect of enzymatic pretreatment on resulting CNF characteristics was studied at two fibrillation intensities, indicating that a high enzyme charge and short treatment times (e.g., 90 min) are sufficient to produce CNFs with a nanofibrillation yield of 19-23 % and a cationic demand ranging from 220 to 275 µeq/g. This work introduces a well-modeled enzymatic pretreatment process, unlocking its potential and reducing uncertainties for future upscaling endeavors.


Assuntos
Celulase , Nanofibras , Celulose , Açúcares , Carboidratos , Suspensões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA